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Abstract. Many recent investigations have dealt with the quantity |w|u, the number
of occurrences of a word u as a scattered subword of a word w. The quantity gives
important numerical information about the word w. Sufficiently many values |w|u, for
different u’s, characterize the word w completely. Certain upper triangular matrices,
often referred to as Parikh matrices have turned out to be very useful for computing
numbers |w|u. In this paper we discuss some properties of Parikh matrices, as well
as some criteria concerning matrix equivalence of words. Special emphasis is on the
so-called Cauchy inequality for words.

1 Matrices characterizing words It is desirable to express properties of words as
numbers. The main goal of such an arithmetization is to reach a situation where noncom-
mutativity is eliminated. The theory of formal power series, [6], contains numerous such
constructions. In what follows we assume that the reader is familiar with the basics of
formal languages. Whenever necessary, [11] may be consulted. As customary, we use small
letters from the beginning of the English alphabet a, b, c, d, possibly with indices, to denote
letters of our formal alphabet Σ. Words are usually denoted by small letters from the end
of the English alphabet.

The most direct numerical fact about a word w is its length |w|. The Parikh vector,
[10, 11], Ψ(w) = (i1, . . . , in) indicates the number of occurrences of the letter aj , 1 ≤ j ≤ n,
in w, provided w is over the alphabet Σ = {a1, . . . , an}. To get more information about
a word, one has to focus the attention to subwords and to the number of occurrences of
a specific subword in the given word. In this article, u being a subword of w means that
w, as a sequence of letters, contains u as a subsequence. More formally, there exist words
x1, . . . , xk and y0, . . . , yk, some of them possibly empty, such that

u = x1 . . . xk and w = y0x1y1 . . . xkyk.

We also consider factors u of a word w: u is a factor of w if there are words x and y such
that w = xuy. Throughout this article, we understand subwords and factors in the way
mentioned. (In classical language theory, [11], our subwords are usually called ”scattered
subwords”, whereas our factors are called ”subwords”.)

The notation used throughout the article is |w|u, the number of occurrences of the word
u as a subword of the word w. This number can be defined formally as follows. Occurrences
can be viewed as vectors. If |u| = t, each occurrence of u in w can be identified as the t-tuple
(i1, . . . , it) of increasing positive integers, where for 1 ≤ j ≤ t, the jth letter of u is the ijth
letter of w. For instance, the 5 occurrences of u = abc in w = abcbcacab are

(1, 2, 3), (1, 2, 5), (1, 2, 7), (1, 4, 5), (1, 4, 7).
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(We will return to this example below.) Clearly, |w|u = 0 if |w| < |u|. We also make the
convention that, for any w and the empty word λ, |w|λ = 1.

In [4] the number |w|u is denoted as a “binomial coefficient” |w|u = (w
u ). If w and u are

words over a one-letter alphabet, w = ai, u = aj , then |w|u equals the ordinary binomial
coefficient: |w|u = (i

j). Our convention concerning the empty word reduces to the fact that
(i
0) = 1.

Assume that Σ is an alphabet containing the letters a and b. Then, for any word w,

(|w|a) × (|w|b) = |w|ab + |w|ba.

This simple equation is one of the few general facts about occurrences of subwords. A
slight variation immediately leads to difficulties. No explicit characterization is known for
the relation between (|w|u, |w|v) and (|w|uv , |w|vu), where u, v, w are arbitrary words.

We are now ready to describe a method using matrices for the computation of numbers
|w|u. Our matrix mappings use upper triangular square matrices, with nonnegative integer
entries, 1’s on the main diagonal and 0’s below it. (A somewhat different construction was
introduced in [2].) The set of all such triangular matrices is denoted by M, and the subset of
all matrices of dimension k ≥ 1 is denoted by Mk. Every such matrix has an inverse but the
inverse may contain negative entries. Given an ordered alphabet Σ = {a1, . . . , an}, n ≥ 2,
we now consider a subset of Mn+1. Matrices in this subset are referred to as Parikh
matrices, in analogy to the one-dimensional case. The original (n + 1)-dimensional Parikh
matrix, [7], tells us the values |w|u, where u is a factor of the ordered product a1 . . . an of
the letters of the alphabet. When considering generalized Parikh matrices introduced first
in [18], the values |w|x can be obtained as entries, where x belongs to any previously chosen
finite language. The price one pays is in the dimension of the matrix. Denote the entries of
the matrices M by mij . Before the basic definition of a generalized Parikh matrix we still
recall the definition of the “Kronecker delta”. For letters c and d,

δc,d =
{

1 if c = d,
0 if c �= d.

Definition 1. Let u = b1 . . . bk be a word, where each bi, 1 ≤ i ≤ k, is a letter of the
alphabet Σ = {a1, . . . , an}. The Parikh matrix mapping with respect to u, denoted Ψu, is
the morphism:

Ψu : Σ∗ → Mk+1,

defined, for a ∈ Σ, by the condition: if Ψu(a) = Mu(a) = (mij)1≤i,j≤(k+1), then for each
1 ≤ i ≤ (k + 1), mii = 1, and for each 1 ≤ i ≤ k, mi(i+1) = δa,bi , all other elements of the
matrix Mu(a) being 0. Matrices of the form Ψu(w), w ∈ Σ∗, are referred to as generalized
Parikh matrices. For u = a1 . . . an they are referred to as Parikh matrices.

Thus, the generalized Parikh matrix Mu(w) associated to a word w is obtained by
multiplying the matrices Mu(a) associated to the letters a of w, in the order in which the
letters appear in w. The above definition implies that if a letter a does not occur in u, then
the matrix Mu(a) is the identity matrix.

What is the information content of the matrix Mu(w)? It is expressed in the following
theorem, due originally to [18]. For 1 ≤ i ≤ j ≤ k, denote ui,j = bi . . . bj. The theorem is
easy to establish inductively.

Theorem 1. For all i and j, 1 ≤ i ≤ j ≤ k, we have mi(1+j) = |w|ui,j .
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Returning to our previous example we have, for w = abcbcacab and u = abc,

Mu(w) =

⎛
⎜⎜⎝

1 3 5 5
0 1 3 5
0 0 1 3
0 0 0 1

⎞
⎟⎟⎠ .

Observe that the ordering of the letters is the natural alphabetic one and that the matrix
is actually a Parikh matrix (rather than a generalized one).

There can be no dependency in the general case between the nontrivial entries of a
Parikh matrix, [15]. It is not easy to find words w and w′ such that |w|u = |w′|u holds for
all proper factors u of the word abcde but |w|abcde �= |w′|abcde. Here we are dealing with an
alphabet of five letters. However, for alphabets of any size, corresponding words w and w′

can be found. The independence result deals with Parikh matrices but cannot be extended
to generalized Parikh matrices. For instance, the entry (1, 3) in the matrix Maab(w) can
always be computed from the entry (1, 2).

There is no essential difference between Parikh matrices and generalized ones. It was
shown in [19] that, for any generalized Parikh matrix Mu(w), |u| = k, one can construct a
word w′ over an ordered alphabet Σk with k letters such that Mu(w) = Mk(w′), where the
latter matrix is the Parikh matrix of w′ for Σk.

2 Cauchy inequality Parikh matrices can be used to prove various facts, in particular
inequalities, concerning the numbers of different subword occurrences. The study of subword
histories, [8, 14, 16], constitutes a general approach. In this section we will focus the
attention on a particular inequality, the Cauchy inequality,

|w|y |w|xyz ≤ |w|xy |w|yz,

valid for all words w, x, y, z, [8]. It can be claimed to be a really fundamental property
of words, because of its generality and because it reduces to equality in a great variety of
cases. The choice for the name of the inequality is motivated by the resemblance to the
well-known algebraic Cauchy inequality for real numbers and also by the methods used in
the proof. The reader is referred to [8] for further details, as well as a combinatorial proof
of the inequality. Below we give a simpler proof based on generalized Parikh matrices. The
basic ideas in this proof are due to [18, 19].

We begin with a simple example. Consider the words

w = ai1bj1ck1 , x = ai2 , y = bj2 , z = ck2 .

Clearly, |w|y = (j1
j2

). Straightforward calculations show that

|w|y|w|xyz = (i1
i2

)(j1
j2

)2(k1
k2

) = |w|xy|w|yz .

In general, if

w = x1y1z1, |w|x = |x1|x = m, |w|y = |y1|y = n, |w|z = |z1|z = p,

then both sides of the Cauchy inequality equal mn2p and, thus, the inequality is not proper.
Consider, next, words over a one-letter alphabet. If the words w, x, y, z are of lengths

n, i, j, k, respectively, then the inequality assumes the form

(n
j )( n

i+j+k) ≤ ( n
i+j)(

n
j+k),
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which is easily verified to be true. Here we have an equality exactly in case i = 0 or k = 0.
Assume that

y = aibjak, x = ai1 , z = ak1

and w = ai+i1+i′bj+j′ak+k1+k′
. Then again it is easy to verify that the inequality is not

proper. The reader might want to consider more sophisticated examples. For instance, if
w = a3b3a3b3a3, and y = aba, x = z = a, then |w|y|w|xyz = 29160, whereas |w|xy|w|yz =
35721.

Thus, the general result is:

Theorem 2. For arbitrary words w, x, y, z, the inequality

|w|xyz |w|y ≤ |w|xy|w|yz

holds true.

Lemma 1. The value of any 2-dimensional minor of the matrix Mu(w) is a nonnegative
integer.

Proof. The assertion holds if w is a letter. In this case there is no minor, where the
upper right and lower left entries are both nonzero. Consequently, 0 and 1 are the only
possible values for the minor.

Assume inductively that the assertion holds for the word w′, and consider the word
w = w′a, where a is a letter. Let D be the 2-dimensional minor of Mu(w) determined by
the four entries

miµ,jν , 1 ≤ µ, ν ≤ 2, 1 ≤ i1 < i2 ≤ k + 1, 1 ≤ j1 < j2 ≤ k + 1.

Consider the second column (corresponding to j2) in D. Its entries are

either m′
iµ,j2 or m′

iµ,j2 + m′
iµ,j2−1, µ = 1, 2,

depending whether a is not or is the j2th letter in u. The same conclusion holds for the
first column (corresponding to j1) in D. This means that D is the sum of at most four
determinants, each of which is either a minor of Mu(w′) or consists of two identical columns.
The assertion now follows by the inductive hypothesis.

We are now in the position to prove Theorem 2. Consider arbitrary w, x, y, z and denote
u = xyz. Then ∣∣∣∣ |w|xy |w|xyz

|w|y |w|yz

∣∣∣∣
appears as a minor in the Parikh matrix Mu(w), by Theorem 1. Hence Theorem 2 follows
by Lemma 1. �

We mention finally a “dual” of the Cauchy inequality, [8], interesting on its own right.

Lemma 2. For all words x, y, z, w,

|xyz|w|y|w ≤ |xy|w|yz|w.
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3 M-ambiguity and M-equivalence From now on we consider exclusively Parikh ma-
trices, rather than the generalized ones. (Recall also the remark made at the end of Section
1.) Thus, from now on we consider the alphabet Σk = {a1, . . . , ak}, and the word defining
the matrices is u = a1 . . . ak. (In examples we use letters from the beginning of the English
alphabet.) We denote the Parikh matrix mapping by Ψk.

Definition 2. Two words w1, w2 ∈ Σ∗
k are termed M-equivalent, in symbols w1 ≡M w2, if

Ψk(w1) = Ψk(w2). A word w ∈ Σ∗
k is termed M-unambiguous if there is no word w′ �= w

such that w ≡M w′. Otherwise, w is termed M-ambiguous. If w ∈ Σ∗
k is M-unambiguous

(resp. M-ambiguous), then also the Parikh matrix Ψk(w) is called unambiguous (resp.
ambiguous).

There is an extensive literature concerning M -equivalence, see [1, 3, 12, 13] and their
references. Recently also a unique word has been associated to each Parikh matrix, [17].
The set of M -unambiguous words is known if the alphabet consists of two or three letters.
For three letters, the situation is rather complicated, [19], but for two letters the following
simple result holds, [5, 9, 12].

Theorem 3. A word w ∈ {a, b}∗ is M -ambiguous if and only if w has the factors ab and
ba in non-overlapping positions.

We present here a nondeterministic automaton accepting the set of M -unambiguous
words. The two initial states are indicated by incoming arrows, and all states are final. (In
fact, it makes no difference if we consider all states to be initial as well.)

b

a

b

a
ab

a
b

a b

ab

If a word y ∈ Σ∗
k is M -ambiguous, so is every word xyz where x, z ∈ Σ∗

k. However, M -
unambiguous words may possess M -ambiguous subwords. For instance, the unambiguous
word abcba has the ambiguous subword abba. Below we list some short M -ambiguous words.
Consider the alphabet Σk = {a1, . . . , ak}. The words

aiai+j and ai+jai, 1 ≤ i ≤ k − 2, 2 ≤ j ≤ k − i,
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are ambiguous. So are each of the words

aiai+1ai+1ai, ai+1aiaiai+1,

aiai+1a
j
iai+1ai, ai+1a

j+2
i ai+1,

ai+1aia
j
i+1aiai+1, aia

j+2
i+1ai,

where 1 ≤ i ≤ k − 1 and j ≥ 0.

Various methods have been presented for establishing the M -equivalence of two words.
We have to worry only about occurrences of factors of the word a1 . . . ak as subwords. It
follows from the considerations above that changing a factor aiai+j , j ≥ 2, to ai+jai, or
vice versa, yields an M -equivalent word. The factors aiai+1 and ai+1ai can be swapped if
two such swappings take place in opposite directions, and there are no “harmful” letters
between the two swapping positions. Explicitly, this can be stated as the following lemma,
[5, 9, 1].

Lemma 3. Assume that 1 ≤ i ≤ k − 1 and x, y, z are arbitrary words such that |y|ai−1 =
|y|ai+2 = 0. Then

xaiai+1yai+1aiz ≡M xai+1aiyaiai+1z.

The two methods presented above (swapping a factor aiai+j , j ≥ 2, to ai+jai, or vice
versa, and Lemma 3) are sufficient for showing the M -equivalence in many cases. Our
following theorem exhibits such a construction.

Theorem 4. Denote x = a1 . . . ak, and let y be the mirror image of x. Then xy ≡M yx.
Moreover, if w and w′ are words composed of the factors x and y such that x (resp. y)
appears as a factor equally many times in w and w′, then w ≡M w′.

Proof. Clearly, the second assertion follows from the first: we just perform sufficiently
many swappings between xy and yx. The first assertion, xy ≡M yx is established by an
induction on k. The assertion clearly holds for k = 2. Assume that it holds for the value k,
and consider an alphabet with k + 1 letters. We obtain

a1 . . . akak+1ak+1ak . . . a1 ≡M a1 . . . ak+1akakak+1 . . . a1.

We now swap ak+1 with the neighboring letters, yielding the M -equivalent word

ak+1a1 . . . akak . . . a1ak+1.

By the induction hypothesis, we see that the first assertion holds. �

If the alphabet is not binary, then the two methods presented are definitely not sufficient
for showing the M -equivalence of arbitrary words. The illustration considered in Section 1
provides a simple counterexample. It is easy to see that

abcbcacab ≡M bcacababc.

Moreover, the only other words M -equivalent to these two words are obtained by changing
the order of letters in the caca-factor. Consequently, the two methods are insufficient for
showing the M -equivalence of these two words.

In fact, we have the following equivalence criterion corresponding to Lemma 3.

Lemma 4. Assume that 1 ≤ i ≤ k − 2 and x, y1, y2, z are words such that none of the
letters ai−1, ai+2, ai+3 appears in y1, and none of the letters ai−1, ai, ai+3 appears in y2.
Then

xaiai+1ai+2y1ai+1ai+2aiy2ai+2aiai+1z ≡M

xai+1ai+2aiy1ai+2aiai+1y2aiai+1ai+2z.
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We omit the proof of this lemma. Matters of “circular variance” causing the equivalence
above have been investigated more generally in [17]. We hope to return to the resulting
equivalence criteria in another context.

4 Conclusion We have shown the importance of matrix constructions for the analysis of
numerical properties of words. This new research area contains numerous open problems.
Some of them have been hinted at above. Parikh matrices can be extended to concern
languages, [3, 8, 9]. How much can be said about a language on the basis of the set of the
Parikh matrices associated to its words?
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