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Abstract. This paper is concerned with a problem on optimization in stock price
model that allows for jumps in the stochastic processes. We show that the problem
is formulated into the optimal stochastic control problem under the criterion of mean
square tracking error at the end of the planning horizon. The optimal control and the
optimal proportion invested in the index fund which are specified by the product of
the market value of risk and the discounted terminal value of bench mark portfolio are
derived by the solution to ordinary differential equations associated with an adjoint
equation.

1 Introduction. The performance of investment in capital market under uncertainty is
often evaluated in comparison with the benchmark portfolio. Some of the most widely
known benchmark portfolios are the Standard & Poor’s 500 (S & P 500), Financial Times
Stock Exchange 100 Share Index, the Tokyo Stock Price Index (TOPIX) and The NIKKEI
225. However, if we actually wish to hold such a benchmark portfolio, we have to make
up our minds to hold it at huge transaction, management and information collection costs,
since it includes almost all or large number of securities in the market[10]. Thus, it has
been emphasized that the portfolio with a small number of securities which closely track the
benchmark portfolio is of great concern to risk hedge and to portfolio management. Such a
portfolio is called an index fund and in a case in point. So the problem can be regaraded as
an optimization problem to minimize the tracking error between the benchmark portfolio
and the index fund. In this paper, the tracking error is defined as the mean square error
between the returns of benchmark and index fund.

In a discrete time framwork, Green[3], Meada and Salkin[5] developed the relation-
ship between the index fund and the frontier portfolio in the sense of the mean-variance
framework. Tabata and Takeda[9] formulated this problem into a quardratic programming
problem with 0-1 variables and proposed the efficient method to find an index fund which
minimizes the mean square of tracking error in descrete time static model.

On the other hand, much effort has been devoted to the continuous time model in the
modern mathematical finance theory. As was pointed out by R. Cont and P. Tankov[1],
Lévy processes and other stochastic processes with jumps have become increasingly popular
for modelling market fluctuations, both for risk management and option pricing purposes.
Applications of the stochastic control to a financial problem, especially to the pricing of
derivatives are found in Yong and Zhou[11], Kohlmann and Zhou[4], Framstad [2], Øksendal
and Sulem [7] and so on. Mistui and Tabata [4] analized Lévy process by means of the
Teugel’s martingale and showed the existence of a unique optimal hedging strategy.

In this paper, we derive the optimal index fund based upon the stochastic control tech-
nique. In section 2 we give our basic market model with continuous time. Section 3 deals
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with the relationship between our model and the stochastic control problem and devel-
opes the method to find the optimal control and the index fund. Section 4 expresses our
concluding remarks.

2 Model. Throughout this paper we deal with a financial market consisting of n + 1
financial assets S0, S1, · · · , Sn. Asset S0 is risk-free called a money market (e.g. bond or
bank account ). Assets S1, S2, · · · , Sn are risky called stocks. Prices of these risky financial
assets are continuously evolved in time and driven by a d-dimensional Brownian motion.

Let us begin with a stochastic basis (Ω,F , {Ft}t≥0, P ) with FT = F which is a proba-
bility space (Ω,F , P ) equipped with a filtration {Ft}0≤t≤T . The price of the money market
S0(t) is gorverned by

dS0(t) = S0(t)ρ(t)dt,(1)

where ρ(t)(> 0) is an instantaneous risk-free interest rate at time t. Let cádlág (right-
continuous with left-hand limit) processes Si = {Si(t)}0≤t≤T , i = 1, 2, · · · , n be stochastic
processes with representations

dSi(t) = Si(t−)
[
µi(t)dt +

∑d
j=1 σij(t)dBj

+
∑l

k=1

∫
R

γi(t, zk)Ñk(dt, dzk)
]
,(2)

where µi(t), σij(t) and γi(t, z) are given bounded deterministic functions. γ; [0, T )×R
l×Ω →

R
n×l is adapted process such that the integral exists. l denotes the number of discontinuities.

To ensure that Si(t) ≥ 0 for all t and i = 1, 2, · · · , n, we assume that γi(t, z) ≥ −1 a.s. Lévy
measure ν. Note that

Ñk(dt,dzk) = Nk(dt, dzk) − νk(dzk)dt, 1 ≤ k ≤ l

is a compensated Poisson random measure of Lévy process and Nk(dt,dzk) shows the num-
ber of jumps of size dzk during an infinitesimal time interval dt. ν(dz) = EN(1, dz) is called
Lévy measure and represents the expected number of jumps of size dz. Here Bj , j = 1, · · · , d
denotes d(≤ n) independent standard Brownian motions.

Since cádlág functions S(t) can have at most a countable number of l discontinuities,
the set {t ∈ [0, T ]; S(t) �= S(t−)} is finite or countable. Also, for any ε > 0, the number
of discontinuities(“jumps”) on [0, T ] larger than ε should be finite. So a cádlág function on
[0, T ] has a finite number of small jumps (larger than ε) and possibly infinite, but countable
number of small jumps. If t is a discontinuity point in time we denote by

∆S(t) = S(t) − S(t−)

the “jump” of S at t. We may regard this market as a jump diffusion extension of the
classical Black-Scholes market.

A portfolio in this market is defined as an (n + 1)-dimensional cádlág and adapted
process. Let Y (t) be the benchmark or target portfolio process defined on L2(Ω,F , P ) and
represented by the linear combination of Sk(t) as

Y (t) =
n∑

k=1

ck(t)Sk(t),(3)

where Ft-mesurable adaptd function ck(t) expresses the proportion of stock k at time t and
satisfies

n∑
k=1

ck(t) = 1, ck(t) ≥ 0.(4)
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Let x(t) be the stochastic process called index fund which consists of m risky assets and the
riskfree asset ρ(t). To avoid the difficulty such as NP-completeness for the combinatorial
problem and for simplicity, we assume that the index fund x(t) is consist of first m risky
securities and riskfree asset ρ(t), whre m ≤ n. That is

x(t) =
m∑

i=0

Wi(t)Si(t),(5)

where Wi(t), i = 1, · · · , m is unknown proportion invested in asset i and W0(t) denotes the
proportion invested in the riskfree asset S0(t) at time t.

From equations (1), (2) and (5) it follows that dx(t) should satisfy the following equation

dx(t) =
m∑

i=0

Wi(t)dSi(t) = W0(t)dS0(t) +
m∑

i=1

Wi(t)dSi(t)

= ρ(t)W0(t)S0(t)dt +
m∑

i=1

Si(t−)Wi(t)
{
µi(t)dt

+
d∑

j=1

σij(t)dBj(t) +
l∑

k=1

∫
R

γi(t, zk)Ñk(dt, dzk)
}

=
{
ρ(t)x(t) +

m∑
i=1

(µi(t) − ρ(t))Wi(t)Si(t−)
}

dt

+
m∑

i=1

{ d∑
j=1

(
σij(t)Wi(t)Si(t−)

)
dBj(t)

+Wi(t)Si(t−)
l∑

k=1

∫
R

γi(t, zk)Ñk(dt,dzk)
}

.(6)

Now, we introduce the m-dimensional excess rate of return vector µ̃(t) as

µ̃(t) = (µ1(t) − ρ(t), . . . , µm(t) − ρ(t))� = (µ(t) − ρ(t)1)�,

where
µ(t) = (µ1, · · · , µm)�, 1 = (1, 1, . . . , 1)�.

Here ‘�’ denotes transposition. If we define the control vector u(t) = (u1, u2, · · · , um)� as

u(t) = (W1(t)S1(t−), · · · , Wm(t)Sm(t−))�, W0(t) +
m∑

i=1

Wi(t) = 1

then equation(6) is rewritten as

dx(t) =
[
ρ(t)x(t) + µ̃(t)�u(t)

]
dt +

d∑
j=1

[
σ(j)�u(t)

]
dBj(t)

+
∫

R

u(t)�Γ(t, z)Ñ(dt, dz)

=
[
ρ(t)x(t) + µ̃(t)�u(t)

]
dt + u(t)�V (t)dB(t)

+
∫

R

u(t)�Γ(t, z)Ñ(dt, dz),(7)
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where
σ(j)� = (σ1j , σ2j , · · · , σmj), j = 1, 2, · · · , d

is an m-dimensional vector and V denotes m × d matrix with the (i, j)-th element σij . B
is a d-dimensional vector of the j-th element Bj and Γ(t, z) denotes m × l matrix with the
(i, k) element γi(zk). The vector Ñ is l-dimensional as

Ñ (dt,dz)� =
(
Ñ1(dt, dz1), · · · , Ñl(dt, dzl)

)
3 Tracking Error and Optimal Stochastic Control Problem. Our object is to find
the optimal control u(t) which minimizes the mean square tracking error between x and Y
at the end of planning horizen T ,

P (1) : min
u∈A

E[
1
2
(x(T ) − Y (T ))2].

Assume that u is adapted and càdlàg and equation (7) has unique strong solution. And
the admissible set A(t) of u is given by

A(t) = {ui(t) :
m∑

i=0

ui(t)
Si(t)

= 1, ui(t) > 0, i = 0, 1, . . . , m}.

It should be noted that the objective function of contorl problem P (1) is equivalent to the
following maximum problem P (2):

P (2) : max
u∈A

E
{ − 1

2
(x(T ) − Y (T ))2

}
.

Here, we introduce the Hamiltonian H : [0, T ]× R ×A× R × R
d ×R → R as

H(t, x,u, p, q, r) =
[
ρ(t)x(t) + µ̃�u

]
p + u�V q

+
l∑

k=1

m∑
i=1

∫
R

ui(t)γi(t, zk)rk(t−, z)νk(dzk)

=
[
ρ(t)x(t) + µ̃�u

]
p + u�V q

+
∫

R

u�Γ(t, z)r(t−, z)ν(dz),(8)

where R is a set of functions r : R
l+1 → R

l such that the integrand of Hamiltonian exists.
Hence the adjoint equation for Hamiltonian (8) with the unknown processes p(t) ∈ R, q ∈
R

d and r(t, z) ∈ R
l is given by

dp(t) = −∇xHdt + q(t)�dB(t) +
∫

R

r(t−, z)�Ñ(dt,dz)

= −ρ(t)p(t)dt + q(t)�dB(t) +
∫

R

r(t−, z)�Ñ(dt,dz)(9)

p(T ) = ∇x

( − 1
2
(x(T ) − Y (T ))2

)
= −(x(T ) − Y (T )).(10)

Here we try a solution of the form

p(t) = f(t)x(t) + g(t),(11)
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where f(t) and g(t) are deterministic C1 functions. Equation (10) is a boundary condition
at time T . Thus, equation (9) is a backward stochastic differential equation. Substituting
this equation in equation (9) and using equation (6), we get

dp(t) = f(t)
[
ρ(t)x(t) + µ̃(t)�u(t) + u(t)�V (t)dB(t)

+u(t−)�
∫

R

Γ(t, z)Ñ(dt, dz)
]
+ x(t)f ′(t)dt + g′(t)dt

=
[
f(t)ρ(t)x(t) + f(t)µ̃(t)�u(t) + x(t)f ′(t) + g′(t)

]
dt

+ f(t)u(t)�V (t)dB(t) + f(t)u(t−)�
∫

R

Γ(t, z)Ñ(dt,dz)(12)

Comparing each coefficient of equation (9) with equation (12), and using equation (11), we
obtain the following relations :

f(t)ρ(t)x(t) + f(t)µ̃(t)�u(t) + x(t)f ′(t) + g′(t)
= −ρ(t)(f(t)x(t) + g(t))(13)

q(t)� = f(t)u(t)�V (t)
r(t, z)� = f(t)u(t)�Γ(t, z)

Now let û ∈ A be a candidate for the optimal control with corresponding x̂, p̂, q̂, r̂(t, ·).
Then

H(t, x̂,u, p̂, q̂, r̂(t, ·)) = ρ(t)x̂(t)p̂(t) + u(t)�
[
µ̃(t)p̂(t)

+V (t)q̂(t) +
∫

R

Γ(t, z)r̂(t, z)ν(dz)
]

(14)

Since the righthand side of this equation is a linear expression in ui > 0, H is increasing in
ui if the coefficient of ui is positive. And H is a decreasing function of ui if the coefficient
of ui is negative. So, it is natural to guess that each coefficinet of ui should vanishes in
order that H has the optimal value, i.e.

µ̃(t)p̂(t) + V (t)q̂(t) +
∫

R

Γ(t, z)r̂(t, z)ν(dz) = 0(15)

Using equations (12) and (13), we get

q̂(t) = f(t)V (t)�û(t), r̂(t, x)� = f(t)û(t)�Γ(t, x)

From this and equation (5),

V (t)q̂(t) = f(t)V (t)V (t)�û(t)

= −{
µ̃(t)p̂(t) + f(t)

∫
R

Γ(t, z)Γ(t, z)�ν(dz)û(t)
}

= −{
µ̃(t)(f(t)x̂(t) + g(t))

+f (t)
∫

R

Γ(t, z)Γ(t, z)�ν(dz)û(t)
}

(16)

Thus,

û(t) = −
(
V (t)V (t)� +

∫
R

Γ(t, z)Γ(t, z)�ν(dz)
)−1

f(t)
(
fx̂(t) + g

)
µ̃(t)

= − (Λ(t))−1

f(t)
(
fx̂(t) + g

)
µ̃(t),(17)
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where Λ(t) is m × m matrix given by

Λ(t) = V (t)V (t)� +
∫

R

Γ(t, z)Γ(t, z)�ν(dz).

So we have

µ̃(t)�û(t) = − µ̃(t)�(Λ(t))−1

f(t)
(
fx̂(t) + g

)
µ̃(t)(18)

On the other hand, by equation (13) µ̃(t)�û(t) is written as

µ̃(t)�û(t) = − (2fρ + f ′)x̂(t) + ρg + g′

f(t)
(19)

Combining equation (18) and (19), we get the following oridinary differential equations :

f(t)µ̃(t)�(Λ(t))−1µ̃(t) − 2f (t)ρ(t)− f ′(t) = 0
(µ̃(t)�(Λ(t))−1µ̃(t) − ρ(t))g(t) − g′(t) = 0

}
(20)

f(T ) = −1, g(T ) = Y (T )

It is easily verified that the solutions to the ordinary differential equations (20) are given
by

f(t) = −e−
�

T
t

(µ̃(s)�(Λ(s))−1µ̃(s)−2ρ(s))ds

g(t) = Y (T )e−
� T

t
(µ̃(s)�(Λ(s))−1µ̃(s)−ρ(s))ds

}
(21)

Note that the pair of processes

p̂(t) = f(t)x̂(t) + g(t), q̂(t) = f(t)V (t)�û(t)

is the solution to the ajdoint equation and satisfies the sufficient condition of maximum
principleiTheorem 3.4 in Øksendal and Sulem[7]).

Using equation (17) the optimal control is given by a feedback control as follows:

û(t, x̂) = − (f(t)x̂(t) + g(t))
f(t)

(Λ(t))−1µ̃(t)

= −[
x̂(t)(Λ(t))−1µ̃(t) +

g(t)
f(t)

(Λ(t))−1µ̃(t)
]

(22)

By equation (11) and equation (14), Hamiltonian

H(t, x̂, û, p̂, q̂, r̂) = ρ(t)x̂(t)p̂(t) = ρ(t)f(t)
(
x̂(t) +

g(t)
2f (t)

)2 − ρ(t)
4f (t)

(g(t))2

is maximized at
x̂(t) = − g(t)

2f (t)

since f(t) < 0 for all t ∈ [0, T ]. Then the optimal control (22) is expressed as

û(t) = −1
2

g(t)
f(t)

(Λ(t))−1µ̃(t) =
Y (T )

2
e−

� T
t

ρ(s)ds(Λ(t))−1µ̃(t)(23)
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The m × m matrix Λ(t) works on, unlike Brownian motion, the stock price processes un-
dergoing several abrupt upward jumps. Once the optimal control û is derived as equation
(23), the optimal proportion Wi(t) invested in the index fund is evaluated by

Wi(t) =
W̃i(t)∑m

j=0 W̃j(t)

where
W̃i(t) = ûi(t)/Si(t).

Note that for the simplest case of m = 1

Λ(t) = σ2(t) +
∫

R

γ2(t, z)ν(dz),

and if there is no jump ν = 0, the above equation is reduced to

Λ(t) = σ2(t),Λ(t)−1 = 1/σ2(t).

In particular, if ρ(t),µ(t) and Λ(t) are constants in time t, that is, the case of Black-Scholes
model, we have

g(t)
f(t)

= −Y (T )e−ρ(T−t), x̂(t) =
Y (T )

2
e−ρ(T−t)

and

û(t, x) = (Λ)−1(µ − ρ1)
(
Y (T )e−ρ(T−t) − x̂(t)

)
=

Y (T )
2

(Λ)−1(µ − ρ1)e−ρ(T−t)

This result shows that the optimal control is given by the product of the market value
of risk (excess rate of return) (Λ)−1

2 (µ − ρ1) and the discounted terminal value of bench-
mark portfolio Y (T )e−ρ(T−t). Furthermore, we can observe that the optimal index fund is
determined only by the terminal value of benchmark portfolio Y (T ).

4 Concluding Remarks. The stochastic optimization problem to find the index fund
was considered in the framework of the continuous time model with jumps. After the
problem was formulated into the optimal stochastic control problem, the optimal index
fund was derived based upon the solution of the ordinary differential equations associated
with the stochastic control problem. The solutions f(t) and g(t) of the ordinary differential
equations (20) were explicitly provided as equation (21).

Generally, the problem of minimizing the tracking error under the given number m of
risky assets included in the index fund belongs to a class of combinatorial stochastic control
problem which will be formulated as a stochastic quardratic NP-complete problem with
zero-one variables. Since it will be very difficult to solve in practice, we supposed that
the assets included in the index fund were priviously fixed to avoid such difficulty. This
important and difficult problem is left for future research.
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