MORE ON $G^{\#}\alpha$ -OPEN SETS IN DIGITAL PLANES

R. DEVI, V. KOKILAVANI AND H. MAKI

Received November 26, 2008

ABSTRACT. In this paper, we continue the study of the concept of $g^{\#}\alpha$ -closed sets, $g^{\#}\alpha$ -open sets and digital planes (\mathbb{Z}^2, κ^2) (cf. [19]). In 1970, E.D. Khalimsky [10] introduced the concept of the digital line or so called *Khalimsky line* (\mathbb{Z},κ) . The digital plane (\mathbb{Z}^2, κ^2) (eg. [13]) is the topological product of two copies of (\mathbb{Z}, κ) . A subset A of a topological space (X, τ) is said to be $q^{\#}\alpha$ -closed [19], if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and U is g-open set of (X, τ) . The complement of a $g^{\#}\alpha$ -closed set is said to be a $g^{\#}\alpha$ -open set of (X, τ) . The $g^{\#}\alpha$ -openness in (\mathbb{Z}^2, κ^2) is characterized (cf. Theorem 2.3 (ii)): for a subset B with some closed singletons of (\mathbb{Z}^2, κ^2) , B is $g^{\#}\alpha$ open in (\mathbb{Z}^2, κ^2) if and only if $(U(x))_{\kappa^2} \subset B$ holds for each closed singleton $\{x\} \subset B$, where U(x) is the smallest open set containing x. The family of all $g^{\#}\alpha$ -open sets of (\mathbb{Z}^2, κ^2) , say $G^{\#} \alpha O$, forms an alternative topology of \mathbb{Z}^2 (cf. Theorem A, Corollary B (i)). Let $(\mathbb{Z}^2, G^{\#}\alpha O)$ be a topological space obtained by changing the topology κ^2 of the digital plane (\mathbb{Z}^2, κ^2) by $G^{\#} \alpha O$. We prove that this plane $(\mathbb{Z}^2, G^{\#} \alpha O)$ is a $T_{1/2}$ -space (cf. Corollary B (ii) (ii-1), Remark 3.5); moreover it is shown that the plane $(\mathbb{Z}^2, G^{\#}\alpha O)$ is $T_{3/4}$ (cf. Corollary B (ii) (ii-2)). It is well known that the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$ even if (\mathbb{Z}, κ) is $T_{1/2}$.

1 **Introduction and main results** Throughout this paper, (X, τ) represents a nonempty topological space on which no separation axioms are assumed unless otherwise mentioned. In 1970, N. Levine [15] introduced the concept of the generalized closed sets in topological spaces. A subset A of a topological space (X, τ) is generalized closed (shortly, g-closed), if $Cl(A) \subset U$ whenever $A \subset U$ and U is any open set of (X, τ) ([15, Definition 2.1]). It is obvious that every closed set is g-closed. The complement of a g-closed set of (X, τ) is called *q-open* in (X, τ) ([15, Definition 4.1]). A subset B is g-open in (X, τ) if and only if $F \subset Int(B)$ whenever $F \subset B$ and F is any closed set of (X, τ) ([15, Theorem 4.2]). Moreover, using the concept of g-closed sets, he introduced the notion of the class of $T_{1/2}$ topological spaces which is properly placed between the class of T_1 -spaces and T_0 -spaces ([15, Definition 5.1]). A space is called a $T_{1/2}$ -space if every g-closed set is closed. In 1977, W. Dunham [6, Theorem 2.5] proved that a topological space is $T_{1/2}$ if and only if every singleton is open or closed (cf. [11, p.7, line -6]). A typical example of the class of $T_{1/2}$ -spaces is the digital line or so called Khalimsky line, say (\mathbb{Z},κ) . It is not T_1 . The definition of the digital line was published in Russia by E. Khalimsky in 1970 [10]. In 1990, E. Khalimsky, K. Kopperman and R. Meyer [11] developed a finite analog of the Jordan curve theorem motibated by a problem in computer graphics (cf. [12], [11]). In the present paper, the digital plane (\mathbb{Z}^2, κ^2) is the topological product of two copies of the digital line (\mathbb{Z}, κ) , where Section 6]). It is well known that (\mathbb{Z}^2, κ^2) is not $T_{1/2}$ (cf. Section 2 below; eg., [2, line -3 in p.50], [8, p.32]). The digital plane is a mathematical model of the computer screen. The digital plane includes all 2-dimensional discrete objects in mathematical world.

²⁰⁰⁰ Mathematics Subject Classification. Primary:54A05,54D10,54F65,Secondary:68U05, 68U10.

Key words and phrases. preopen sets, generalized closed sets, α -open sets, $g^{\#}\alpha$ -open sets, $T_{1/2}$ -spaces, $T_{3/4}$ -spaces, digital planes, digital lines.

A subset B of (X, τ) is called α -open [18] in (X, τ) if $B \subset Int(Cl(Int(B)))$ holds in (X, τ) ; τ^{α} denotes the family of all α -open sets of (X, τ) . It is well known that τ^{α} forms a topology of X ([18], eg., [20]). The complement of an α -open set is called an α -closed set of (X, τ) . A subset E is α -closed if and only if $Cl(Int(Cl(E))) \subset E$ if and only if $\alpha Cl(E) = E$, where $\alpha Cl(D) := \bigcap \{F \mid D \subset F, F \text{ is } \alpha$ -closed in $(X, \tau)\}$ for a subset D of X. The α -interior of a subset E is defined as follows: $\alpha Int(E) := \bigcup \{U \mid U \subset E, U \text{ is } \alpha$ -open in $(X, \tau)\}$.

Definition 1.1 A subset A of (X, τ) is $g^{\#}\alpha$ -closed ([19, Definition 2.1]), if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and U is any g-open set of (X, τ) . The complement of a $g^{\#}\alpha$ -closed set is called a $g^{\#}\alpha$ -open set of (X, τ) .

It is shown that: a subset B is $g^{\#}\alpha$ -open in (X, τ) if and only if $F \subset \alpha Int(B)$ whenever $F \subset B$ and F is any g-closed set of (X, τ) .

By [19, Remark 2.3], we obtain the following diagram of implications and none of these implications is reversible.

Some basic properties of $g^{\#}\alpha$ -open sets and some properties of subsets on (\mathbb{Z}^2, κ^2) are studied by [19] (cf. Theorem 2.1(ii), Theorem 3.1(i) below); in general, it is shown that:([19, Theorem 2.5 (i)]) for a topological space (X, τ) , the intersection of two $g^{\#}\alpha$ -open sets of (X, τ) is $g^{\#}\alpha$ -open in (X, τ) (cf. Theorem 3.1 (i)). By [15, p.92 and Example 2.5], the union of two g-open sets is generally not g-open in a topological space. For the concept of $g^{\#}\alpha$ -open sets of a topological space, we have the corresponding problem. Is the union of two $g^{\#}\alpha$ -open sets of a topological space in generally not $g^{\#}\alpha$ -open ?

The purpose of the present paper is to solve the above problem for the digital plane (\mathbb{Z}^2, κ^2) ; we have an answer to the above problem for (\mathbb{Z}^2, κ^2) and related properties as follows (cf. Theorem A, Corollary B, Theorem 2.3 below).

Theorem A (i) The union of any collection of $g^{\#}\alpha$ -open sets of (\mathbb{Z}^2, κ^2) is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) .

(ii) The intersection of any collection of $g^{\#}\alpha$ -closed sets of (\mathbb{Z}^2, κ^2) is $g^{\#}\alpha$ -closed in (\mathbb{Z}^2, κ^2) .

It is well known that the digital line (\mathbb{Z}, κ) is $T_{1/2}$; but the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$. As corollary of Theorem A, we have a new topology, say $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ of \mathbb{Z}^2 . We change the topology κ^2 of (\mathbb{Z}^2, κ^2) by new topology $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ (cf. [21, Section 3. Change the topologies]). Consequently we get a new $T_{1/2}$ -topological space, say $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$, associated to (\mathbb{Z}^2, κ^2) .

Corollary B Let $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ be the family of all $g^{\#}\alpha$ -open sets in (\mathbb{Z}^2, κ^2) . Then, the following properties hold.

(i) The family $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ is a topology of \mathbb{Z}^2 .

(ii) Let $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$ be a topological space obtained by changing the topology κ^2 of the digital plane (\mathbb{Z}^2, κ^2) by $G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2)$.

(ii-1) $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ is a $T_{1/2}$ -topological space.

(ii-2) Moreover, $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ is $T_{3/4}$ and it is not T_1 .

We shall prove the above main results in Section 3 (cf. the end of Section 3 for the notion of $T_{3/4}$ -spaces). For some undefined or related concepts, the reader referred to some papers in References of the present paper, [21], [17], [3] and [1].

Charactrizations of $g^{\#\alpha}$ -open sets in the digital plane We first recall some $\mathbf{2}$ notations and concepts for properties on (\mathbb{Z}^2, κ^2) as follows. The *digital line* is the set of the integers, \mathbb{Z} , equipped with the topology κ having $\{\{2m-1, 2m, 2m+1\} \mid m \in \mathbb{Z}\}$ as a subbase (cf. Section 1, e.g., [8, Sections 1-3]). This topological space is denoted by (\mathbb{Z},κ) . A subset U of Z is open if and only if whether $x \in U$ is an even integer, then $x-1, x+1 \in U$. Let (\mathbb{Z}^2, κ^2) be the topological product of two copies of the digital line (\mathbb{Z},κ) , where $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ and $\kappa^2 = \kappa \times \kappa$. This topological space (\mathbb{Z}^2,κ^2) is called the *digital* plane in the present paper (eg., [13, Definition 4], [8, p.32 and Sections 4, 5], [7, p.164], [22], [19, Section 5], [2, Section 6]; cf. [11, Definition 4.1], [12, p.907, Section 4]). The concept of the smallest open set U(x) containing a point x of (\mathbb{Z}^2, κ^2) is usefull; let $x \in \mathbb{Z}^2$,

- $U(x) := \{2s 1, 2s, 2s + 1\} \times \{2u 1, 2u, 2u + 1\} \text{ if } x = (2s, 2u);$
- $U(x) := \{(2s+1, 2u+1)\}$ if x = (2s+1, 2u+1);
- $U(x) := \{2s 1, 2s, 2s + 1\} \times \{2u + 1\}$ if x = (2s, 2u + 1);
- $U(x) := \{2s+1\} \times \{2u-1, 2u, 2u+1\}$ if x = (2s+1, 2u), where $s, u \in \mathbb{Z}$.

By a property of κ^2 , it is well known that, for an open set G containing a point $x, x \in U(x) \subset$ G hold. We call the set U(x) by the smallest open set containing x ([7, line +8 in p.164 etc], [19, line -17 in p.21 etc], [2, line -15 in p.50 etc]). In [8, line -7 in p.38 and Lemma 4.2 etc], the set U(x) is called as the *basic open neighbourhood of x*. It follows from the definition of κ^2 that every singleton $\{(2s, 2u)\}$ is closed and every singleton $\{(2s+1, 2u+1)\}$ is open in (\mathbb{Z}^2, κ^2) , where $s, u \in \mathbb{Z}$. Moreover, singletons $\{(2s+1, 2u)\}$ and $\{(2s, 2u+1)\}$ are not open in (\mathbb{Z}^2, κ^2) ; they are not closed in (\mathbb{Z}^2, κ^2) ; such points (2s+1, 2u) and (2s, 2u+1)are called *mixed* ([11, p.11], [12, p.907]); the singletons $\{(2s + 1, 2u)\}$ and $\{(2s, 2u + 1)\}$ are nowhere dense, i.e., $Int(Cl(\{(2s+1,2u)\})) = Int(Cl(\{(2s,2u+1)\})) = \emptyset$. The above properties show that (\mathbb{Z}^2, κ^2) is not $T_{1/2}$. We use the following notation ([7], [19], [8], [2]):

 $(\mathbb{Z}^2)_{\kappa^2} := \{ x \in \mathbb{Z}^2 | \{ x \} \text{ is open in } (\mathbb{Z}^2, \kappa^2) \};$

 $(\mathbb{Z}^2)_{\mathcal{F}^2} := \{ x \in \mathbb{Z}^2 | \{ x \} \text{ is closed in } (\mathbb{Z}^2, \kappa^2) \};$

 $(\mathbb{Z}^2)_{mix} := \mathbb{Z}^2 \setminus ((\mathbb{Z}^2)_{\kappa^2} \cup (\mathbb{Z}^2)_{\mathcal{F}^2});$ for a subset E of $(\mathbb{Z}^2, \kappa^2), E_{\kappa^2} := E \cap ((\mathbb{Z}^2)_{\kappa^2}); E_{\mathcal{F}^2} := E \cap ((\mathbb{Z}^2)_{\mathcal{F}^2});$

 $E_{mix} := E \cap ((\mathbb{Z}^2)_{mix}) \text{ and } U(E) := \bigcup \{ U(x) | x \in E \},\$

where U(x) is the smallest open set containing x. It is well known that: for a subset E of (\mathbb{Z}^2, κ^2) ,

 $E_{mix} = E \setminus (E_{\kappa^2} \cup E_{\mathcal{F}^2});$

 $E_{\kappa^2} = \{ (2s+1, 2u+1) \in E | s, u \in \mathbb{Z} \};\$

 $E_{\mathcal{F}^2} = \{ (2s, 2u) \in E \mid s, u \in \mathbb{Z} \};$

 $E_{mix} = \{ (2s+1, 2u) \in E | \ s, u \in \mathbb{Z} \} \cup \{ (2s, 2u+1) \in E | \ s, u \in Z \};$

 $\mathbb{Z}^2 = (\mathbb{Z}^2)_{\mathcal{F}^2} \cup (\mathbb{Z}^2)_{\kappa^2} \cup (\mathbb{Z}^2)_{mix}$ (disjoint union) and $E = E_{\mathcal{F}^2} \cup E_{\kappa^2} \cup E_{mix}$ (disjoint union) hold for any subset E of (\mathbb{Z}^2, κ^2) .

In [2, p.52 etc], [19, p.21 etc] and [8, p.38 etc], the notation $(\mathbb{Z}^2)_{\mathcal{F}^2}$ was written by $(\mathbb{Z}^2)_{\mathcal{F}}$. Sometimes, E_{κ^2} , $E_{\mathcal{F}^2}$ and E_{mix} are written by $(E)_{\kappa^2}$, $(E)_{\mathcal{F}^2}$ and $(E)_{mix}$, respectively. For example, a notation $U((X \setminus E)_{mix})$ means the following subset $\bigcup \{U(x) \mid x \in (X \setminus E)_{mix}\} =$ $\bigcup \{ U(x) \mid x \in X \setminus E, x \in (\mathbb{Z}^2)_{mix} \}.$

A subset V is preopen [16] in a topological space (X, τ) , if $V \subset Int(Cl(V))$ holds in (X,τ) . A subset W is semi-open [14] in a topological space (X,τ) , if $W \subset Cl(Int(W))$ holds in (X, τ) . Let $PO(X, \tau)$ (resp. $SO(X, \tau)$) be the family of all preopen (resp. semiopen) sets of (X, τ) .

We recall some properties needed later on $g^{\#\alpha}$ -open sets, $g^{\#\alpha}$ -closed sets, preopen sets and semi-open sets in (\mathbb{Z}^2, κ^2) .

Theorem 2.1 (i) ([2, Theorem 6.1]; eg., [7, Theorem 2.1(ii)])

 $PO(\mathbb{Z}^2, \kappa^2) \subset SO(\mathbb{Z}^2, \kappa^2)$ and $(\kappa^2)^{\alpha} = PO(\mathbb{Z}^2, \kappa^2)$ hold.

(ii) ([19, Corollary 5.3 (ii)]) If a subset F is g-closed and $F \subset A_{mix} \cup A_{\kappa^2}$ holds for some subset A of (\mathbb{Z}^2, κ^2) , then $F = \emptyset$.

We prove a lemma needed later.

Lemma 2.2 Let A and B be subsets of (\mathbb{Z}^2, κ^2) and x, y points of (\mathbb{Z}^2, κ^2) .

(i) If A is a g-closed set of (\mathbb{Z}^2, κ^2) and $y \in A_{mix}$, then $Cl(\{y\}) \setminus \{y\} \subset A$ and hence $Cl(\{y\}) \subset A$ in (\mathbb{Z}^2, κ^2) .

(ii) For a point $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, a subset $\{x\} \cup (U(x))_{\kappa^2}$ is preopen in (\mathbb{Z}^2, κ^2) and hence it is α -open in (\mathbb{Z}^2, κ^2) (cf. Theorem 2.1(i)).

Proof. (i) Since $y \in A_{mix}$, we can set y = (2s, 2u + 1) or y = (2s + 1, 2u), where $s, u \in \mathbb{Z}$. Then, $Cl(\{y\}) = \{2s\} \times \{2u, 2u + 1, 2u + 2\} = \{y, y^+, y^-\}$ if y = (2s, 2u + 1), where $y^+ := (2s, 2u + 2)$ and $y^- := (2s, 2u)$; $Cl(\{y\}) = \{2s, 2s + 1, 2s + 2\} \times \{2u\} = \{y^-, y, y^+\}$ if y = (2s + 1, 2u), where $y^+ := (2s + 2, 2u)$ and $y^- := (2s, 2u)$. Thus, we have that $Cl(\{y\}) \setminus \{y\} = \{y^-, y, y^+\} \setminus \{y\} = \{y^-, y^+\}$. It is noted that $\{y^+\}$ and $\{y^-\}$ are closed singletons of (\mathbb{Z}^2, κ^2) . We suppose that $y^+ \notin A$ or $y^- \notin A$. If $y^+ \notin A$, then $y^+ \in Cl(\{y\}) \subset Cl(A)$ and so $y^+ \in Cl(A) \setminus A$. Then, $Cl(A) \setminus A$ contains a closed set $\{y^+\}$; this contradicts to [15, Theorem 2.2], i.e., for a topological space (X, τ) , a subset of (X, τ) . If $y^- \notin A$, then $y^- \in Cl(\{y\}) \subset Cl(A)$ and so $y^- \in Cl(A) \setminus A$; the subset $Cl(A) \setminus A$ contains a closed set $\{y^-\}$. Thus, for the case where $y^- \notin A$, we have also a contradiction. Therefore, we prove that $y^+ \in A$ and $y^- \in A$ and hence $Cl(\{y\}) \setminus \{y\} \subset A$ and we have that $Cl(\{y\}) \subset A$, because $y \in A_{mix} \subset A$.

(ii) We set x := (2s, 2u), where $s, u \in \mathbb{Z}$ are integers, because $\{x\}$ is closed. Let $p_1 := (2s - 1, 2u - 1), p_2 := (2s - 1, 2u + 1), p_3 := (2s + 1, 2u - 1)$ and $p_4 := (2s + 1, 2u + 1)$. Then, $U(x) = \{2s - 1, 2s, 2s + 1\} \times \{2u - 1, 2u, 2u + 1\}$ and $\{x, p_1, p_2, p_3, p_4\} \subset U(x)$. We have that $Cl((U(x))_{\kappa^2}) = Cl(\bigcup\{\{p_i\}|i \in \{1, 2, 3, 4\}\}) = \bigcup\{Cl(\{p_i\})|i \in \{1, 2, 3, 4\}\} = (\{2s - 2, 2s - 1, 2s\} \times \{2u - 2, 2u - 1, 2u\}) \cup (\{2s - 2, 2s - 1, 2s\} \times \{2u, 2u + 1, 2u + 2\}) \cup (\{2s, 2s + 1, 2s + 2\} \times \{2u, 2u + 1, 2u + 2\}) \cup (\{2s, 2s + 1, 2s + 2\} \times \{2u, 2u + 1, 2u + 2\}) \cup (\{2s, 2s + 1, 2s + 2\} \times \{2u, 2u + 1, 2u + 2\}) \cup (\{2s, 2s + 1, 2s + 2\} \times \{2u - 2, 2u - 1, 2u\})$ and so $Cl((U(x))_{\kappa^2}) = \{a \in \mathbb{Z} | 2s - 2 \le a \le 2s + 2\} \times \{b \in \mathbb{Z} | 2u - 2 \le b \le 2u + 2\}; Cl(\{x\} \cup (U(x))_{\kappa^2}) = (\{2s\} \times \{2u\}) \cup (\{a \in \mathbb{Z} | 2s - 2 \le a \le 2s + 2\} \times \{b \in \mathbb{Z} | 2u - 2 \le b \le 2u + 2\}) = Cl((U(x))_{\kappa^2})$. Then, it is obtained that $Int(Cl(\{x\} \cup (U(x))_{\kappa^2})) = Int(\{a \in \mathbb{Z} | 2s - 2 \le a \le 2s + 2\}) \times Int(\{b \in \mathbb{Z} | 2u - 2 \le b \le 2u + 2\}) = \{2s - 1, 2s, 2s + 1\} \times \{2u - 1, 2u, 2u + 1\} = U(x)$. Thus, we have that $\{x\} \cup (U(x))_{\kappa^2} \subset \{x\} \cup U(x) = U(x) = Int(Cl(\{x\} \cup (U(x))_{\kappa^2}))$, i.e., $\{x\} \cup (U(x))_{\kappa^2}$ is preopen in (\mathbb{Z}^2, κ^2) . It is well known that, for a subset W of (\mathbb{Z}^2, κ^2) , W is preopen in (\mathbb{Z}^2, κ^2) if and only W is α -open in (\mathbb{Z}^2, κ^2) .

Theorem 2.3 Let B be a nonempty subset of (\mathbb{Z}^2, κ^2) .

(i) If $B_{\mathcal{F}^2} = \emptyset$, then B is a $g^{\#} \alpha$ -open set of (\mathbb{Z}^2, κ^2) .

- (ii) For a subset B such that $B_{\mathcal{F}^2} \neq \emptyset$, the following properties are equivalent in (\mathbb{Z}^2, κ^2) :
- (1) The subset B is a $g^{\#}\alpha$ -open set of (\mathbb{Z}^2, κ^2) ;
- (2) $(U(x))_{\kappa^2} \subset B$ holds for each point $x \in B_{\mathcal{F}^2}$.

Proof.(i) Let F be a g-closed set such that $F \subset B$. Since $B_{\mathcal{F}^2} = \emptyset$, we have obviously that $B = B_{mix} \cup B_{\kappa^2}$ and so $F \subset B_{mix} \cup B_{\kappa^2}$. Then, by Theorem 2.1 (ii) it is obtained that $F = \emptyset$, because F is g-closed in (\mathbb{Z}^2, κ^2) . Thus, we conclude that whenever F is g-closed and $F \subset B, F = \emptyset \subset \alpha Int(B)$. Namely B is a $g^{\#}\alpha$ -open set of (\mathbb{Z}^2, κ^2) .

(ii) (1) \Rightarrow (2) Let $x \in B_{\mathcal{F}^2}$. Since $\{x\}$ is closed, $\{x\}$ is a g-closed set and $\{x\} \subset B$. By (1), $\{x\} \subset \alpha Int(B) = B \cap Int(Cl(Int(B)))$ and so $x \in Int(Cl(Int(B)))$. Namely, x is an interior point of the set Cl(Int(B)). Thus, we have that, for the smallest open set U(x) containing $x, U(x) \subset Cl(Int(B))$. We can set x := (2s, 2u) for some integers s and u, because $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$. Since $U((2s, 2u)) = \{2s - 1, 2s, 2s + 1\} \times \{2u - 1, 2u, 2u + 1\}$, it is shown that $(U(x))_{\kappa^2} = \{(x_1, x_2) \in U(x) | x_1 \text{ and } x_2 \text{ are odd}\} = \{p_1, p_2, p_3, p_4\}$, where $p_1 := (2s - 1, 2u - 1), p_2 := (2s - 1, 2u + 1), p_3 := (2s + 1, 2u - 1) \text{ and } p_4 := (2s + 1, 2u + 1)$. For each point $p_i(1 \le i \le 4), p_i \in Cl(Int(B))$ and so $\{p_i\} \cap Int(B) \neq \emptyset$. Therefore, $p_i \in B$ for each i with $1 \le i \le 4$ and hence $((U(x))_{\kappa^2} \subset B$.

(2) \Rightarrow (1) It follows from assumption that, for each point $x \in B_{\mathcal{F}^2}$, $\{x\} \cup (U(x))_{\kappa^2} \subset B$ and so $\bigcup \{\{x\} \cup (U(x))_{\kappa^2} | x \in B_{\mathcal{F}^2}\} \subset B$. Put $V_B := \bigcup \{\{x\} \cup (U(x))_{\kappa^2} | x \in B_{\mathcal{F}^2}\}$ and so $V_B \neq \emptyset, V_B \subset B$. By Lemma 2.2(ii), V_B is preopen and it is α -open (cf. Theorem 2.1 (i)). We have that $B = V_B \cup (B \setminus V_B) = V_B \cup \{(B \setminus V_B)_{\mathcal{F}^2} \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}\} =$ $V_B \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}$. We note that, for a point $y \in (B \setminus V_B)_{mix}, U(y) \subset B$ or $U(y) \not\subset B$. We put:

 $(B \setminus V_B)^1_{mix} := \{ y \in (B \setminus V_B)_{mix} | U(y) \subset B \},\$

 $U((B \setminus V_B)^1_{mix}) := \bigcup \{U(y) \mid y \in (B \setminus V_B)^1_{mix}\}$ and

 $(B \setminus V_B)^2_{mix} := \{ y \in (B \setminus V_B)_{mix} | U(y) \not \subset B \}.$

Then, $(B \setminus V_B)_{mix}$ is decomposed as $(B \setminus V_B)_{mix} = (B \setminus V_B)^1_{mix} \cup (B \setminus V_B)^2_{mix}$. Thus, we have that:

 $(*^1) B = V_B \cup (B \setminus V_B)_{\kappa^2} \cup (B \setminus V_B)_{mix}^1 \cup (B \setminus V_B)_{mix}^2.$

By using Lemma 2.2(ii), V_B is α -open in (\mathbb{Z}^2, κ^2) ; the set $(B \setminus V_B)_{\kappa^2}$ is open in (\mathbb{Z}^2, κ^2) and so it is α -open in (\mathbb{Z}^2, κ^2) ; $U((B \setminus V_B)_{mix}^1)$ is open and so α -open in (\mathbb{Z}^2, κ^2) . Thus, we have that:

(*²) the subset $V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)^1_{mix})$ is α -open in (\mathbb{Z}^2, κ^2) . Moreover, we conclude that:

(*³) $B = V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)^1_{mix}) \cup (B \setminus V_B)^2_{mix}$ holds.

Proof of (*³): since $(B \setminus V_B)_{mix}^1 \subset U((B \setminus V_B)_{mix}^1)$, it is shown that $B \subset V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2 \cup (C_1(*^1))$. Conversely, we have that $V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2 \subset B$ holds, because $U((B \setminus V_B)_{mix}^1) \subset B, V_B \subset B, (B \setminus V_B)_{\kappa^2} \subset B$ and $(B \setminus V_B)_{mix}^2 \subset B$ hold. Thus we have the required equality (*³).

Let F be a nonempty g-closed set of (\mathbb{Z}^2, κ^2) such that $F \subset B$. We claim that:

(*⁴) $F \cap ((B \setminus V_B)^2_{mix}) = \emptyset$ holds.

Proof of (*⁴): suppose that there exists a point $y \in F \cap (B \setminus V_B)^2_{mix}$. Then we have that:

(**) $y \in B_{mix}, y \in F_{mix}$ and $U(y) \not\subset B$.

By Lemma 2.2 (i) for the g-closed set F and the point y, it is obtained that $Cl(\{y\}) \setminus \{y\} \subset F$. Since $y \in (\mathbb{Z}^2)_{mix}$, we may put y := (2s, 2u+1) (resp. y := (2s+1, 2u)); $y^+ := (2s, 2u+2)$ (resp. $y^+ := (2s+2, 2u)$); $y^- := (2s, 2u)$ (resp. $y^- := (2s, 2u)$), where $s, u \in \mathbb{Z}$. Then, $Cl(\{y\}) = \{y^+, y, y^-\}$ and $y^+, y^- \in (\mathbb{Z}^2)_{\mathcal{F}^2}$ (cf. proof of Lemma 2.2 (i)). Thus, we have that $Cl(\{y\}) \setminus \{y\} = \{y^+, y^-\} \subset F$ and so $y^+ \in F_{\mathcal{F}^2}$ and $y^- \in F_{\mathcal{F}^2}$. Since $F \subset B$, we have that $y^+ \in B_{\mathcal{F}^2}$ and $y^- \in B_{\mathcal{F}^2}$. For the point y^+ , it follows from the assumption (2) that $\{y^+\} \cup (U(y^+))_{\kappa^2} \subset B$ and so $U(y) \subset B$. Indeed, $(U(y))_{\kappa^2} \subset (U(y^+))_{\kappa^2} \subset B, y \in F_{mix} \subset B_{mix} \subset B$ and $U(y) = \{y\} \cup ((U(y))_{\kappa^2})$ hold. The obtained property $U(y) \subset B$ contradicts to (**) above. Thus, we claimed that $F \cap ((B \setminus V_B)^2_{mix}) = \emptyset$. By using $(*^3)$ and $(*^4)$, it is shown that, for the g-closed set F such that $F \subset B$, $F = B \cap F = [V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1) \cup (B \setminus V_B)_{mix}^2] \cap F \subset V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1)$. We put $E := V_B \cup (B \setminus V_B)_{\kappa^2} \cup U((B \setminus V_B)_{mix}^1)$ and so $F \subset E \subset B$ and E is α -open. Using $(*^2)$ and $(*^3)$, we have that $F \subset E = \alpha Int(E) \subset \alpha Int(B)$ and hence $F \subset \alpha Int(B)$ holds. Namely, B is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) .

Example 2.4 By Theorem 2.3, for examples, the following subsets B_1, B_2 and B_3 of (\mathbb{Z}^2, κ^2) are $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) : $B_1 := \bigcup \{\{x\} \cup (U(x))_{\kappa^2} | x \in E_{\mathcal{F}^2}\}$, where E is a subset of (\mathbb{Z}^2, κ^2) ; $B_2 := E_{\mathcal{F}^2} \cup (U(E_{\mathcal{F}^2}))_{\kappa^2} \cup F_{\kappa^2} \cup F_{mix}$, where E and F are nonempty subsets of (\mathbb{Z}^2, κ^2) ; $B_3 := U(E_{\mathcal{F}^2}) \cup F_{\kappa^2} \cup F_{mix}$, where E and F are nonempty subsets of (\mathbb{Z}^2, κ^2) . Moreover, we note that B_1 is α -open in (\mathbb{Z}^2, κ^2) . In the definitions of B_2 and B_3 , we take subsets E and F as follows: $E := \{(0,0), (2,0)\}, F = \{(3,1), (4,1)\}$. Then resulting subsets B_2 and B_3 are not α -open in (\mathbb{Z}^2, κ^2) .

3 Proofs of Theorem A and Corollary B In the present section, first we prove Theorem A.

Proof of Theorem A. (i) We prove that the union of any collection of $g^{\#}\alpha$ -open sets of (\mathbb{Z}^2, κ^2) is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) . Let $\{B_i | i \in J\}$ be a collection of $g^{\#}\alpha$ -open sets of (\mathbb{Z}^2, κ^2) , where J is an index set and put $V := \bigcup \{B_i | i \in J\}$. First we assume that $V_{\mathcal{F}^2} \neq \emptyset$; there exists a point $x \in (B_j)_{\mathcal{F}^2}$ for some $j \in J$. By Theorem 2.3 (ii), it is obtained that $(U(x))_{\kappa^2} \subset B_j$ and hence $(U(x))_{\kappa^2} \subset V$. Again using Theorem 2.3 (ii), we conclude that V is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) . Finally, we assume that $V_{\mathcal{F}^2} = \emptyset$, i.e., $V = V_{\kappa^2} \cup V_{mix}$. By Theorem 2.3 (i), for this case, V is also $g^{\#}\alpha$ -open set in (\mathbb{Z}^2, κ^2) . (ii) We recall that a subset E is $g^{\#}\alpha$ -closed if and only if the complement of E is $g^{\#}\alpha$ -open. It follows from (i) and definitions that the intersection of any collection of $g^{\#}\alpha$ -closed sets of (\mathbb{Z}^2, κ^2) .

We recall the following properties:

Theorem 3.1 Let (X, τ) be a topological space.

(i) ([19, Theorem 2.5](i)) The union of two $g^{\#}\alpha$ -closed sets of (X, τ) is $g^{\#}\alpha$ -closed in (X, τ) ; hence the intersection of two $g^{\#}\alpha$ -open sets of (X, τ) is $g^{\#}\alpha$ -open in (X, τ) .

(ii) ([6, Theorem 2.5]; cf.[11, p.7, line -6]) A topological space (X, τ) is $T_{1/2}$ if and only if every singleton $\{x\}$ is open or closed in (X, τ) , where $x \in X$.

We need the following proposition.

Proposition 3.2 Let x be a point of (\mathbb{Z}^2, κ^2) . The following properties on the singleton $\{x\}$ hold.

(i) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $\{x\}$ is $g^{\#}\alpha$ -open; it is not $g^{\#}\alpha$ -closed in (\mathbb{Z}^2, κ^2) .

(ii) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $\{x\}$ is $g^{\#}\alpha$ -closed; it is not $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) .

(iii) If $x \in (\mathbb{Z}^2)_{mix}$, then $\{x\}$ is both $g^{\#}\alpha$ -closed and $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) .

Proof. (i) It follows from assumption that $\{x\}$ is open in (\mathbb{Z}^2, κ^2) and so it is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) (cf. the diagram in Section 1), i.e., $\{x\}$ is "open" in $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$. We prove that $\{x\}$ is not $g^{\#}\alpha$ -closed. Indeed, let $x = (2s + 1, 2u + 1) \in (\mathbb{Z}^2)_{\kappa^2}$, where $s, u \in \mathbb{Z}$. We take a point $y := (2s, 2u) \in \mathbb{Z}^2 \setminus \{x\}$; then $y \in (\mathbb{Z}^2 \setminus \{x\})_{\mathcal{F}^2} \neq \emptyset$. Thus we have that $x = (2s + 1, 2u + 1) \in U(y) := \{2s - 1, 2s, 2s + 1\} \times \{2u - 1, 2u, 2u + 1\}$ and $x \in (U(y))_{\kappa^2}$ hold and so $(U(y))_{\kappa^2} \not\subset \mathbb{Z}^2 \setminus \{x\}$. By Theorem 2.3 (ii), $\mathbb{Z}^2 \setminus \{x\}$ is not $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) . Namely, $\{x\}$ is not $g^{\#}\alpha$ -closed in (\mathbb{Z}^2, κ^2) . [An alternative proof of (i): since $\{x\}$ is open and x = (2s + 1, 2u + 1) for some $s, u \in \mathbb{Z}$, $\{x\}$ is g-open (cf. the diagram in Section 1). Then, there exists a g-open set $U := \{x\}$ such that $\alpha Cl(\{x\}) \not\subset \{x\}$, because $\begin{aligned} &\alpha Cl(\{x\}) = \{x\} \cup Cl(Int(Cl(\{x\}))) = Cl(Int(\{2s, 2s+1, 2s+2\} \times \{2u, 2u+1, 2u+2\})) = \\ &Cl(\{(2s+1, 2u+1)\}) = \{2s, 2s+1, 2s+2\} \times \{2u, 2u+1, 2u+2\}. \text{ Namely, by Definition 1.1,} \\ &\{x\} \text{ is not } g^{\#}\alpha\text{-closed in } (\mathbb{Z}^2, \kappa^2)]. \quad (\textbf{ii}) \text{ For the case where } x \in (\mathbb{Z}^2)_{\mathcal{F}^2}, \{x\} \text{ is closed in } \\ &(\mathbb{Z}^2, \kappa^2) \text{ and so it is } g^{\#}\alpha\text{-closed in } (\mathbb{Z}^2, \kappa^2), \text{ i.e., } \{x\} \text{ is "closed" in } (\mathbb{Z}^2, \mathbb{G}^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)). \text{ On the other hand, by Theorem 2.3(ii), } \{x\} \text{ is not } g^{\#}\alpha\text{-open in } (\mathbb{Z}^2, \kappa^2), \text{ because } x \in \{x\}_{\mathcal{F}^2} \neq \emptyset \\ \text{ and } (U(x))_{\kappa^2} \not\subset \{x\}. \quad (\textbf{iii)} \text{ For this case, we put } V := \mathbb{Z}^2 \setminus \{x\}. \text{ It is shown that } V_{\mathcal{F}^2} \neq \emptyset. \\ \text{ Indeed, let } x = (2s, 2u+1) \text{ (resp. } x = (2s+1, 2u)), \text{ where } s, u \in \mathbb{Z}; \text{ then, we can take a point } y := (2s, 2u) \in V_{\mathcal{F}^2} \text{ (resp. } y := (2s, 2u) \in V_{\mathcal{F}^2}). \\ \text{ we have that } V_{\kappa^2} = (\mathbb{Z}^2)_{\kappa^2}, (U(a))_{\kappa^2} \subset (\mathbb{Z}^2)_{\kappa^2} = V_{\kappa^2} \subset V. \\ \text{ Thus, for each point } a \in V_{\mathcal{F}^2}, \\ (U(a))_{\kappa^2} \subset V. \\ \text{ By using Theorem 2.3(ii), } V := \mathbb{Z}^2 \setminus \{x\} \text{ is a } g^{\#}\alpha\text{-open set in } (\mathbb{Z}^2, \kappa^2). \\ \text{ Namely, } \{x\} \text{ is } g^{\#}\alpha\text{-closed in } (\mathbb{Z}^2, \kappa^2). \\ \text{ Moreover, by using Theorem 2.3 (ii), it is easily shown that the singleton } \{x\} \text{ is } g^{\#}\alpha\text{-open in } (\mathbb{Z}^2, \kappa^2), \text{ because } \{x\}_{\mathcal{F}^2} = \emptyset. \\ \end{array}$

Finally, using Theorem A, Theorem 3.1 and Proposition 3.2, we prove Corollary B as follows.

Proof of Corollary B (i) and (ii) (ii-1). (i) It is obvious from Theorem A (i), Theorem 3.1(i) and definitions that the family $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ is a topology of \mathbb{Z}^2 . (ii) (ii-1) Let $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ be a topological space with a new topology $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$. Then, it is claimed that the topological space $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ is $T_{1/2}$ (in the sense of Levine ([15], cf. Theorem 3.1(ii))). By Proposition 3.2 (i) (resp. (ii), (iii)), a singleton $\{x\}$ is "open" (resp. "closed", "closed" and "open") in $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$, where $x \in$ $(\mathbb{Z}^2)_{\kappa^2}$ (resp. $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}, x \in (\mathbb{Z}^2)_{mix}$). Therefore, every singleton $\{x\}$ of \mathbb{Z}^2 is "open" or "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ and so, by Theorem 3.1(ii) due to W. Dunham, the space $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ is $T_{1/2}$.

Sometimes, we abbreviate the topology $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ by $G^{\#}\alpha O$.

For a subset A of \mathbb{Z}^2 , we denote the closure of A, interior of A and the kernel of A with respect to $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ by $G^{\#}\alpha O-Cl(A)$, $G^{\#}\alpha O-Int(A)$ and $G^{\#}\alpha O-Ker(A)$, respectively. The kernel is defined by $G^{\#}\alpha O-Ker(A) := \bigcap \{V \mid V \in G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2), A \subset V\}$. We need a property as follows:

(*) if B is a $g^{\#}\alpha$ -open set containing a point $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $\{x\} \cup (U(x))_{\kappa^2} \subset B$. Indeed, by Theorem 2.3(ii) $(1) \Rightarrow (2), (U(x))_{\kappa^2} \subset B$ and $x \in B_{\mathcal{F}^2} \subset B$.

Proposition 3.3 For the topological space $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$, we have the properties on the singletons as follows. Let x be a point of \mathbb{Z}^2 and $s, u \in \mathbb{Z}$.

(i) (i-1) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $G^{\#}\alpha O$ -Ker $(\{x\}) = \{x\}$ and $G^{\#}\alpha O$ -Ker $(\{x\}) \in G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$. (i-2) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $G^{\#}\alpha O$ -Ker $(\{x\}) = \{x\} \cup (U(x))_{\kappa^2} = \{(2s, 2u)\} \cup \{(2s + 1, 2u + 1), (2s + 1, 2u - 1), (2s - 1, 2u + 1), (2s - 1, 2u - 1)\}$, where x = (2s, 2u), and $G^{\#}\alpha O$ -Ker $(\{x\}) \in G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$.

(i-3) If $x \in (\mathbb{Z}^2)_{mix}$, then $G^{\#}\alpha O$ -Ker $(\{x\}) = \{x\}$ and $G^{\#}\alpha O$ -Ker $(\{x\}) \in G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$.

(ii) (ii-1) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $G^{\#} \alpha O$ - $Cl(\{x\}) = \{(2s+1, 2u+1), (2s, 2u+2), (2s, 2u), (2s+2, 2u+2), (2s+2, 2u)\}$, where x = (2s+1, 2u+1); and hence $\{x\}$ is not "closed" in $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$.

(ii-2) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $G^{\#} \alpha O$ - $Cl(\{x\}) = \{x\}$. (ii-3) If $x \in (\mathbb{Z}^2)_{mix}$, then $G^{\#} \alpha O$ - $Cl(\{x\}) = \{x\}$. (iii) (iii-1) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, then $G^{\#} \alpha O$ -Int $(\{x\}) = \{x\}$. (iii-2) If $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, then $G^{\#} \alpha O$ -Int $(\{x\}) = \emptyset$. (iii-3) If $x \in (\mathbb{Z}^2)_{mix}$, then $G^{\#} \alpha O$ -Int $(\{x\}) = \{x\}$. (iv) If $x \in (\mathbb{Z}^2)_{mix}$, i.e., x = (2s, 2u+1) or (2s+1, 2u), then $\{x\}$ is "regular open" and "regular closed" in $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$.

(v) If $x \in (\mathbb{Z}^2)_{\kappa^2}$, i.e., x = (2s + 1, 2u + 1), then $\{x\}$ is not "regular closed" in $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$; it is "semi-open" in $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$; moreover, $\{x\}$ is "regular open" in $(\mathbb{Z}^2, G^{\#} \alpha O(\mathbb{Z}^2, \kappa^2))$.

Proof. (i) (i-1) For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$, by Proposition 3.2 (i), $\{x\}$ is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) . Thus, we have that $G^{\#}\alpha O$ -Ker($\{x\}$) = $\{x\}$ and $G^{\#}\alpha O$ -Ker($\{x\}$) $\in G^{\#}\alpha O$. (i-2) Let B be any $g^{\#}\alpha$ -open set of (\mathbb{Z}^2, κ^2) containing the point $x = (2s, 2u) \in (\mathbb{Z}^2)_{\mathcal{F}^2}$. Then, by (*) above, $\{x\} \cup (U(x))_{\kappa^2} \subset B$ holds and $\{x\} \cup (U(x))_{\kappa^2} \in G^{\#}\alpha O$ (cf. Lemma 2.2(ii)). Thus, we have that $G^{\#}\alpha O$ -Ker($\{x\}$) = $\bigcap\{V \mid \{x\} \subset V, V \in G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)\} = \{x\} \cup (U(x))_{\kappa^2} = \{(2s, 2u), (2s+1, 2u+1), (2s+1, 2u-1), (2s-1, 2u+1), (2s-1, 2u-1)\}$. By Lemma 2.2(ii) and a fact that $(\kappa^2)^{\alpha} \subset G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$ (cf. the diagram in Section 1), the kernel $G^{\#}\alpha O$ -Ker($\{x\}$) is $g^{\#}\alpha$ -open in (\mathbb{Z}^2, κ^2) , i.e., $G^{\#}\alpha O$ -Ker($\{x\}$) $\in G^{\#}\alpha O$. (i-3) Let $x \in (\mathbb{Z}^2)_{mix}$. The singleton $\{x\}$ is $g^{\#}\alpha$ -open, because $\{x\}_{\mathcal{F}^2} = \emptyset$ (cf. Theorem 2.3 (i)). Thus, we have that $G^{\#}\alpha O$ -Ker($\{x\}$) = $\{x\}$ and $G^{\#}\alpha O$ -Ker($\{x\}$) $\in G^{\#}\alpha O$.

(ii) Let $x \in \mathbb{Z}^2$. By (i), it is shown that, for a point $y \in \mathbb{Z}^2$, $y \in G^{\#} \alpha O$ - $Cl(\{x\})$ holds if and only if $x \in G^{\#} \alpha O$ - $Ker(\{y\})$ holds.

(ii-1) For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$, we can put x = (2s+1, 2u+1), where $s, u \in \mathbb{Z}$. For a point $y \in (\mathbb{Z}^2)_{\kappa^2}$, $y \in G^{\#} \alpha O$ - $Cl(\{x\})$ holds (i.e., $y \in (G^{\#} \alpha O$ - $Cl(\{x\}))_{\kappa^2}$) if and only if $x \in G^{\#} \alpha O$ - $Ker(\{y\})$ holds (i.e., y = x) (cf. (i-1)). Thus we have that $(G^{\#} \alpha O$ - $Cl(\{x\}))_{\kappa^2} = \{x\}$. For a point $y \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, $y \in G^{\#} \alpha O$ - $Cl(\{x\})$ holds (i.e., $y \in (G^{\#} \alpha O$ - $Cl(\{x\}))_{\mathcal{F}^2}$) if and only if $x \in G^{\#} \alpha O$ - $Ker(\{y\})$ holds (i.e., $x \in \{y\} \cup (U(y))_{\kappa^2}$ and $x \neq y$ holds) (cf. (i-2)). Thus, we have that $(G^{\#} \alpha O$ - $Cl(\{x\}))_{\mathcal{F}^2} = \{y \in (\mathbb{Z}^2)_{\mathcal{F}^2} | x \in \{y\} \cup (U(y))_{\kappa^2}\} = W_x$, where $W_x := \{(2s, 2u), (2s, 2u+2), (2s+2, 2u), (2s+2, 2u+2)\}$ and x = (2s+1, 2u+1). For a point $y \in (\mathbb{Z}^2)_{mix}$, $y \in G^{\#} \alpha O$ - $Cl(\{x\})$ holds (i.e., $y \in (G^{\#} \alpha O$ - $Cl(\{x\}))_{mix}$) if and only if $x \in G^{\#} \alpha O$ - $Ker(\{y\}) = \{y\}$ holds (cf. (i-3)). Since $y \neq x$, we have that $(G^{\#} \alpha O$ - $Cl(\{x\}))_{mix} = \emptyset$.

Therefore, we obtain that $G^{\#}\alpha O$ - $Cl(\{x\}) = \{x\} \cup W_x$, because $E = E_{\kappa^2} \cup E_{\mathcal{F}^2} \cup E_{mix}$ holds for any subset E. **(ii-2)** For a point $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$, by Proposition 3.2 (ii), it is obtained that $G^{\#}\alpha O$ - $Cl(\{x\}) = \{x\}$. **(ii-3)** For a point $x \in (\mathbb{Z}^2)_{mix}$, by Proposition 3.2 (iii), it is obtained that $G^{\#}\alpha O$ - $Cl(\{x\}) = \{x\}$.

(iii) For a point $x \in (\mathbb{Z}^2)_{\kappa^2}$ (resp. $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}, x \in (\mathbb{Z}^2)_{mix}$), by Proposition 3.2 (i) (resp. (ii), (iii)), it is shown that $G^{\#}\alpha O\operatorname{-Int}(\{x\}) = \{x\}$ (resp. $G^{\#}\alpha O\operatorname{-Int}(\{x\}) = \emptyset$, $G^{\#}\alpha O\operatorname{-Int}(\{x\}) = \{x\}$) holds.

(iv) For a point $x \in (\mathbb{Z}^2)_{mix}$, by (iii-3) and (ii-3), $G^{\#}\alpha O - Cl[G^{\#}\alpha O - Int(\{x\})] = \{x\}$, i.e., the singleton $\{x\}$ is "regular closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$. Similarly, we have that $G^{\#}\alpha O - Int[G^{\#}\alpha O - Cl(\{x\})] = \{x\}$, i.e., $\{x\}$ is "regular open" in $(\mathbb{Z}^2, G^{\#}\alpha O)$.

(v) Let $x = (2s + 1, 2u + 1) \in (\mathbb{Z}^2)_{\kappa^2}$, where $s, u \in \mathbb{Z}$. By (iii-1) and (ii-1), it is obtained that $G^{\#}\alpha O$ - $Cl[G^{\#}\alpha O$ - $Int(\{(2s + 1, 2u + 1)\})] = G^{\#}\alpha O$ - $Cl(\{(2s + 1, 2u + 1)\}) \supset \{(2s + 1, 2u + 1)\}$ and hence the singleton $\{(2s + 1, 2u + 1)\}$ is not "regular closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$; explicitly the singleton $\{(2s+1, 2u+1)\}$ is "semi-open" in $(\mathbb{Z}^2, G^{\#}\alpha O)$. By (ii-1) and (iii), it is obtained that $G^{\#}\alpha O$ - $Int[G^{\#}\alpha O$ - $Cl(\{(2s + 1, 2u + 1)\})] = \{(2s + 1, 2u + 1)\}$ and hence a singleton $\{(2s + 1, 2u + 1)\}$ is "regular open" in $(\mathbb{Z}^2, G^{\#}\alpha O)$.

A topological space (X, τ) is said to be $T_{3/4}$, if every δ -generalized closed subset is closed in (X, τ) ([4, Definition 4]). A space (X, τ) is $T_{3/4}$ if and only if every singleton $\{x\}$ of Xis closed or regular open in (X, τ) ([4, Theorem 4.3]). The notion of the class of $T_{3/4}$ topological spaces which is properly placed between the class of T_1 -spaces and $T_{1/2}$ -spaces ([4]). **Proof of Corollary B (ii) (ii-2).** Let (\mathbb{Z}^2, κ^2) be the digital plane and $(\mathbb{Z}^2, G^{\#}\alpha O)$ a topological space obtained by changing the topology κ^2 by $G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2)$. Then, by Proposition 3.3 (v), a singleton $\{x\}$ is "regular open" in $(\mathbb{Z}^2, G^{\#}\alpha O)$, where $x \in (\mathbb{Z}^2)_{\kappa^2}$; by Proposition 3.3 (ii-2), a singleton $\{x\}$ is "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$, where $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$; by Proposition 3.3 (iv), a singleton $\{x\}$ is "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$, where $x \in (\mathbb{Z}^2)_{\mathcal{F}^2}$; by Proposition 3.3 (iv), a singleton $\{x\}$ is "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$, where $x \in (\mathbb{Z}^2)_{mix}$. Therefore, every singleton $\{x\}$ is "regular open" or "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$. Namely, it is a $T_{3/4}$ -topological space (cf. [4, Theorem 4.3 (3)]). Moreover, it is shown that $(\mathbb{Z}^2, G^{\#}\alpha O)$ is not T_1 . Indeed, by Proposition 3.3 (ii-1), a singleton $\{(2s+1, 2u+1)\}$ is not "closed" in $(\mathbb{Z}^2, G^{\#}\alpha O)$, where $s, u \in \mathbb{Z}$.

Remark 3.4 We note that the digital line (\mathbb{Z}, κ) is a typical example of $T_{3/4}$ -spaces (and so $T_{1/2}$) ([4, Example 4.6]); unfortunately, the digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/2}$ (and so it is not $T_{3/4}$). Corollary B (ii) (resp. (iii)) shows that, by changing the topology, \mathbb{Z}^2 can be given a $T_{1/2}$ -space structure (resp. $T_{3/4}$ -space structure), i.e., $(\mathbb{Z}^2, G^{\#}\alpha O(\mathbb{Z}^2, \kappa^2))$ is $T_{1/2}$ (resp. $T_{3/4}$).

Present authors take the opportunity of noting the following typographical errors in [19] and [2].

Notice. We have not any change of the theorems in the papers [19] and [2].

Eratum in [19]

 \cdot page 18, line +1:

Replace "... $x \in \tau^{\alpha}$ -Cl(A)..." by "... $x \in GO$ -Ker(A)...".

 \cdot page 21, line +24:

Replace "... $\{2n + 1, 2n, 2n + 1\}$..." by "... $\{2n - 1, 2n, 2n + 1\}$...".

Eratum in [2]

 \cdot page 52, line +10:

Replace "
$$E_{mix} := \mathbb{Z}^2 \setminus (E_{\kappa^2} \cup E_{\mathcal{F}})$$
." by " $E_{mix} := E \setminus (E_{\kappa^2} \cup E_{\mathcal{F}})$."

References

- M.E. Abd El-Monsef and A.A. Nasef, Recent survey on preopen sets, The Second International Conference on Mathematics: Trends and Developments, 27-30 December 2007, Cairo, Egypt.
- [2] R. Devi, K. Bhuvaneswari and H. Maki, Weak form on $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$, and digital planes, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.*, **25** (2004), 37–54.
- [3] J. Dontchev, Survey on preopen sets, Meetings on Topological Spaces Theory and its Applications, p.1-p.18; 22-23 August 1998, Yatsushiro College of Technology, Kumamoto, Japan.
- [4] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser.A Math., 17 (1996), 15–31.
- [5] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15 (1997), 259–266.
- [6] W. Dunham, T_{1/2}-spaces, Kyungpook Math. J., **17** (1977), 161–169.
- [7] M. Fujimoto, H. Maki, T. Noiri and S. Takigawa, The digital plane is quasi-submaximal, Questions Answers Gen. Topology, 22 (2004), 163–168.
- [8] M. Fujimoto, S. Takigawa, J. Dontchev, T. Noiri and H. Maki, The topological structure and groups of digital n-spaces, Kochi J. Math., 1 (2006), 31–55.

- D. Gauld, S. Greenwood and I. Reilly, On variations of continuity, Topology Atlas, Invited Contributions, 4(1999), 1-54; URL:http://at.yorku.ca/topology/.
- [10] E.D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Department of Povolsia, 1970.
- [11] E.D. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, *Topology Appl.*, 36 (1990), 1–17.
- [12] T.Y. Kong, R. Kopperman and P.R. Meyer, A topological approach to digital topology, Amer. Math. Monthly., 98 (1991), 901–917.
- [13] V. Kovalevsky and R. Kopperman, Some topology-based image processing algorithms, Ann. New York Acad. of Sci.; Papers on General Topology and Applications, 728 (1994), 174–182.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [15] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- [16] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
- [17] G.B. Navalagi, Definition bank in general topology, Topology Atlas. Preprint (survey articles), Preprint #449; URL:http://at.yorku.ca/topology/.
- [18] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [19] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On g[#]α-closed sets and digital plane, Bull. Fukuoka Univ. Ed. part III, 53 (2004), 15–24.
- [20] T. Ohba and J. Umehara, A simple proof of τ^{α} being a topology, Mem. Fac. Kochi Univ. Ser.A Math., **21** (2000), 87–88.
- [21] I.L. Reilly, On non-Hausdorff spaces, *Topology Appl.*, **44** (1992), 331–340.
- [22] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, The digital n-space is quasisubmaximal, Questions Answers Gen. Topology, 26 (2008), 45–52.

R. DEVI and V. KOKILAVANI:

Department of Mathematics, Kongu Nadu Arts and Science College Coimbatore 641029, Tamil Nadu, India

Haruo Maki:

Wakagidai 2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221 Japan e-mail: makih@pop12.odn.ne.jp