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MORE ON G#α-OPEN SETS IN DIGITAL PLANES
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Abstract. In this paper, we continue the study of the concept of g#α-closed sets,
g#α-open sets and digital planes (�2, κ2) (cf. [19]). In 1970, E.D. Khalimsky [10]
introduced the concept of the digital line or so called Khalimsky line (�,κ). The
digital plane (�2, κ2) (eg. [13]) is the topological product of two copies of (�,κ). A
subset A of a topological space (X, τ ) is said to be g#α-closed [19], if αCl(A) ⊂ U
whenever A ⊂ U and U is g-open set of (X, τ ). The complement of a g#α-closed set is
said to be a g#α-open set of (X, τ ). The g#α-openness in (�2, κ2) is characterized (cf.
Theorem 2.3 (ii)): for a subset B with some closed singletons of (�2, κ2), B is g#α-
open in (�2, κ2) if and only if (U(x))κ2 ⊂ B holds for each closed singleton {x} ⊂ B,
where U(x) is the smallest open set containing x. The family of all g#α-open sets of
(�2, κ2), say G#αO, forms an alternative topology of �2 (cf. Theorem A, Corollary
B (i)). Let (�2, G#αO) be a topological space obtained by changing the topology κ2

of the digital plane (�2, κ2) by G#αO. We prove that this plane (�2, G#αO) is a
T1/2-space (cf. Corollary B (ii) (ii-1), Remark 3.5); moreover it is shown that the plane
(�2, G#αO) is T3/4 (cf. Corollary B (ii) (ii-2)). It is well known that the digital plane
(�2, κ2) is not T1/2 even if (�,κ) is T1/2.

1 Introduction and main results Throughout this paper, (X, τ) represents a nonempty
topological space on which no separation axioms are assumed unless otherwise mentioned.
In 1970, N. Levine [15] introduced the concept of the generalized closed sets in topological
spaces. A subset A of a topological space (X, τ) is generalized closed (shortly, g-closed),
if Cl(A) ⊂ U whenever A ⊂ U and U is any open set of (X, τ) ([15, Definition 2.1]). It
is obvious that every closed set is g-closed. The complement of a g-closed set of (X, τ) is
called g-open in (X, τ) ([15, Definition 4.1]). A subset B is g-open in (X, τ) if and only
if F ⊂ Int(B) whenever F ⊂ B and F is any closed set of (X, τ) ([15, Theorem 4.2]).
Moreover, using the concept of g-closed sets, he introduced the notion of the class of T1/2-
topological spaces which is properly placed between the class of T1-spaces and T0-spaces
([15, Definition 5.1]). A space is called a T1/2-space if every g-closed set is closed. In 1977,
W. Dunham [6, Theorem 2.5] proved that a topological space is T1/2 if and only if every sin-
gleton is open or closed (cf. [11, p.7, line −6]). A typical example of the class of T1/2-spaces
is the digital line or so called Khalimsky line, say (Z, κ). It is not T1. The definition of the
digital line was published in Russia by E. Khalimsky in 1970 [10]. In 1990, E. Khalimsky,
K. Kopperman and R. Meyer [11] developed a finite analog of the Jordan curve theorem
motibated by a problem in computer graphics (cf. [12], [11]). In the present paper, the
digital plane (Z2, κ2) is the topological product of two copies of the digital line (Z, κ), where
Z

2 := Z × Z and κ2 := κ × κ (eg., [13, Definition 4], [21, p.335, p.336], [8], [7], [19], [2,
Section 6]). It is well known that (Z2, κ2) is not T1/2 (cf. Section 2 below; eg., [2, line -3
in p.50], [8, p.32]). The digital plane is a mathematical model of the computer screen. The
digital plane includes all 2-dimensional discrete objects in mathematical world.
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A subset B of (X, τ) is called α-open [18] in (X, τ) if B ⊂ Int(Cl(Int(B))) holds in
(X, τ); τα denotes the family of all α-open sets of (X, τ). It is well known that τα forms a
topology of X ([18], eg., [20]). The complement of an α-open set is called an α-closed set of
(X, τ). A subset E is α-closed if and only if Cl(Int(Cl(E))) ⊂ E if and only if αCl(E) = E,
where αCl(D) :=

⋂{F | D ⊂ F,F is α-closed in (X, τ)} for a subset D of X . The α-interior
of a subset E is defined as follows: αInt(E) :=

⋃{U | U ⊂ E, U is α-open in (X, τ)}.
Definition 1.1 A subset A of (X, τ) is g#α-closed ([19, Definition 2.1]), if αCl(A) ⊂ U
whenever A ⊂ U and U is any g-open set of (X, τ). The complement of a g#α-closed set is
called a g#α-open set of (X, τ).

It is shown that: a subset B is g#α-open in (X, τ) if and only if F ⊂ αInt(B) whenever
F ⊂ B and F is any g-closed set of (X, τ).

By [19, Remark 2.3], we obtain the folowing diagram of implications and none of these
implications is reversible.

α-open
↗ ↘

open g#α-open → αg-open → gs-open
↘ ↗
g∗-open

Some basic properties of g#α-open sets and some properties of subsets on (Z2, κ2) are
studied by [19] (cf. Theorem 2.1(ii), Theorem 3.1(i) below); in general, it is shown that:([19,
Theorem 2.5 (i)]) for a topological space (X, τ), the intersection of two g#α-open sets of
(X, τ) is g#α-open in (X, τ) (cf. Theorem 3.1 (i)). By [15, p.92 and Example 2.5], the
union of two g-open sets is generally not g-open in a topological space. For the concept of
g#α-open sets of a topological space, we have the corresponding problem. Is the union of
two g#α-open sets of a topological space in generally not g#α-open ?

The purpose of the present paper is to solve the above problem for the digital plane
(Z2, κ2); we have an answer to the above problem for (Z2, κ2) and related properties as
follows (cf. Theorem A, Corollary B, Theorem 2.3 below).

Theorem A (i) The union of any collection of g#α-open sets of (Z2, κ2) is g#α-open
in (Z2, κ2).

(ii) The intersection of any collection of g#α-closed sets of (Z2, κ2) is g#α-closed in
(Z2, κ2).

It is well known that the digital line (Z, κ) is T1/2; but the digital plane (Z2, κ2) is not T1/2.
As corollary of Theorem A, we have a new topology, say G#αO(Z2, κ2) of Z

2. We change
the topology κ2 of (Z2, κ2) by new topology G#αO(Z2, κ2) (cf. [21, Section 3. Change the
topologies]). Consequently we get a new T1/2-topological space, say (Z2, G#αO(Z2, κ2)),
associated to (Z2, κ2).

Corollary B Let G#αO(Z2, κ2) be the family of all g#α-open sets in (Z2, κ2). Then,
the following properties hold.

(i) The family G#αO(Z2, κ2) is a topology of Z
2.

(ii) Let (Z2, G#αO(Z2, κ2)) be a topological space obtained by changing the topology κ2

of the digital plane (Z2, κ2) by G#αO(Z2, κ2).
(ii-1) (Z2, G#αO(Z2, κ2)) is a T1/2-topological space.
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(ii-2) Moreover, (Z2, G#αO(Z2, κ2)) is T3/4 and it is not T1.

We shall prove the above main results in Section 3 (cf. the end of Section 3 for the notion
of T3/4-spaces). For some undefined or related concepts, the reader refered to some papers
in References of the present paper, [21], [17], [3] and [1].

2 Charactrizations of g#α-open sets in the digital plane We first recall some
notations and concepts for properties on (Z2, κ2) as follows. The digital line is the set
of the integers, Z, equipped with the topology κ having {{2m − 1, 2m, 2m + 1}| m ∈ Z}
as a subbase (cf. Section 1, e.g., [8, Sections 1–3]). This topological space is denoted by
(Z, κ). A subset U of Z is open if and only if whether x ∈ U is an even integer, then
x − 1, x + 1 ∈ U . Let (Z2, κ2) be the topological product of two copies of the digital line
(Z, κ), where Z

2 = Z×Z and κ2 = κ×κ. This topological space (Z2, κ2) is called the digital
plane in the present paper (eg., [13, Definition 4], [8, p.32 and Sections 4, 5], [7, p.164], [22],
[19, Section 5], [2, Section 6]; cf. [11, Definition 4.1], [12, p.907, Section 4]). The concept
of the smallest open set U(x) containing a point x of (Z2, κ2) is usefull; let x ∈ Z

2,
U(x) := {2s − 1, 2s, 2s + 1} × {2u − 1, 2u, 2u + 1} if x = (2s, 2u);
U(x) := {(2s + 1, 2u + 1)} if x = (2s + 1, 2u + 1);
U(x) := {2s − 1, 2s, 2s + 1} × {2u + 1} if x = (2s, 2u + 1);
U(x) := {2s + 1} × {2u − 1, 2u, 2u + 1} if x = (2s + 1, 2u), where s, u ∈ Z.

By a property of κ2, it is well known that, for an open set G containing a point x, x ∈ U(x) ⊂
G hold. We call the set U(x) by the smallest open set containing x ([7, line +8 in p.164
etc], [19, line −17 in p.21 etc], [2, line −15 in p.50 etc]). In [8, line −7 in p.38 and Lemma
4.2 etc], the set U(x) is called as the basic open neighbourhood of x. It follows from the
definition of κ2 that every singleton {(2s, 2u)} is closed and every singleton {(2s+1, 2u+1)}
is open in (Z2, κ2), where s, u ∈ Z. Moreover, singletons {(2s+1, 2u)} and {(2s, 2u+1)} are
not open in (Z2, κ2); they are not closed in (Z2, κ2); such points (2s+1, 2u) and (2s, 2u+1)
are called mixed ([11, p.11], [12, p.907]); the singletons {(2s + 1, 2u)} and {(2s, 2u + 1)}
are nowhere dense, i.e., Int(Cl({(2s + 1, 2u)})) = Int(Cl({(2s, 2u + 1)})) = ∅. The above
properties show that (Z2, κ2) is not T1/2. We use the following notation ([7], [19], [8], [2]):

(Z2)κ2 := {x ∈ Z
2| {x} is open in (Z2, κ2)};

(Z2)F2 := {x ∈ Z
2| {x} is closed in (Z2, κ2)};

(Z2)mix := Z
2 \ ((Z2)κ2 ∪ (Z2)F2);

for a subset E of (Z2, κ2), Eκ2 := E ∩ ((Z2)κ2); EF2 := E ∩ ((Z2)F2);
Emix := E ∩ ((Z2)mix) and U(E) :=

⋃{U (x)|x ∈ E},
where U(x) is the smallest open set containing x.
It is well known that: for a subset E of (Z2, κ2),

Emix = E \ (Eκ2 ∪ EF2);
Eκ2 = {(2s + 1, 2u + 1) ∈ E|s, u ∈ Z};
EF2 = {(2s, 2u) ∈ E| s, u ∈ Z};
Emix = {(2s + 1, 2u) ∈ E| s, u ∈ Z} ∪ {(2s, 2u + 1) ∈ E| s, u ∈ Z};
Z

2 = (Z2)F2 ∪ (Z2)κ2 ∪ (Z2)mix (disjoint union) and E = EF2 ∪ Eκ2 ∪ Emix (disjoint
union) hold for any subset E of (Z2, κ2).
In [2, p.52 etc], [19, p.21 etc] and [8, p.38 etc], the notation (Z2)F2 was written by (Z2)F .
Sometimes, Eκ2 , EF2 and Emix are written by (E)κ2 , (E)F2 and (E)mix, respectively. For
example, a notation U((X \E)mix) means the following subset

⋃{U (x)| x ∈ (X \E)mix} =⋃{U (x)| x ∈ X \ E, x ∈ (Z2)mix}.
A subset V is preopen [16] in a topological space (X, τ), if V ⊂ Int(Cl(V )) holds in

(X, τ). A subset W is semi-open [14] in a topological space (X, τ), if W ⊂ Cl(Int(W ))
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holds in (X, τ). Let PO(X, τ) (resp. SO(X, τ)) be the family of all preopen (resp. semi-
open) sets of (X, τ).

We recall some properties needed later on g#α-open sets, g#α-closed sets, preopen sets
and semi-open sets in (Z2, κ2).

Theorem 2.1 (i) ([2, Theorem 6.1]; eg., [7, Theorem 2.1(ii)])
PO(Z2, κ2) ⊂ SO(Z2, κ2) and (κ2)α = PO(Z2, κ2) hold.
(ii) ([19, Corollary 5.3 (ii)]) If a subset F is g-closed and F ⊂ Amix∪Aκ2 holds for some

subset A of (Z2, κ2), then F = ∅.

We prove a lemma needed later.

Lemma 2.2 Let A and B be subsets of (Z2, κ2) and x, y points of (Z2, κ2).
(i) If A is a g-closed set of (Z2, κ2) and y ∈ Amix, then Cl({y})\{y} ⊂ A and hence

Cl({y}) ⊂ A in (Z2, κ2).
(ii) For a point x ∈ (Z2)F2 , a subset {x} ∪ (U(x))κ2 is preopen in (Z2, κ2) and hence it

is α-open in (Z2, κ2) (cf. Theorem 2.1(i)).

Proof. (i) Since y ∈ Amix, we can set y = (2s, 2u + 1) or y = (2s + 1, 2u), where s, u ∈ Z.
Then, Cl({y}) = {2s} × {2u, 2u + 1, 2u + 2} = {y, y+, y−} if y = (2s, 2u + 1), where
y+ := (2s, 2u + 2) and y− := (2s, 2u); Cl({y}) = {2s, 2s + 1, 2s + 2} × {2u} = {y−, y, y+}
if y = (2s + 1, 2u), where y+ := (2s + 2, 2u) and y− := (2s, 2u). Thus, we have that
Cl({y}) \ {y} = {y−, y, y+} \ {y} = {y−, y+}. It is noted that {y+} and {y−} are closed
singletons of (Z2, κ2). We suppose that y+ 	∈ A or y− 	∈ A. If y+ 	∈ A, then y+ ∈ Cl({y}) ⊂
Cl(A) and so y+ ∈ Cl(A) \A. Then, Cl(A) \A contains a closed set {y+}; this contradicts
to [15, Theorem 2.2], i.e., for a topological space (X, τ), a subset A of X is g-closed if
and only if Cl(A) \ A does not contain nonempty closed subset of (X, τ). If y− 	∈ A, then
y− ∈ Cl({y}) ⊂ Cl(A) and so y− ∈ Cl(A) \ A; the subset Cl(A) \ A contains a closed set
{y−}. Thus, for the case where y− 	∈ A, we have also a contradiction. Therefore, we prove
that y+ ∈ A and y− ∈ A and hence Cl({y}) \ {y} ⊂ A and we have that Cl({y}) ⊂ A,
because y ∈ Amix ⊂ A.

(ii) We set x := (2s, 2u), where s, u ∈ Z are integers, because {x} is closed. Let
p1 := (2s− 1, 2u− 1), p2 := (2s− 1, 2u +1), p3 := (2s+ 1, 2u− 1) and p4 := (2s+ 1, 2u+ 1).
Then, U(x) = {2s − 1, 2s, 2s + 1} × {2u − 1, 2u, 2u + 1} and {x, p1, p2, p3, p4} ⊂ U(x).
We have that Cl((U(x))κ2 ) = Cl(

⋃{{pi}|i ∈ {1, 2, 3, 4}}) =
⋃{Cl({pi})|i ∈ {1, 2, 3, 4}} =

({2s − 2, 2s − 1, 2s} × {2u − 2, 2u − 1, 2u}) ∪ ({2s − 2, 2s − 1, 2s} × {2u, 2u + 1, 2u + 2}) ∪
({2s, 2s+ 1, 2s + 2}× {2u, 2u+ 1, 2u + 2})∪ ({2s, 2s+ 1, 2s+ 2}× {2u− 2, 2u− 1, 2u}) and
so Cl((U(x))κ2 ) = {a ∈ Z|2s − 2 ≤ a ≤ 2s + 2} × {b ∈ Z|2u − 2 ≤ b ≤ 2u + 2}; Cl({x} ∪
(U(x))κ2 ) = ({2s}×{2u})∪ ({a ∈ Z|2s− 2 ≤ a ≤ 2s + 2}× {b ∈ Z|2u− 2 ≤ b ≤ 2u + 2}) =
Cl((U(x))κ2 ). Then, it is obtained that Int(Cl({x}∪(U(x))κ2 )) = Int({a ∈ Z|2s−2 ≤ a ≤
2s+2})×Int({b ∈ Z|2u−2 ≤ b ≤ 2u+2}) = {2s−1, 2s, 2s+1}×{2u−1, 2u, 2u+1}= U(x).
Thus, we have that {x} ∪ (U(x))κ2 ⊂ {x} ∪ U(x) = U(x) = Int(Cl({x} ∪ (U(x))κ2 )), i.e.,
{x}∪(U(x))κ2 is preopen in (Z2, κ2). It is well known that, for a subset W of (Z2, κ2), W is
preopen in (Z2, κ2) if and only W is α-open in (Z2, κ2)(cf. Theorem 2.1 (i)). Concequently,
we have that the set {x} ∪ (U(x))κ2 is α-open in (Z2, κ2). �.

Theorem 2.3 Let B be a nonempty subset of (Z2, κ2).
(i) If BF2 = ∅, then B is a g#α-open set of (Z2, κ2).
(ii) For a subset B such that BF2 	= ∅, the following properties are equivalent in (Z2, κ2):
(1) The subset B is a g#α-open set of (Z2, κ2);
(2) (U(x))κ2 ⊂ B holds for each point x ∈ BF2 .
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Proof.(i) Let F be a g-closed set such that F ⊂ B. Since BF2 = ∅, we have obviously that
B = Bmix ∪ Bκ2 and so F ⊂ Bmix ∪ Bκ2 . Then, by Theorem 2.1 (ii) it is obtained that
F = ∅, because F is g-closed in (Z2, κ2). Thus, we conclude that whenever F is g-closed
and F ⊂ B, F = ∅ ⊂ αInt(B). Namely B is a g#α-open set of (Z2, κ2).

(ii) (1)⇒(2) Let x ∈ BF2 . Since {x} is closed, {x} is a g-closed set and {x} ⊂ B.
By (1), {x} ⊂ αInt(B) = B ∩ Int(Cl(Int(B))) and so x ∈ Int(Cl(Int(B))). Namely, x
is an interior point of the set Cl(Int(B)). Thus, we have that, for the smallest open set
U(x) containing x,U(x) ⊂ Cl(Int(B)). We can set x := (2s, 2u) for some integers s and
u, because x ∈ (Z2)F2 . Since U((2s, 2u)) = {2s − 1, 2s, 2s + 1} × {2u − 1, 2u, 2u + 1}, it
is shown that (U(x))κ2 = {(x1, x2) ∈ U(x)|x1 and x2 are odd} = {p1, p2, p3, p4}, where
p1 := (2s− 1, 2u− 1), p2 := (2s− 1, 2u+ 1), p3 := (2s +1, 2u− 1) and p4 := (2s + 1, 2u+1).
For each point pi(1 ≤ i ≤ 4), pi ∈ Cl(Int(B)) and so {pi} ∩ Int(B) 	= ∅. Therefore, pi ∈ B
for each i with 1 ≤ i ≤ 4 and hence ((U(x))κ2 ⊂ B.

(2)⇒(1) It follows from assumption that, for each point x ∈ BF2 , {x} ∪ (U(x))κ2 ⊂ B
and so

⋃{{x} ∪ (U(x))κ2 | x ∈ BF2} ⊂ B. Put VB :=
⋃{{x} ∪ (U(x))κ2 |x ∈ BF2} and so

VB 	= ∅, VB ⊂ B. By Lemma 2.2(ii), VB is preopen and it is α-open (cf. Theorem 2.1 (i)).
We have that B = VB ∪ (B \ VB) = VB ∪ {(B \ VB)F2 ∪ (B \ VB)κ2 ∪ (B \ VB)mix)} =
VB ∪ (B \ VB)κ2 ∪ (B \ VB)mix. We note that, for a point y ∈ (B \ VB)mix, U(y) ⊂ B or
U(y) 	⊂ B. We put:

(B \ VB)1mix := {y ∈ (B \ VB)mix| U(y) ⊂ B},
U((B \ VB)1mix) :=

⋃{U (y)| y ∈ (B \ VB)1mix} and
(B \ VB)2mix := {y ∈ (B \ VB)mix| U(y) 	⊂ B}.

Then, (B \ VB)mix is decomposed as (B \ VB)mix = (B \ VB)1mix ∪ (B \ VB)2mix. Thus, we
have that:

(∗1) B = VB ∪ (B \ VB)κ2 ∪ (B \ VB)1mix ∪ (B \ VB)2mix.
By using Lemma 2.2(ii), VB is α-open in (Z2, κ2); the set (B \ VB)κ2 is open in (Z2, κ2)
and so it is α-open in (Z2, κ2); U((B \VB)1mix) is open and so α-open in (Z2, κ2). Thus, we
have that:

(∗2) the subset VB ∪ (B \ VB)κ2 ∪ U((B \ VB)1mix) is α-open in (Z2, κ2).
Moreover, we conclude that:

(∗3) B = VB ∪ (B \ VB)κ2 ∪ U((B \ VB)1mix) ∪ (B \ VB)2mix holds.
Proof of (∗3): since (B\VB)1mix ⊂ U((B\VB)1mix), it is shown that B ⊂ VB∪(B\VB)κ2∪

U((B \VB)1mix)∪ (B \VB)2mix (cf. (∗1)). Conversely, we have that VB ∪ (B \VB)κ2 ∪U((B \
VB)1mix) ∪ (B \ VB)2mix ⊂ B holds, because U((B \ VB)1mix) ⊂ B, VB ⊂ B, (B \ VB)κ2 ⊂ B
and (B \ VB)2mix ⊂ B hold. Thus we have the required equality (∗3).

Let F be a nonempty g-closed set of (Z2, κ2) such that F ⊂ B. We claim that:
(∗4) F ∩ ((B \ VB)2mix) = ∅ holds.
Proof of (∗4): suppose that there exists a point y ∈ F ∩ (B \ VB)2mix. Then we have

that:
(∗∗) y ∈ Bmix, y ∈ Fmix and U(y) 	⊂ B.

By Lemma 2.2 (i) for the g-closed set F and the point y, it is obtained that Cl({y})\{y} ⊂ F .
Since y ∈ (Z2)mix, we may put y := (2s, 2u + 1) (resp. y := (2s + 1, 2u)); y+ := (2s, 2u + 2)
(resp. y+ := (2s + 2, 2u)); y− := (2s, 2u) (resp. y− := (2s, 2u)), where s, u ∈ Z. Then,
Cl({y}) = {y+, y, y−} and y+, y− ∈ (Z2)F2 (cf. proof of Lemma 2.2 (i)). Thus, we have
that Cl({y}) \ {y} = {y+, y−} ⊂ F and so y+ ∈ FF2 and y− ∈ FF2 . Since F ⊂ B, we have
that y+ ∈ BF2 and y− ∈ BF2 . For the point y+, it follows from the assumption (2) that
{y+} ∪ (U(y+))κ2 ⊂ B and so U(y) ⊂ B. Indeed, (U(y))κ2 ⊂ (U(y+))κ2 ⊂ B, y ∈ Fmix ⊂
Bmix ⊂ B and U(y) = {y}∪ ((U(y))κ2) hold. The obtained property U(y) ⊂ B contradicts
to (∗∗) above. Thus, we claimed that F ∩ ((B \ VB)2mix) = ∅.
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By using (∗3) and (∗4), it is shown that, for the g-closed set F such that F ⊂ B, F =
B∩F = [VB∪(B\VB)κ2∪U((B\VB)1mix)∪(B\VB)2mix]∩F ⊂ VB∪(B\VB)κ2∪U((B\VB)1mix).
We put E := VB ∪ (B \VB)κ2 ∪U((B \VB)1mix) and so F ⊂ E ⊂ B and E is α-open. Using
(∗2) and (∗3), we have that F ⊂ E = αInt(E) ⊂ αInt(B) and hence F ⊂ αInt(B) holds.
Namely, B is g#α-open in (Z2, κ2). �

Example 2.4 By Theorem 2.3, for examples, the following subsets B1, B2 and B3 of
(Z2, κ2) are g#α-open in (Z2, κ2): B1 :=

⋃{{x} ∪ (U(x))κ2 | x ∈ EF2}, where E is a
subset of (Z2, κ2); B2 := EF2 ∪ (U(EF2))κ2 ∪ Fκ2 ∪ Fmix, where E and F are nonempty
subsets of (Z2, κ2); B3 := U(EF2) ∪ Fκ2 ∪ Fmix, where E and F are nonempty subsets of
(Z2, κ2). Moreover, we note that B1 is α-open in (Z2, κ2). In the definitions of B2 and B3,
we take subsets E and F as follows: E := {(0, 0), (2, 0)}, F = {(3, 1), (4, 1)}. Then resulting
subsets B2 and B3 are not α-open in (Z2, κ2).

3 Proofs of Theorem A and Corollary B In the present section, first we prove
Theorem A.

Proof of Theorem A. (i) We prove that the union of any collection of g#α-open
sets of (Z2, κ2) is g#α-open in (Z2, κ2). Let {Bi|i ∈ J} be a collection of g#α-open sets
of (Z2, κ2), where J is an index set and put V :=

⋃{Bi| i ∈ J}. First we assume that
VF2 	= ∅; there exists a point x ∈ (Bj)F2 for some j ∈ J . By Theorem 2.3 (ii), it is obtained
that (U(x))κ2 ⊂ Bj and hence (U(x))κ2 ⊂ V . Again using Theorem 2.3 (ii), we conclude
that V is g#α-open in (Z2, κ2). Finally, we assume that VF2 = ∅, i.e., V = Vκ2 ∪ Vmix. By
Theorem 2.3 (i), for this case, V is also g#α-open set in (Z2, κ2). (ii) We recall that
a subset E is g#α-closed if and only if the complement of E is g#α-open. It follows from
(i) and definitions that the intersection of any collection of g#α-closed sets of (Z2, κ2) is
g#α-closed in (Z2, κ2). �

We recall the following properties:

Theorem 3.1 Let (X, τ) be a topological space.
(i) ([19, Theorem 2.5](i)) The union of two g#α-closed sets of (X, τ) is g#α-closed in

(X, τ) ; hence the intersection of two g#α-open sets of (X, τ) is g#α-open in (X, τ).
(ii) ([6, Theorem 2.5]; cf.[11, p.7, line −6]) A topological space (X, τ) is T1/2 if and only

if every singleton {x} is open or closed in (X, τ), where x ∈ X.

We need the following proposition.

Proposition 3.2 Let x be a point of (Z2, κ2). The following properties on the singleton
{x} hold.

(i) If x ∈ (Z2)κ2 , then {x} is g#α-open; it is not g#α-closed in (Z2, κ2).
(ii) If x ∈ (Z2)F2 , then {x} is g#α-closed; it is not g#α-open in (Z2, κ2).
(iii) If x ∈ (Z2)mix, then {x} is both g#α-closed and g#α-open in (Z2, κ2).

Proof. (i) It follows from assumption that {x} is open in (Z2, κ2) and so it is g#α-open
in (Z2, κ2)(cf. the diagram in Section 1), i.e., {x} is “open” in (Z2, G#αO(Z2, κ2)). We
prove that {x} is not g#α-closed. Indeed, let x = (2s + 1, 2u + 1) ∈ (Z2)κ2 , where s, u ∈ Z.
We take a point y := (2s, 2u) ∈ Z

2 \ {x}; then y ∈ (Z2 \ {x})F2 	= ∅. Thus we have that
x = (2s + 1, 2u + 1) ∈ U(y) := {2s − 1, 2s, 2s + 1} × {2u − 1, 2u, 2u + 1} and x ∈ (U(y))κ2

hold and so (U(y))κ2 	⊂ Z
2 \ {x}. By Theorem 2.3 (ii), Z

2 \ {x} is not g#α-open in
(Z2, κ2). Namely, {x} is not g#α-closed in (Z2, κ2). [An alternative proof of (i): since {x}
is open and x = (2s + 1, 2u + 1) for some s, u ∈ Z, {x} is g-open (cf. the diagram in
Section 1). Then, there exists a g-open set U := {x} such that αCl({x}) 	⊂ {x}, because
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αCl({x}) = {x}∪Cl(Int(Cl({x}))) = Cl(Int({2s, 2s+1, 2s+2}× {2u, 2u+ 1, 2u+ 2})) =
Cl({(2s+1, 2u+1)}) = {2s, 2s+1, 2s+2}×{2u, 2u+1, 2u+2}. Namely, by Definition 1.1,
{x} is not g#α-closed in (Z2, κ2)]. (ii) For the case where x ∈ (Z2)F2 , {x} is closed in
(Z2, κ2) and so it is g#α-closed in (Z2, κ2), i.e., {x} is “closed” in (Z2, G#αO(Z2, κ2)). On
the other hand, by Theorem 2.3(ii), {x} is not g#α-open in (Z2, κ2), because x ∈ {x}F2 	= ∅
and (U(x))κ2 	⊂ {x}. (iii) For this case, we put V := Z

2 \ {x}. It is shown that VF2 	= ∅.
Indeed, let x = (2s, 2u + 1) (resp. x = (2s + 1, 2u)), where s, u ∈ Z; then, we can take a
point y := (2s, 2u) ∈ VF2 (resp. y := (2s, 2u) ∈ VF2). Moreover, for each point a ∈ VF2 ,
we have that Vκ2 = (Z2)κ2 , (U(a))κ2 ⊂ (Z2)κ2 = Vκ2 ⊂ V . Thus, for each point a ∈ VF2 ,
(U(a))κ2 ⊂ V . By using Theorem 2.3(ii), V := Z

2 \ {x} is a g#α-open set in (Z2, κ2).
Namely, {x} is g#α-closed in (Z2, κ2). Moreover, by using Theorem 2.3 (ii), it is easily
shown that the singleton {x} is g#α-open in (Z2, κ2), because {x}F2 = ∅. �

Finally, using Theorem A, Theorem 3.1 and Proposition 3.2, we prove Corollary B as
follows.

Proof of Corollary B (i) and (ii) (ii-1). (i) It is obvious from Theorem A (i),
Theorem 3.1(i) and definitions that the family G#αO(Z2, κ2) is a topology of Z

2. (ii)
(ii-1) Let (Z2, G#αO(Z2, κ2)) be a topological space with a new topology G#αO(Z2, κ2).
Then, it is claimed that the topological space (Z2, G#αO(Z2, κ2)) is T1/2 (in the sense of
Levine ([15], cf. Theorem 3.1(ii))). By Proposition 3.2 (i) (resp. (ii), (iii)), a singleton
{x} is “open” (resp. “closed”, “closed” and “open”) in (Z2, G#αO(Z2, κ2)), where x ∈
(Z2)κ2 (resp. x ∈ (Z2)F2 , x ∈ (Z2)mix). Therefore, every singleton {x} of Z

2 is “open” or
“closed” in (Z2, G#αO(Z2, κ2)) and so, by Theorem 3.1(ii) due to W. Dunham, the space
(Z2, G#αO(Z2, κ2)) is T1/2. �

Sometimes, we abbreviate the topology G#αO(Z2, κ2) by G#αO.
For a subset A of Z

2, we denote the closure of A, interior of A and the kernel of A with
respect to G#αO(Z2, κ2) by G#αO-Cl(A), G#αO-Int(A) and G#αO-Ker(A), respectively.
The kernel is defined by G#αO-Ker(A) :=

⋂{V | V ∈ G#αO(Z2, κ2), A ⊂ V }. We need a
property as follows:
(∗) if B is a g#α-open set containing a point x ∈ (Z2)F2 , then {x} ∪ (U(x))κ2 ⊂ B.
Indeed, by Theorem 2.3(ii) (1)⇒(2), (U(x))κ2 ⊂ B and x ∈ BF2 ⊂ B.

Proposition 3.3 For the topological space (Z2, G#αO(Z2, κ2)), we have the properties on
the singletons as follows. Let x be a point of Z

2 and s, u ∈ Z.
(i) (i-1) If x ∈ (Z2)κ2 , then G#αO-Ker({x}) = {x} and G#αO-Ker({x}) ∈ G#αO(Z2, κ2).
(i-2) If x ∈ (Z2)F2 , then G#αO-Ker({x}) = {x} ∪ (U(x))κ2 = {(2s, 2u)} ∪ {(2s +

1, 2u +1), (2s+1, 2u− 1), (2s− 1, 2u+1), (2s−1, 2u− 1)}, where x = (2s, 2u), and G#αO-
Ker({x}) ∈ G#αO(Z2, κ2).

(i-3) If x ∈ (Z2)mix, then G#αO-Ker({x}) = {x} and G#αO-Ker({x}) ∈ G#αO(Z2, κ2).
(ii) (ii-1) If x ∈ (Z2)κ2 , then G#αO-Cl({x}) = {(2s+1, 2u+1), (2s, 2u+2), (2s, 2u), (2s+

2, 2u + 2), (2s + 2, 2u)}, where x = (2s + 1, 2u + 1); and hence {x} is not “closed” in
(Z2, G#αO(Z2, κ2)).

(ii-2) If x ∈ (Z2)F2 , then G#αO-Cl({x}) = {x}.
(ii-3) If x ∈ (Z2)mix, then G#αO-Cl({x}) = {x}.
(iii) (iii-1) If x ∈ (Z2)κ2 , then G#αO-Int({x}) = {x}.
(iii-2) If x ∈ (Z2)F2 , then G#αO-Int({x}) = ∅.
(iii-3) If x ∈ (Z2)mix, then G#αO-Int({x}) = {x}.
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(iv) If x ∈ (Z2)mix, i.e., x = (2s, 2u +1) or (2s +1, 2u), then {x} is “regular open” and
“regular closed” in (Z2, G#αO(Z2, κ2)).

(v) If x ∈ (Z2)κ2 , i.e., x = (2s + 1, 2u + 1), then {x} is not “regular closed” in
(Z2, G#αO(Z2, κ2)); it is “semi-open” in (Z2, G#αO(Z2, κ2)); moreover, {x} is “regular
open” in (Z2, G#αO(Z2, κ2)).

Proof. (i) (i-1) For a point x ∈ (Z2)κ2 , by Proposition 3.2 (i), {x} is g#α-open in (Z2, κ2).
Thus, we have that G#αO-Ker({x}) = {x} and G#αO-Ker({x}) ∈ G#αO. (i-2) Let B
be any g#α-open set of (Z2, κ2) containing the point x = (2s, 2u) ∈ (Z2)F2 . Then, by (∗)
above, {x} ∪ (U(x))κ2 ⊂ B holds and {x} ∪ (U(x))κ2 ∈ G#αO (cf. Lemma 2.2(ii)). Thus,
we have that G#αO-Ker({x}) =

⋂{V | {x} ⊂ V, V ∈ G#αO(Z2, κ2)}={x} ∪ (U(x))κ2 =
{(2s, 2u), (2s+1, 2u+1), (2s+1, 2u−1), (2s−1, 2u+1), (2s−1, 2u−1)}. By Lemma 2.2(ii)
and a fact that (κ2)α ⊂ G#αO(Z2, κ2)(cf. the diagram in Section 1), the kernel G#αO-
Ker({x}) is g#α-open in (Z2, κ2), i.e., G#αO-Ker({x}) ∈ G#αO. (i-3) Let x ∈ (Z2)mix.
The singleton {x} is g#α-open, because {x}F2 = ∅ (cf. Theorem 2.3 (i)). Thus, we have
that G#αO-Ker({x}) = {x} and G#αO-Ker({x}) ∈ G#αO.

(ii) Let x ∈ Z
2. By (i), it is shown that, for a point y ∈ Z

2, y ∈ G#αO-Cl({x}) holds
if and only if x ∈ G#αO-Ker({y}) holds.

(ii-1) For a point x ∈ (Z2)κ2 , we can put x = (2s + 1, 2u + 1), where s, u ∈ Z. For
a point y ∈ (Z2)κ2 , y ∈ G#αO-Cl({x}) holds (i.e., y ∈ (G#αO-Cl({x}))κ2) if and only if
x ∈ G#αO-Ker({y}) holds (i.e., y = x) (cf. (i-1)). Thus we have that (G#αO-Cl({x}))κ2 =
{x}. For a point y ∈ (Z2)F2 , y ∈ G#αO-Cl({x}) holds (i.e., y ∈ (G#αO-Cl({x}))F2) if
and only if x ∈ G#αO-Ker({y}) holds (i.e., x ∈ {y} ∪ (U(y))κ2 and x 	= y holds) (cf.
(i-2)). Thus, we have that (G#αO-Cl({x}))F2 = {y ∈ (Z2)F2 | x ∈ {y} ∪ (U(y))κ2} = Wx,
where Wx := {(2s, 2u), (2s, 2u + 2), (2s + 2, 2u), (2s + 2, 2u + 2)} and x = (2s + 1, 2u + 1).
For a point y ∈ (Z2)mix, y ∈ G#αO-Cl({x}) holds (i.e., y ∈ (G#αO-Cl({x}))mix) if and
only if x ∈ G#αO-Ker({y}) = {y} holds (cf. (i-3)). Since y 	= x, we have that (G#αO-
Cl({x}))mix = ∅.

Therefore, we obtain that G#αO-Cl({x}) = {x} ∪ Wx, because E = Eκ2 ∪ EF2 ∪ Emix

holds for any subset E. (ii-2) For a point x ∈ (Z2)F2 , by Proposition 3.2 (ii), it is obtained
that G#αO-Cl({x}) = {x}. (ii-3) For a point x ∈ (Z2)mix, by Proposition 3.2 (iii), it is
obtained that G#αO-Cl({x}) = {x}.

(iii) For a point x ∈ (Z2)κ2 (resp. x ∈ (Z2)F2 , x ∈ (Z2)mix), by Proposition 3.2 (i)
(resp. (ii), (iii)), it is shown that G#αO-Int({x}) = {x} (resp. G#αO-Int({x}) = ∅,
G#αO-Int({x}) = {x}) holds.

(iv) For a point x ∈ (Z2)mix, by (iii-3) and (ii-3), G#αO-Cl[G#αO-Int({x})] = {x},
i.e., the singleton {x} is “regular closed” in (Z2, G#αO). Similarly, we have that G#αO-
Int[G#αO-Cl({x})] = {x}, i.e., {x} is “regular open” in (Z2, G#αO).

(v) Let x = (2s + 1, 2u + 1) ∈ (Z2)κ2 , where s, u ∈ Z. By (iii-1) and (ii-1), it is
obtained that G#αO-Cl[G#αO-Int({(2s + 1, 2u + 1)})] = G#αO-Cl({(2s + 1, 2u + 1)}) ⊃
{(2s + 1, 2u + 1)} and hence the singleton {(2s + 1, 2u + 1)} is not “regular closed” in
(Z2, G#αO); explicitely the singleton {(2s+1, 2u+1)} is “semi-open” in (Z2, G#αO). By (ii-
1) and (iii), it is obtained that G#αO-Int[G#αO-Cl({(2s+1, 2u+1)})] = {(2s+1, 2u+1)}
and hence a singleton {(2s + 1, 2u + 1)} is “regular open” in (Z2, G#αO). �

A topological space (X, τ) is said to be T3/4, if every δ-generalized closed subset is closed
in (X, τ) ([4, Definition 4]). A space (X, τ) is T3/4 if and only if every singleton {x} of X
is closed or regular open in (X, τ) ([4, Theorem 4.3]). The notion of the class of T3/4-
topological spaces which is properly placed between the class of T1-spaces and T1/2-spaces
([4]).
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Proof of Corollary B (ii) (ii-2). Let (Z2, κ2) be the digital plane and (Z2, G#αO)
a topological space obtained by changing the topology κ2 by G#αO(Z2, κ2). Then, by
Proposition 3.3 (v), a singleton {x} is “regular open” in (Z2, G#αO), where x ∈ (Z2)κ2 ;
by Proposition 3.3 (ii-2), a singleton {x} is “closed” in (Z2, G#αO), where x ∈ (Z2)F2 ;
by Proposition 3.3 (iv), a singleton {x} is “closed” in (Z2, G#αO), where x ∈ (Z2)mix.
Therefore, every singleton {x} is “regular open” or “closed” in (Z2, G#αO). Namely, it is
a T3/4-topological space (cf. [4, Theorem 4.3 (3)]). Moreover, it is shown that (Z2, G#αO)
is not T1. Indeed, by Proposition 3.3 (ii-1), a singleton {(2s + 1, 2u + 1)} is not “closed” in
(Z2, G#αO), where s, u ∈ Z. �

Remark 3.4 We note that the digital line (Z, κ) is a typical example of T3/4-spaces (and
so T1/2) ([4, Example 4.6]); unfortunately, the digital plane (Z2, κ2) is not T1/2 (and so it
is not T3/4). Corollary B (ii) (resp. (iii)) shows that, by changing the topology, Z

2 can be
given a T1/2-space structure (resp. T3/4-space structure), i.e., (Z2, G#αO(Z2, κ2)) is T1/2

(resp. T3/4).

Present authors take the opportunity of noting the following typographical errors in [19]
and [2].
Notice. We have not any change of the theorems in the papers [19] and [2].

Eratum in [19]
· page 18, line +1:

Replace “...x ∈ τα-Cl(A)...” by “...x ∈ GO-Ker(A)...”.
· page 21, line +24:

Replace “...{2n + 1, 2n, 2n + 1}...” by “...{2n − 1, 2n, 2n + 1}...”.

Eratum in [2]
· page 52, line +10:

Replace “Emix := Z
2 \ (Eκ2 ∪ EF ).” by “Emix := E \ (Eκ2 ∪ EF ).”.
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