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Abstract. We study Fredholmness of nonlocal boundary value problems for fourth or-
der elliptic differential-operator equations in UMD Banach spaces. The main condition
is given in terms of R-boundedness of some families of bounded operators generated
by inverse of the characteristic operator pencil of the equation. Then we prove an
isomorphism of the problem on the semi-axis, for some special boundary conditions,
in appropriate Lp spaces. This implies maximal Lp-regularity for the problem. We
also present some relevant application of obtained abstract results to boundary value
problems for fourth order elliptic and quasi-elliptic partial differential equations.

1 Introduction. In our previous studies, [4], [6], we have considered regular and irregular
boundary value problems for second order elliptic differential-operator equations with the
spectral parameter λ in the equation in UMD Banach spaces. By regularity we mean
the following classical notion which originates from scalar ordinary differential problems.
When considering a boundary value problem for homogeneous equations, we expand the
determinant of a system, for finding two unknown constants of a solution, with respect to λ.
Then, regularity means that the main coefficient of the expansion with respect to λ is not
equal to zero. Otherwise, the problem is irregular. We have realized maximal Lp-regularity
for regular problems and we have not succeeded to get maximal Lp-regularity for irregular
problems, one should claim more smoothness from the right-hand known function f of the
equation than just to be in Lp((0, 1); E). Moreover, we have showed a counterexample
which proves that there is no maximal Lp-regularity for irregular problems.

In this paper, we continue our investigation for regular boundary value problems for
fourth order elliptic differential-operator equations. We get, in particular, maximal Lp-
regularity (it follows from Theorem 2). The main condition of theorems is given in terms of
R-boundedness of some families of bounded operators generated by inverse of the polynomial
characteristic operator pencil of the equation (see condition (4) of Theorem 1). In fact, this
condition is the most difficult for checking from application point of view. There are many
studies (see, e. g., books by R. Denk, M. Hieber, and J. Prüss [3] and P. C. Kunstmann
and L. Weis [10] and various papers) of R-boundedness for very general elliptic partial
differential operators but not for elliptic partial differential operator pencils in Banach
spaces polynomially depended on the spectral parameter λ. On the other hand, condition
(4) of Theorem 1 is very natural. When studying the problem in a Hilbert space then R-
boundedness is replaced by norm-boundedness of the same sets in condition (4) of Theorem
1. And for norm-boundedness there are many results in application for such pencils. In early
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60s, S. Agmon and L. Nirenberg [1] and M. S. Agranovich and M. I. Vishik [2] intensively
studied norm-bounded estimates for various sets generated by inverse of the polynomial
characteristic operator pencil of differential equations. The study has been continued by
various mathematicians (see [12] for a relevant bibliography on the subject). So, the study of
R-boundedness of various sets generated by inverse of the polynomial characteristic operator
pencil of differential equation is actual today from application point of view.

In section 4, we give the first result of such a kind. In section 5, with the help of section
4, we present some application of the obtained abstract result to elliptic PDEs. In sections
6 and 7, some application is shown for some other classes of elliptic and quasi-elliptic PDEs.

We have decided do not include in the paper, at this time, some introductory material,
i.e., some comments about importance of the subject, some comparison of our results with
others known, about stimulating reasons of the investigation. We have presented all these,
in a detail, in our previous papers [5], [4], [6], but we each time remind the reader the same
definitions and notations which are necessary in order to understand all calculations in the
paper.

If E and F are Banach spaces, B(E, F ) denotes the Banach space of all bounded,
linear operators from E into F with the norm equal to the operator norm; moreover,
B(E) := B(E, E). The spectrum of a linear operator A in E is denoted by σ(A), its
resolvent set by ρ(A). The domain and range of an operator A is denoted by D(A) and
R(A), respectively. The resolvent of an operator A is denoted by R(λ,A) := (λI − A)−1.

We use the notation Ff or f̂ for the Fourier transform of a function f belonging to a
vector-valued Lp-space, i.e., Lp(R;E)

Ff := (Ff)(σ) := f̂(σ) :=
1√
2π

∫ ∞

−∞
e−iσxf(x)dx,

and the inverse Fourier transform

F−1f := (F−1f)(x) :=
1√
2π

∫ ∞

−∞
eiσxf(σ)dσ.

A Banach space E is said to be of class HT, if the Hilbert transform is bounded on
Lp(R;E) for some (and then all) p > 1. Here the Hilbert transform H of a function
f ∈ S(R;E), the Schwartz space of rapidly decreasing E-valued functions, is defined by

Hf :=
1
π

PV (
1
t
) ∗ f,

i.e., (Hf)(t) := 1
π lim

ε→0

∫
|τ |>ε

f(t−τ)
τ dτ . These spaces are often also called UMD Banach

spaces, where the UMD stands for the property of unconditional martingale differences. We
prefer the notion UMD in the framework of this paper.

Definition. Let E be a complex Banach space, and A is a closed linear operator in E. The
operator A is called sectorial if the following conditions are satisfied:

1. D(A) = E, R(A) = E, (−∞, 0) ⊂ ρ(A);

2. ‖λ(λ + A)−1‖ ≤ M for all λ > 0, and some M < ∞.

Definition. Let E and F be Banach spaces. A family of operators T ⊂ B(E, F ) is called
R-bounded, if there is a constant C > 0 and p ≥ 1 such that for each natural number n,
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Tj ∈ T , uj ∈ E and for all independent, symmetric, {−1, 1}-valued random variables εj on
[0, 1] (e.g., the Rademacher functions εj(t) = sign sin(2jπt) ) the inequality

∥∥∥ n∑
j=1

εjTjuj

∥∥∥
Lp((0,1);F )

≤ C
∥∥∥ n∑

j=1

εjuj

∥∥∥
Lp((0,1);E)

is valid. The smallest such C is called R-bound of T and is denoted by R{T }E→F . If
E = F , the R-bound will be denoted by R{T }E.

Remark 1. From the definition of R-boundedness it follows that every R-bounded family
of operators is (uniformly) bounded (it is enough to take n = 1). On the other hand, in
a Hilbert space H every bounded set is R-bounded (see, e.g., [10, p.75]). Therefore, in
a Hilbert space, the notion of R-boundedness is equivalent to boundedness of a family of
operators (see also [3, p.26]).

Definition. A sectorial operator A is called R-sectorial if

RA(0) := R{λ(λ + A)−1 : λ > 0} < ∞.

The number
φR

A := inf{θ ∈ (0, π) : RA(π − θ) < ∞},
where RA(θ) := R{λ(λ + A)−1 : | arg λ| ≤ θ}, is called an R-angle of the operator A.

For convenience, sometimes we write λ + A instead of λI + A.
For the operator A closed in E, the domain of definition D(An) of the operator An is

turned into a Banach space E(An) with respect to the norm

‖u‖E(An) :=
( n∑

k=0

‖Aku‖2
) 1

2
.

The operator An from E(An) into E is bounded.
Introduce the space W 1

p (R;E(A), E), 1 < p < ∞, of functions with the norm

‖u‖W 1
p (R;E(A),E) :=

( ∞∫
−∞

‖u(x)‖p
E(A)dx +

∞∫
−∞

‖u′(x)‖p
Edx

) 1
p

.

In a similar way, one can define the space W 1
p ((0, T );E(A), E) and, generally, Wn

p ((0, T );
En, En−1, . . . , E0) for natural numbers n and Banach spaces Ej , j = 0, . . . , n. If E and
F are Banach spaces with continuous embedding F ⊂ E, we also consider the space
Wn

p ((0, T );F,E) of functions with the norm

‖u‖W n
p ((0,T );F,E) := ‖u‖Lp((0,T );F ) + ‖u(n)‖Lp((0,T );E).

Similarly, one can define Wn
p (R;F,E).

By saying that an operator A has the Fredholm property, we mean that the range of
A is closed and the dim KerA = dim CokerA < ∞.

Let E0 and E1 be two Banach spaces continuously embedded into the Banach space
E : E0 ⊂ E, E1 ⊂ E. Two such spaces are called an interpolation couple {E0, E1}.
Consider the Banach space

E0 + E1 := {u : u ∈ E, ∃uj ∈ Ej , j = 0, 1, where u = u0 + u1,

‖u‖E0+E1 := inf
u=u0+u1

uj∈Ej

(‖u0‖E0 + ‖u1‖E1)}.
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Due to H. Triebel [11, section 1.3.1], the functional

K(t, u) := inf
u=u0+u1

uj∈Ej

(
‖u0‖E0 + t‖u1‖E1

)
, u ∈ E0 + E1,

is continuous on (0,∞) in t, and the following estimate holds:

min{1, t}‖u‖E0+E1 ≤ K(t, u) ≤ max{1, t}‖u‖E0+E1 .

An interpolation space for {E0, E1} by the K-method is defined as follows:

(E0, E1)θ,p :=
{
u : u ∈ E0 + E1, ‖u‖(E0,E1)θ,p

:=
(∫ ∞

0

t−1−θpKp(t, u) dt
) 1

p

< ∞
}
, 0 < θ < 1, 1 ≤ p < ∞,

(E0, E1)θ,∞ :=
{
u : u ∈ E0 + E1, ‖u‖(E0,E1)θ,∞

:= sup
t∈(0,∞)

t−θK(t, u) < ∞
}
, 0 < θ < 1.

2 Coerciveness on the space variable and Fredholmness. Consider, in a UMD
Banach space E, a boundary value problem in [0,1] for the fourth order elliptic equation

L(D)u := u′′′′(x) + A2u
′′(x) + A4u(x) +

3∑
k=0

Bk(x)u(k)(x) = f(x),(2.1)

Lku := αku(mk)(0) + βku(mk)(1) +
mk−1∑
j=0

Nkj∑
s=1

Tkjsu
(j)(xkjs) = ϕk, k = 1, . . . , 4,(2.2)

where 0 ≤ m1, m2 ≤ 1, m3 = m1 + 2, m4 = m2 + 2, and αk and βk are complex numbers,
xkjs ∈ [0, 1], D := d

dx ; A2, A4, Bk(x) for x ∈ [0, 1] and Tkjs are, generally speaking,
unbounded operators in E.

Theorem 1. Let the following conditions be satisfied:

1. an operator A4 is closed, densely defined and invertible in a UMD Banach space E
and R{λR(λ,A4) : arg λ = π}E < ∞;1

2. the embedding E(A4) ⊂ E is compact;

3. an operator A2 from E2 into E is bounded, where E2 := E(A
1
2
4 );

4. for λ = iσ, σ ∈ R, and |σ| ≥ σ0 (for some σ0 ≥ 0), the characteristic operator pencil
L(λ) := λ4I + λ2A2 + A4 is invertible in E and

R{σ4L(iσ)−1 : |σ| ≥ σ0}E < ∞; R{A4L(iσ)−1 : |σ| ≥ σ0}E < ∞;

R{σ4L(iσ)−1 : |σ| ≥ σ0}E2 < ∞; R{A4L(iσ)−1 : |σ| ≥ σ0}E2 < ∞;

1In fact, this is equivalent to that A4 is an invertible R-sectorial operator in E with the R-angle φR
A4

< π

and, therefore, in particular, there exist fractional powers of A4 (see, e.g., [3, Theorem 2.3]).
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5. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1(−1)m1 0 β1 0

0 α3(−1)m1 0 β3

α2(−1)m2 0 β2 0

0 α4(−1)m2 0 β4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0;

for m1 
= m2, αk = αk+2, βk = βk+2, k = 1, 2;

6. for any ε > 0 and for almost all x ∈ [0, 1], k = 0, . . . , 3,

‖Bk(x)u‖E ≤ ε‖u‖
E(A

1−k
4

4 )
+ C(ε)‖u‖E, u ∈ E(A1− k

4
4 );

for u ∈ E(A1− k
4

4 ) the function Bk(x)u is measurable on [0, 1] in E;

7. operators Tkjs from (E(A4), E) j
4+ 1

4p ,p into (E(A4), E)mk
4 + 1

4p ,p are compact, where
p ∈ (1,∞).

Then, the operator L : u → Lu :=
(
L(D)u, L1u, L2u, L3u, L4u

)
from W 4

p ((0, 1); E(A4),

E) into Lp((0, 1); E)
4

+̇
k=1

(E(A4), E)mk
4 + 1

4p ,p is bounded and Fredholm2.

Proof. Consider the principal part of problem (2.1)–(2.2), i.e.,

L0(D)u : = u′′′′(x) + A2u
′′(x) + A4u(x) = f(x), x ∈ (0, 1),(2.3)

Lk0u : = αku(mk)(0) + βku(mk)(1) = ϕk, k = 1, . . . , 4.(2.4)

By the substitution

v(x) :=

⎛
⎝v1(x)

v2(x)

⎞
⎠ :=

⎛
⎝ u(x)

u′′(x)

⎞
⎠ ,

problem (2.3)–(2.4) is reduced to the equivalent problem

v′′(x) = Av(x) + F (x), x ∈ (0, 1),

akv(mk)(0) + bkv(mk)(1) = Φk, k = 1, 2,
(2.5)

where,

A :=

⎛
⎝ 0 I

−A4 −A2

⎞
⎠ , ak :=

⎛
⎝αkI 0

0 αk+2I

⎞
⎠ , bk :=

⎛
⎝βkI 0

0 βk+2I

⎞
⎠ ,

F (x) :=

⎛
⎝ 0

f(x)

⎞
⎠ , Φk :=

⎛
⎝ ϕk

ϕk+2

⎞
⎠ .

2By virtue of [5, Theorem 7 and Corollary 8], the embedding W 4
p ((0, 1); E(A4), E) ⊂ W 2

p ((0, 1); E(A
1
2
4 ))

is continuous. Then, by virtue of condition (3), A2u′′ ∈ Lp((0, 1); E).
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We consider the operator A in the space E := E2+̇E. Let D(A) := E(A4)+̇E2 and F :=
(f1, f2) ∈ E = E2+̇E. From the first equation of the system

(λ2I − A)v = F(2.6)

we find
v2 = λ2v1 − f1.

Substituting this expression into the second equation of system (2.6) we have

λ2(λ2v1 − f1) = −A4v1 − A2(λ2v1 − f1) + f2.

Hence,
L(λ)v1 = λ2f1 + A2f1 + f2,

i.e., by condition (4), for λ = iσ, σ ∈ R, and |σ| ≥ σ0,

v1 = λ2L(λ)−1f1 + L(λ)−1A2f1 + L(λ)−1f2.(2.7)

Consequently,

v2 = λ4L(λ)−1f1 + λ2L(λ)−1A2f1 − f1 + λ2L(λ)−1f2.(2.8)

Since (2.7) and (2.8) define (λ2I − A)−1 then one can get that

A(λ2I − A)−1 =
(

A11 A12

A21 A22

)
,(2.9)

where

A11 = λ4L(λ)−1 + λ2L(λ)−1A2 − I,

A12 = λ2L(λ)−1,

A21 = −λ2A4L(λ)−1 − A4L(λ)−1A2 − λ4A2L(λ)−1 − λ2A2L(λ)−1A2 + A2,

A22 = −A4L(λ)−1 − λ2A2L(λ)−1.

From Venni’s proposition (see [5, p.500, under X = Y = E, α = 0, β = 1
2 , γ = 1,

f(σ) = σ2, B(σ) = L(iσ)−1]) and two first inequalities in condition (4), we get that

R{σ2A
1
2
4 L(iσ)−1 : |σ| ≥ σ0}E < ∞.(2.10)

Similarly, from two last inequalities in condition (4), we get

R{σ2A
1
2
4 L(iσ)−1 : |σ| ≥ σ0}E2 < ∞.(2.11)

Using now the definition of R-boundedness, conditions (3) and (4), and formulas (2.10) and
(2.11) we obtain, from (2.9), that

R{A(λ2I − A)−1 : λ = iσ, σ ∈ R, |σ| ≥ σ0}E < ∞.

From this and from the identity

λ2(λ2I − A)−1 = A(λ2I − A)−1 + I,
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we have, using, e.g., [3, Proposition 3.4],

R{λ2(λ2I − A)−1 : λ = iσ, σ ∈ R, |σ| ≥ σ0}E < ∞,

i.e., for some M ≥ 0,

R{λ(λI − A)−1 : λ ≤ −M}E < ∞.(2.12)

From condition (5), for m1 
= m2, it follows that (−1)m1α1β2 − (−1)m2α2β1 
= 0 and
akv(mk)(0)+ bkv(mk)(1) = αkv(mk)(0)+βkv(mk)(1) in (2.5). Then, by virtue of [4, Theorem
5 and Remark 4 (only for m1 = m2)], the operator

P0 : v → P0v := ((D2 − A)v(x), a1v
(m1)(0) + b1v

(m1)(1), a2v
(m2)(0) + b2v

(m2)(1))

from W 2
p ((0, 1); E(A), E) into Lp((0, 1); E)+̇(E(A), E)m1

2 + 1
2p ,p+̇(E(A), E)m2

2 + 1
2p ,p is bounded

and Fredholm. From (2.12), it follows that the operator A is closed. Consequently, E(A) =
E(A4)+̇E2.

We have (E(A), E)θ,p = (E(A4)+̇E2, E2+̇E)θ,p = (E(A4), E2)θ,p+̇(E2, E)θ,p. Since

E2 := E(A
1
2
4 ) then, by virtue of [11, Theorem 1.3.3 and formula 1.15.4/(2)],

(E(A4), E(A
1
2
4 ))mk

2 + 1
2p ,p = (E(A

1
2
4 ), E(A4))1− mk

2 − 1
2p ,p = (E, E(A4))1−mk

4 − 1
4p ,p

= (E(A4), E)mk
4 + 1

4p ,p, k = 1, 2.

Since mk+2 = mk + 2, k = 1, 2, then, by calculations similar to the previous ones, using
also, e.g., [11, Theorem 1.15.2], one can get

(E(A
1
2
4 ), E)mk

2 + 1
2p ,p = (E, E(A

1
2
4 ))1− mk

2 − 1
2p ,p = (E, E(A4)) 1

2−
mk
4 − 1

4p ,p

= (E(A4), E) 1
2 +

mk
4 + 1

4p ,p = (E(A4), E)mk+2
4 + 1

4p ,p
, k = 1, 2.

Hence, the operator that corresponds to problem (2.3)–(2.4),

L0 : u → L0u :=
(
L0(D)u, L10u, L20u, L30u, L40u

)
,

from W 4
p ((0, 1); E(A4), E) into Lp((0, 1); E)

4

+̇
k=1

(E(A4), E)mk
4 + 1

4p ,p, is bounded and Fred-

holm. It is enough now to note that the operator L has the form

L = L0 + T,(2.13)

where

T : u → Tu :=
( 3∑

k=0

Bk(x)u(k)(x), T1u, T2u, T3u, T4u
)

and Tku :=
mk−1∑
j=0

Nkj∑
s=1

Tkjsu
(j)(xkjs). By condition (6), [12, Lemma 5.2.1/2], and the bound-

edness of the embeddings W 4−k
p ((0, 1); E(A1− k

4
4 ), E) ⊂ W 1

p ((0, 1); E(A1− k
4

4 ), E), k = 0, ..., 3,

the operator Bk : u(x) → Bku|x := Bk(x)u(x) from W 4−k
p ((0, 1); E(A1− k

4
4 ), E) into

Lp((0, 1); E) is compact. Using [5, Theorem 7 and Corollary 8] about intermediate deriva-

tives, the operator u(x) → u(k)(x) from W 4
p ((0, 1); E(A4), E) into W 4−k

p ((0, 1); E(A1− k
4

4 ), E)
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is bounded. Hence, the operator B : u(x) → Bku|x :=
3∑

k=0

Bk(x)u(k)(x) from W 4
p ((0, 1);

E(A4), E) into Lp((0, 1); E) is compact.
In view of [11, Theorem 1.8.2] (see also [12, Theorem 1.7.7/1]), the operator u(x) →

u(j)(x0) from W 4
p ((0, 1); E(A4), E) into (E(A4), E) j

4 + 1
4p ,p is bounded. Thus, condition

(7) implies that operators Tk from W 4
p ((0, 1); E(A4), E) into (E(A4), E)mk

4 + 1
4p ,p are com-

pact. Consequently, the operator T from W 4
p ((0, 1); E(A4), E) into Lp((0, 1); E)

4

+̇
k=1

(E(A4),

E)mk
4 + 1

4p ,p is compact. Now, it is enough to apply the perturbation theorem of Fredholm
operators (see, e.g., [12, Theorem 1.2.8]) to operator (2.13).

3 Isomorphism of problems on the semi-axis. In a UMD Banach space E, consider
a boundary value problem in [0,∞) for the fourth order elliptic equation

L(D)u := u′′′′(x) + A2u
′′(x) + A4u(x) = f(x), x > 0,(3.1)

L1u : = αu(0) + βu′(0) = ϕ1,

L2u : = αu′′(0) + βu′′′(0) = ϕ2,
(3.2)

where α and β are complex numbers.

Theorem 2. Let the following conditions be satisfied:

1. an operator A4 is closed, densely defined and invertible in a UMD Banach space E
and R{λR(λ,A4) : arg λ = π}E < ∞;3

2. an operator A2 from E2 into E is bounded, where E2 := E(A
1
2
4 );

3. at least one of two numbers α and β is not equal to zero; �αβ−1 ≤ 0 if β 
= 0;

4. for λ = iσ, σ ∈ R, the characteristic operator pencil L(λ) := λ4I + λ2A2 + A4 is
invertible in E and

R{σ4L(iσ)−1 : σ ∈ R}E < ∞; R{A4L(iσ)−1 : σ ∈ R}E < ∞;

R{σ4L(iσ)−1 : σ ∈ R}E2 < ∞; R{A4L(iσ)−1 : σ ∈ R}E2 < ∞;

Then, the operator L : u → Lu := (L(D)u, L1u, L2u) from W 4
p ((0,∞);E(A4), E) into

Lp((0,∞);E)+̇(E(A4), E)m
4 + 1

4p ,p+̇ (E(A4), E)m+2
4 + 1

4p ,p, where m = 0 if β = 0 and m = 1
if β 
= 0, p ∈ (1,∞), is an isomorphism.

Proof. By [11, Theorem 1.8.2] (see also [12, Theorem 1.7.7/1]) and condition (3), the opera-
tor L acts continuously from W 4

p ((0,∞);E(A4), E) into Lp((0,∞);E)+̇(E(A4), E)m
4 + 1

4p ,p+̇
(E(A4), E)m+2

4 + 1
4p ,p. Prove that for any f ∈ Lp((0,∞);E), ϕ1 ∈ (E(A4), E)m

4 + 1
4p ,p,

and ϕ2 ∈ (E(A4), E)m+2
4 + 1

4p ,p, problem (3.1)–(3.2) has a unique solution that belongs to

W 4
p ((0,∞); E(A4), E).
Let us show that a solution of problem (3.1)–(3,2) is represented in the form u(x) =

u1(x) + u2(x), where u1(x) is the restriction on [0,∞) of a solution ũ1(x) of the equation

ũ′′′′
1 (x) + A2ũ

′′
1(x) + A4ũ1(x) = f̃(x), x ∈ R,(3.3)

3See the corresponding footnote of Theorem 1.
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where f̃(x) := f(x) if x ∈ [0,∞) and f̃(x) := 0 if x ∈ (−∞, 0), and u2(x) is a solution of
the problem

u′′′′
2 (x) + A2u

′′
2(x) + A4u2(x) = 0, x > 0,(3.4)

αu2(0) + βu′
2(0) = −L1u1 + ϕ1,

αu′′
2(0) + βu′′′

2 (0) = −L2u1 + ϕ2.
(3.5)

Apply [5, Theorem 1] to equation (3.3). Conditions (1) and (2) of [FY1, Theorem 1]
are obvious. Condition (3) of [5, Theorem 1] follows from two first inequalities in con-
dition (4). Hence, by virtue of [5, Theorem 1], equation (3.3) has a unique solution

ũ1 ∈ W 4
p (R;E(A4), E(A

3
4
4 ), E(A

1
2
4 ), E(A

1
4
4 ), E). Then, u1 ∈ W 4

p ((0,∞);E(A4), E).
Let us now prove that for any ϕ1 ∈ (E(A4), E)m

4 + 1
4p ,p, ϕ2 ∈ (E(A4), E)m+2

4 + 1
4p ,p prob-

lem (3.4)–(3.5) has a unique solution u2(x) that belongs to W 4
p ((0,∞); E(A4), E). By the

substitution

v(x) :=

⎛
⎝v1(x)

v2(x)

⎞
⎠ :=

⎛
⎝u2(x)

u′′
2(x)

⎞
⎠

problem (3.4)–(3.5) is reduced to the equivalent problem

v′′(x) = Av(x), x > 0,(3.6)
αv(0) + βv′(0) = Φ0,(3.7)

where

A :=

⎛
⎝ 0 I

−A4 −A2

⎞
⎠ , Φ0 :=

⎛
⎝−L1u1 + ϕ1

−L2u1 + ϕ2

⎞
⎠ .

We consider the operator A in the space E := E2+̇E. Let D(A) := E(A4)+̇E2. Like to
(2.12) in the proof of Theorem 1, we get here the estimate

R{λ(λI − A)−1 : arg λ = π}E < ∞.

Hence, by virtue of, e.g., [12, Theorem 1.5.3] and Remark 1, there exists an operator e−xA
1
2

and for some ω > 0
‖e−xA

1
2 ‖ ≤ Ce−ωx, x ≥ 0.

Repeating the beginning of the proof of [4, Theorem 2] (just take ϕ = 0), one can show
that an arbitrary solution of (3.6) that belongs to W 2

p ((0,∞); E(A), E) has the form

v(x) = e−xA
1
2 g,(3.8)

where g ∈ (E(A), E) 1
2p ,p. To this end, one should use S. G. Krein [8, Theorem 3.2.11].

Function (3.8) satisfies boundary condition (3.7) if

αg − βA
1
2 g = Φ0.(3.9)

Since u1 ∈ W 4
p ((0,∞);E(A4), E), by virtue of [11, Theorem 1.8.2] (see also [12, Theorem

1.7.7/1]),
L1u1 ∈ (E(A4), E)m

4 + 1
4p ,p, L2u1 ∈ (E(A4), E)m+2

4 + 1
4p ,p.
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Obviously, we have

(E(A), E)q,p = (E(A4)+̇E2, E2+̇E)q,p = (E(A4), E2)q,p+̇(E2, E)q,p.

Since E2 := E(A
1
2
4 ) then, in a similar way as in the proof of Theorem 1, we get

(E(A4), E2)m
2 + 1

2p ,p = (E(A4), E)m
4 + 1

4p ,p,

(E2, E)m
2 + 1

2p ,p = (E(A4), E)m+2
4 + 1

4p ,p.

Consequently, Φ0 ∈ (E(A), E)m
2 + 1

2p ,p.

For β = 0, a unique solution of problem (3.6)–(3.7) has the form (using (3.8) and (3.9))

v(x) = α−1e−xA
1
2 Φ0.

Since Φ0 ∈ (E(A), E) 1
2p ,p (remind that m = 0 when β = 0) then v ∈ W 2

p ((0,∞); E(A), E).
Therefore, a unique solution u2 of problem (3.4)-(3.5) belongs to W 4

p ((0,∞);E(A4), E).
For β 
= 0, by condition (5), a unique solution of problem (3.6)–(3.7) has the form (using

(3.8) and (3.9))

v(x) = e−xA
1
2 (αI − βA

1
2 )−1Φ0.

By [11, Theorem 1.15.2], the operator A
1
2 from (E(A), E) 1

2p ,p onto (E(A), E) p+1
2p ,p is an

isomorphism. Since Φ0 ∈ (E(A), E) p+1
2p ,p (remind that m = 1 when β = 1) then (αI −

βA
1
2 )−1Φ0 ∈ (E(A), E) 1

2p ,p, i.e., v ∈ W 2
p ((0,∞); E(A), E). Therefore, a unique solution u2

of problem (3.4)-(3.5) belongs to W 4
p ((0,∞);E(A4), E).

The uniqueness of a solution of problem (3.1)–(3.2) follows from the uniqueness of a
solution of problem (3.4)–(3.5). Indeed, if problem (3.1)–(3.2) has two solutions, u(x),
ũ(x), then functions u2(x) := u(x) − u1(x) and ũ2(x) := ũ(x) − u1(x), where u1(x) is the
restriction on [0,∞) of the solution ũ1(x) of equation (3.3), are two different solutions of
problem (3.4)–(3.5), which is a contradiction.

4 R-boundedness of various sets constructed by the polynomial ordinary differ-
ential pencil on the whole axis. In order to give some relevant application of obtained
abstract results to PDEs, let us derive some new results about R-bounded sets.

A system of numbers ω1, . . . , ωm is called p-separated if there exists a straight line P
passing through 0 such that no value of the numbers ωj lies on it, and ω1, . . . , ωp are on
one side of P while ωp+1, . . . , ωm are on the other.

Consider an ordinary differential equation with constant coefficients on the whole axis

L0(λ)u := λmu(y) + λm−1a1u
′(y) + · · · + amu(m)(y) = f(y), y ∈ R,(4.1)

where ak are complex numbers.
Let us enumerate the roots of the equation

amωm + am−1ω
m−1 + · · · + 1 = 0(4.2)

by ωj , j = 1, . . . , m. Let numbers ωj be p-separated.
Denote

ω := min
{

arg ω1, . . . , arg ωp, arg ωp+1 + π, . . . , arg ωm + π
}
,

ω := max
{

arg ω1, . . . , arg ωp, arg ωp+1 + π, . . . , arg ωm + π
}

,
(4.3)

and the value arg ωj is chosen up to a multiple of 2π, so that ω − ω < π.
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Theorem 3. Let m ≥ 1, am 
= 0 and the roots of equation (4.2) be p-separated.
Then, for any ε > 0 and for all complex numbers λ 
= 0 satisfying π

2 − ω + ε < arg λ <
3π
2 −ω−ε, the operator L0(λ) : u → L0(λ)u := L0(λ)u from W �

q (R) onto W �−m
q (R), where

an integer � ≥ m and a real q ∈ (1,∞), is an isomorphism, and for these λ, the following
estimates hold:

R
{
λm−k dk

dyk
L0(λ)−1 :

π

2
− ω + ε < arg λ <

3π

2
− ω − ε

}
W s

q (R)
≤ C(ε) < ∞,

k = 0, . . . , m, s = 0, . . . , � − m.(4.4)

Proof. The isomorphism part of the theorem follows from [12, Theorem 3.2.1]. Let us show
(4.4). From (4.1) we obtain(

λm + λm−1a1(iσ) + · · · + am(iσ)m
)
Fu = Ff,

where F is the Fourier transform. It is obvious that

λm + λm−1a1(iσ) + · · · + am(iσ)m = am

m∏
j=1

(iσ − ωjλ).(4.5)

Since, for π
2 − ω + ε < arg λ < 3π

2 − ω − ε, σ ∈ R, we have

|iσ − ωjλ| ≥ C(ε)(|σ| + |λ|), j = 1, . . . , m,(4.6)

then, for π
2 − ω + ε < arg λ < 3π

2 − ω − ε, σ ∈ R\{0},

Fu =
(
λm + λm−1a1(iσ) + · · · + am(iσ)m

)−1

Ff.

Hence, for k = 0, . . . , m,

u(k)(y) = F−1(iσ)kFu

= F−1(iσ)k
(
λm + λm−1a1(iσ) + · · · + am(iσ)m

)−1

Ff,(4.7)

where F−1 is the inverse Fourier transform. From (4.5) and (4.6), it follows that functions

Tk,λ(σ) := λm−k(iσ)k
(
λm + λm−1a1(iσ) + · · · + am(iσ)m

)−1

, k = 0, . . . , m,

for π
2 − ω + ε < arg λ < 3π

2 − ω − ε, are continuously differentiable in σ on R\{0}, and

|Tk,λ(σ)| ≤ C(ε) < ∞, |σ|
∣∣∣ ∂

∂σ
Tk,λ(σ)

∣∣∣ ≤ C(ε) < ∞, σ ∈ R\{0},

uniformly on λ in the angle π
2 − ω + ε < arg λ < 3π

2 − ω − ε.
On the other hand, from (4.7) it follows that

λm−k dk

dyk
L0(λ)−1f = F−1Tk,λ(σ)Ff, k = 0, . . . , m,(4.8)

and from [10, section 5.2, item a)], for k = 0, . . . , m, it follows that R{F−1Tk,λ(·)F :
π
2 − ω + ε < arg λ < 3π

2 − ω − ε}Lq(R) ≤ C(ε) < ∞ or, by (4.8), for k = 0, . . . , m,

R

{
λm−k dk

dyk
L0(λ)−1 :

π

2
− ω + ε < arg λ <

3π

2
− ω − ε

}
Lq(R)

≤ C(ε) < ∞,
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i.e., (4.4) has been proved for s = 0.
Observe now, that

λm−k dk+s

dyk+s
L0(λ)−1f = λm−ku(k+s)(y) = λm−k dk

dyk
u(s)(y) = λm−k dk

dyk
L0(λ)−1f (s).

Then, using the definition of R-boundedness (see the Introduction), one can get (4.4) also
for s = 1, . . . , � − m.

Let us now formulate an analog of Theorem 3 for the equation

L1(λ)u := λnu(y) +
n∑

k=1

λn−kaku(dk)(y) = f(y), y ∈ R,(4.9)

where ak = 0 if dk is a non-integer number, weight d := m
n , and an 
= 0, i.e., L1(λ) is a

polynomial operator pencil of order n and an ordinary differential operator of order m.

Theorem 4. Let n ≥ 1, m ≥ 1, an 
= 0 and let the roots of the equation

anωm + an−1ω
d(n−1) + · · · + 1 = 0(4.10)

be p-separated.

Then, for any ε > 0 and for all complex numbers λ 
= 0 satisfying
(

π
2 −ω−2πζ

)
d+ ε <

arg λ <
(

3π
2 − ω − 2πζ

)
d − ε for some ζ = 0, . . . , n − 1, where ω and ω are defined in

(4.3) and ωj are roots of equation (4.10), the operator L1(λ) : u → L1(λ)u := L1(λ)u from
W �

q (R) onto W �−m
q (R), where an integer � ≥ m and a real q ∈ (1,∞), is an isomorphism,

and for these λ, the following estimates hold:

R
{
λ

m−k
d

dk

dyk
L1(λ)−1 :

(π

2
− ω − 2πζ

)
d + ε < arg λ <

(3π

2
− ω − 2πζ

)
d − ε

}
W s

q (R)

≤ C(ε) < ∞, k = 0, . . . , m, s = 0, . . . , � − m.(4.11)

Proof. After substituting λ = µd into the equation L1(λ)u = f(y) it is transformed into the
equation

µmu(y) +
n∑

k=1

µm−dkaku(dk)(y) = f(y), y ∈ R,

to which we apply Theorem 3.

Remark 2. Using, e.g., [3, Proposition 3.4] and the definition of R-boundedness (see the
Introduction), one can get from (4.4) the following inequalities:

R
{
λm−kL0(λ)−1 :

π

2
− ω + ε < arg λ <

3π

2
− ω − ε, |λ| ≥ λ0 > 0

}
W s

q (R)→W s+k
q (R)

≤ C(ε, λ0) < ∞, k = 0, . . . , m, s = 0, . . . , � − m.

The corresponding estimates follow from (4.11), too.

194



REGULAR BOUNDARY VALUE PROBLEMS FOR ELLIPTIC

5 Application of abstract results to elliptic equations of the fourth order. In
the domain Ω := [0, 1] × R, let us consider a boundary value problem for elliptic equations
of the fourth order

L(D)u := D4
xu(x, y) + (aD2

y − 2γ2)D2
xu(x, y) + bD4

yu(x, y) − aγ2D2
yu(x, y)

+ γ4u(x, y) = f(x, y), (x, y) ∈ Ω,(5.1)

L1u := αu(0, y) + βDxu(0, y) = ϕ1(y), y ∈ R,

L2u := αD2
xu(0, y) + βD3

xu(0, y) = ϕ2(y), y ∈ R,
(5.2)

where a, b, α, β are complex numbers; γ ∈ R; f and ϕk are given functions; Dx := ∂
∂x ,

Dy := ∂
∂y . By Bs

q,p(R) we denote the standard Besov space, see, e.g., [11, section 2.3.1].

Theorem 5. Let the following conditions be satisfied:

1. 0 
= γ ∈ R, 0 
= b ∈ C, arg b 
= π;

2. if σ := (σ1, σ2) ∈ R
2, σ 
= 0, then σ4

1 + aσ2
1σ

2
2 + bσ4

2 
= 0;

3. at least one of two numbers α and β is not equal to zero; �αβ−1 ≤ 0 if β 
= 0.

Then, there exists δ > 0 sufficiently small such that, for |a| < δ, the operator L : u →
Lu := (L(D)u, L1u, L2u) from W 4

p ((0,∞);W 4
q (R), Lq(R)) into

Lp((0,∞);Lq(R))+̇B
4−m− 1

p
q,p (R)+̇B

2−m− 1
p

q,p (R),

where m = 0 if β = 0 and m = 1 if β 
= 0, q ∈ (1,∞), p ∈ (1,∞), is an isomorphism.

Proof. Let us denote E := Lq(R). Consider in Lq(R) operators A2 and A4 which are defined
by the equalities

D(A2) := W 2
q (R), A2u := au′′(y) − 2γ2u(y),

D(A4) := W 4
q (R), A4u := bu′′′′(y) − aγ2u′′(y) + γ4u(y).

Then, problem (5.1)–(5.2) can be rewritten in the operator form

u′′′′(x) + A2u
′′(x) + A4u(x) = f(x), x ∈ [0, 1],

αu(0) + βu′(0) = ϕ1,

αu′′(0) + βu′′′(0) = ϕ2,

(5.3)

where u(x) := u(x, ·), f(x) := f(x, ·) are functions with values in the Banach space E :=
Lq(R) and ϕk := ϕk(·).

Let us apply Theorem 2 to problem (5.3). In fact, we have to check conditions (1), (2),
and (4) of Theorem 2.

By virtue of condition (1), from, e.g., [3, Theorem 5.5] it follows that the operator b d4

dy4 ,
with the domain W 4

q (R), has a bounded H∞-calculus in E = Lq(R). Then, by, e.g., [3,
Proposition 2.11, (iv)], the operator Ã4 = b d4

dy4 + γ4I, 0 
= γ ∈ R, also has a bounded
H∞-calculus and, therefore, has bounded imaginary powers, BIP (see, e.g., [3, pp.50-51]),
and, therefore, Ã4 is R-sectorial. Moreover, the operator Ã4 is also an isomorphism from
W �

q (R) into W �−4
q (R), � ≥ 4 (see Theorem 3, where m = 4, a1 = a2 = a3 = 0, a4 = b,
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λ = iγ 
= 0, γ ∈ R - for this λ see the below considerations). Then, using a well-known
interpolation inequality (see, e.g., [2, formula (1.9)]), we get, for � = 4,

‖aγ2u′′‖Lq(R) = |a|γ2‖u′′‖Lq(R) ≤ C|a|(γ4‖u‖Lq(R) + ‖u‖W 4
q (R))

≤ C|a|‖γ4u + bu′′′′‖Lq(R) = C|a|‖Ã4u‖Lq(R), ∀u ∈ W 4
q (R) = E(Ã4),(5.4)

i.e., for small enough a, by [3, Proposition 4.2], the operator A4 is also R-sectorial in E.
Moreover, A4 = L0(iγ), γ 
= 0 (see formula (5.6) below), i.e., A4 is invertible in E (see the
below considerations for L0(iσ)). So, condition (1) of Theorem 2 is satisfied.

Taking now � = 6, we get

‖aγ2u′′‖W 2
q (R) = |a|γ2‖u′′‖W 2

q (R) ≤ |a|γ2‖u‖W 4
q (R)

≤ |a|C(γ6‖u‖Lq(R) + ‖u‖W 6
q (R))

≤ |a|C max{γ2, 1}(γ4‖u‖W 2
q (R) + ‖u‖W 6

q (R))

≤ C‖γ4u + bu′′′′‖W 2
q (R) = C‖Ã4u‖W 2

q (R), ∀u ∈ W 6
q (R).(5.5)

It was mentioned above that Ã4 has BIP. Then, by [11, Theorem 1.15.3], E(Ã1− k
4

4 ) =
[Lq(R),W 4

q (R)]1− k
4
, k = 1, 2, 3. On the other hand, by virtue of [11, formula 2.4.2/(11)],

[Lq(R),W 4
q (R)]1− k

4
= W 4−k

q (R), k = 1, 2, 3. Hence, E(Ã1− k
4

4 ) = W 4−k
q (R), k = 0, . . . , 3.

In particular, E(Ã
1
2
4 ) = W 2

q (R). On the other hand, by the above isomorphism, Ã4 is also
invertible in E. Then,

‖Ã
1
2
4 u‖Lq(R) = ‖u‖

E(Ã
1
2
4 )

= ‖u‖W 2
q (R), ∀u ∈ W 2

q (R).

Hence, from (5.5), we get

‖Ã
1
2
4 (aγ2u′′)‖Lq(R) = ‖aγ2u′′‖W 2

q (R) ≤ C‖Ã4u‖W 2
q (R)

= C‖Ã
3
2
4 u‖Lq(R), ∀u ∈ W 6

q (R) = E(Ã
3
2
4 ).(5.6)

Since Ã4 has a bounded H∞-calculus then, from inequalities (5.4) and (5.6), by virtue of N.
Kalton, P. Kunstmann, and L. Weis [7, Corollary 6.5, for δ = 1

2 ], we get that the operator
A4, for small enough a, also has a bounded H∞-calculus in E. Therefore, A4 has BIP in E

and, as above, E(A
1
2
4 ) = W 2

q (R). This, in turn, implies condition (2) of Theorem 2.
In order to check condition (4) of Theorem 2, denote by

L0(λ) := λ4I + λ2a
d2

dy2
+ b

d4

dy4
.(5.7)

Then, the operator pencil corresponding to the equation in (5.3), has the form

L(λ) := λ4I + λ2A2 + A4 = λ4I + λ2

(
a

d2

dy2
− 2γ2I

)

+ b
d4

dy4
− aγ2 d2

dy2
+ γ4I = λ4I + λ2a

d2

dy2
+ b

d4

dy4

− 2λ2γ2I − aγ2 d2

dy2
+ γ4I = L0(λ) − 2λ2γ2I − aγ2 d2

dy2
+ γ4I.
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From this, it can be easily seen that for λ = iσ, σ ∈ R,

L(iσ) = L0(i
√

σ2 + γ2).(5.8)

Further, by virtue of condition (2), the equation

1 + aω2 + bω4 = 0(5.9)

does not have real roots. Therefore, if roots of (5.9), ω1 and ω2, are situated in the upper-
half complex plane (including the case ω1 = ω2), then roots ω3 = −ω1 and ω4 = −ω2 are
situated in the lower-half complex plane. Therefore, from (4.3), 0 < ω ≤ ω < π, i.e., the
angle of Theorem 3 contains λ = iσ, σ > 0. Changing the numeration of the roots of (5.9)
in such a way that ω1 and ω2 are now in the lower-half complex plane and ω3, ω4 are in the
upper-half complex plane, we get, from (4.3), π < ω ≤ ω < 2π. So, the angle of Theorem
3 contains also λ = iσ, σ < 0. Hence, the angle of Theorem 3 contains λ = iσ, σ ∈ R\{0}
and, by Theorem 3, we get that L0(iσ), which is defined by (5.7), is invertible for 0 
= σ ∈ R

and, for integers s ≥ 0,

R
{
σ4−k dk

dyk
L0(iσ)−1 : σ ∈ R\{0}

}
W s

q (R)
≤ C < ∞, k = 0, . . . , 4.(5.10)

First, it means that L(iσ) (see (5.8)) is invertible for σ ∈ R (remind that 0 
= γ ∈ R). Using
now (5.8), (5.10), [3, Proposition 3.4], and the contraction principle of Kahane (see, e.g.,
[3, Lemma 3.5]), we get, for integers s ≥ 0,

R
{
σ4−k dk

dyk
L(iσ)−1 : σ ∈ R

}
W s

q (R)

= R
{ σ4−k

(
√

σ2 + γ2)4−k
(
√

σ2 + γ2)4−k dk

dyk
L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

≤ R
{ σ4−k

(
√

σ2 + γ2)4−k
I : σ ∈ R

}
W s

q (R)
· R

{
(
√

σ2 + γ2)4−k dk

dyk
L0(i

√
σ2 + γ2)−1 :

σ ∈ R

}
W s

q (R)
≤ 1 · C < ∞, k = 0, . . . , 4.(5.11)

Therefore, the first and the third inequalities in condition (4) of Theorem 2 follow from

(5.11) under k = s = 0 and k = 0, s = 2 (remind that E2 := E(A
1
2
4 ) = W 2

q (R)), respectively.
In order to get the second and the fourth inequalities in condition (4) of Theorem 2, let us
observe that again, by (5.8), (5.10), [3, Proposition 3.4], and [3, Lemma 3.5], we get, for
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integers s ≥ 0,

R
{
A4L(iσ)−1 : σ ∈ R

}
W s

q (R)
= R

{
b

d4

dy4
L(iσ)−1 − aγ2 d2

dy2
L(iσ)−1

+ γ4L(iσ)−1 : σ ∈ R

}
W s

q (R)
≤ |b|R

{ d4

dy4
L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

+ |a|R
{
γ2 d2

dy2
L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

+ R
{
γ4L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

≤ |b|R
{ d4

dy4
L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

+ |a|R
{ γ2

σ2 + γ2
(σ2 + γ2)

d2

dy2
L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)

+ R
{ γ4

(σ2 + γ2)2
(σ2 + γ2)2L0(i

√
σ2 + γ2)−1 : σ ∈ R

}
W s

q (R)
< ∞.

Finally, interpolation spaces of Theorem 2 are equal, by, e.g., [11, formula 2.4.2/(16)],
to Besov spaces, (W 4

q (R), Lq(R))θ,p = B
4(1−θ)
q,p (R).

6 Application of abstract results to elliptic and quasi-elliptic equations. A
case of the whole space Rn for y-variable. In the domain Ω := [0,∞) × Rn, n ≥ 1,
consider a boundary value problem for elliptic (m = 2) and quasi-elliptic (m 
= 2 is natural)
equations

L(D)u := D4
xu(x, y) +

∑
|α|=2m

aα(y)Dα
y u(x, y) + νu(x, y) = f(x, y), (x, y) ∈ Ω,(6.1)

L1u := αu(0, y) + βDxu(0, y) = ϕ1(y), y ∈ R
n,

L2u := αD2
xu(0, y) + βD3

xu(0, y) = ϕ2(y), y ∈ R
n,

(6.2)

where ν > 0, α and β are complex numbers, f and ϕk are given functions, Dx := ∂
∂x ,

Dα
y := Dα := Dα1

1 · · ·Dαn
n , Dj := −i ∂

∂yj
, |α| = α1 + · · · + αn.

Let Au(y) :=
∑

|α|=2m

aα(y)Dαu(y) be an (M, ω0)-elliptic operator (see, e.g., [7, p.790])

with complex-valued Hölder continuous coefficients aα ∈ Cγ(Rn), |α| = 2m, for some γ > 0.
By Bs

q,p(R
n) we denote the standard Besov space, see, e.g., [11, section 2.3.1].

Theorem 6. Let at least one of two numbers α and β be not equal to zero; �αβ−1 ≤ 0 if
β 
= 0.

Then, there exists ν > 0 sufficiently large such that the operator L : u → Lu :=
(L(D)u, L1u, L2u) from W 4

p ((0,∞);W 2m
q (Rn), Lq(Rn)) into

Lp((0,∞);Lq(Rn))+̇B
2m−m�

2 − m
2p

q,p (Rn)+̇B
m−m�

2 − m
2p

q,p (Rn),

where � = 0 if β = 0 and � = 1 if β 
= 0, q ∈ (1,∞), p ∈ (1,∞), is an isomorphism.
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Proof. Let us denote E := Lq(Rn). Consider in E an operator A4 which is defined by the
equalities

D(A4) := W 2m
q (Rn), A4u := Au(y) + νu(y),

where ν > 0 is sufficiently large. Then, problem (6.1)–(6.2) can be rewritten in the operator
form

u′′′′(x) + A4u(x) = f(x), x ∈ [0,∞),
αu(0) + βu′(0) = ϕ1,

αu′′(0) + βu′′′(0) = ϕ2,

(6.3)

where u(x) := u(x, ·), f(x) := f(x, ·) are functions with values in the Banach space E :=
Lq(G) and ϕk := ϕk(·).

Let us apply Theorem 2 to problem (6.3). We have to check conditions (1), (2), and (4)
of Theorem 2. From [7, Proposition 9.5] it follows, for some ν > 0 sufficiently large, that
the operator A4 is invertible and has a bounded H∞-calculus in Lq(Rn). Hence, A4 has
BIP and, therefore, is an R-sectorial operator in Lq(Rn), since Lq(Rn) is a UMD Banach
space (see, e.g., [3, pp.50-51]). Therefore, condition (1) of Theorem 2 is satisfied. Condition
(2) of Theorem 2 is obvious since A2 = 0. Let us now check condition (4) of Theorem 2.

Since A4 has BIP in Lq(Rn), then, by virtue of [11, Theorem 1.15.3], E(A1− k
2m

4 ) =
[Lq(Rn),W 2m

q (Rn)]1− k
2m

, k = 1, . . . , 2m−1. On the other hand, by [11, formula 2.4.2/(11)],

[Lq(Rn),W 2m
q (Rn)]1− k

2m
= W 2m−k

q (Rn), k = 1, . . . , 2m − 1. Therefore, E(A1− k
2m

4 ) =

W 2m−k
q (Rn), k = 1, . . . , 2m − 1. In particular, E2 := E(A

1
2
4 ) = Wm

q (Rn).
Further, if L(λ) = λ4I + A4 then L(iσ)−1 = −R(−σ4, A4), σ ∈ R, and for A4 we have

already checked condition (1) of Theorem 2. Therefore,

R{σ4L(iσ)−1 : σ ∈ R}Lq(Rn) < ∞.(6.4)

Since A4L(iσ)−1 = I − σ4L(iσ)−1 then, using, e.g., [3, Proposition 3.4], we get

R{A4L(iσ)−1 : σ ∈ R}Lq(Rn) < ∞.(6.5)

So, (6.4) and (6.5) are two first inequalities in condition (4) of Theorem 2.
By [7, Proposition 9.5], for some ν > 0 sufficiently large, the operator A4 is invertible

and has a bounded H∞-calculus in Wm
q (Rn). Hence, A4 has BIP in Wm

q (Rn) and, therefore,
is an R-sectorial operator in Wm

q (Rn), since Wm
q (Rn) is a UMD Banach space (see, e.g., [3,

pp.50-51]). So, taking into account that L(iσ)−1 = −R(−σ4, A4), we get

R{σ4L(iσ)−1 : σ ∈ R}W m
q (Rn) < ∞.(6.6)

As above, from (6.6) we get

R{A4L(iσ)−1 : σ ∈ R}W m
q (Rn) < ∞.(6.7)

Inequalities (6.6) and (6.7) are two last inequalities in condition (4) of Theorem 2.
It remains only to observe that, by virtue of, e.g., [11, formula 2.4.2/(16)], (W 2m

q (Rn),

Lq(Rn))θ,p = B
2m(1−θ)
q,p (Rn). Then, (W 2m

q (Rn), Lq(Rn)) �
4+ 1

4p ,p = B
2m−m�

2 − m
2p

q,p (Rn) and

(W 2m
q (Rn), Lq(Rn)) �+2

4 + 1
4p ,p = B

m−m�
2 − m

2p
q,p (Rn).
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Remark 3. Using standard perturbation arguments (see the arguments in the resolvent
decomposition in, e.g., [3, Propositions 4.2 and 4.3]), [9, Lemma 10], [7, Proposition 9.5],
and the calculations in the proof of Theorem 6, one can prove Theorem 6 for more general
equations than (6.1), namely, for

L(D)u := D4
xu(x, y) +

∑
|α|≤m

bα(y)D2
xDα

y u(x, y) +
∑

|α|≤2m

aα(y)Dα
y u(x, y)

+ νu(x, y) = f(x, y), (x, y) ∈ Ω,

where bα ∈BUCm(Rn), supy∈Rn |Dβ
y bα(y)|, for all |α|, |β| ≤ m, are sufficiently small, and

ν > 0 is, as previous, sufficiently large, even maybe larger than ν in (6.1).

7 Application of abstract results to elliptic and quasi-elliptic equations. A case
of a bounded domain G for y-variable. In the cylindrical domain Ω := [0, 1]×G, where
G ⊂ Rn, n ≥ 2, is a bounded domain with an (n − 1)-dimensional boundary ∂G ∈ C2m,
which locally admits rectification, let us consider a principally non-local boundary value
problem for elliptic (m = 2) and quasi-elliptic (m 
= 2 is natural) equations

L(D)u := D4
xu(x, y) +

∑
|α|=2m

aα(y)Dα
y u(x, y) +

3∑
k=0

Bk(x)Dk
xu(x, ·)|y

= f(x, y), (x, y) ∈ Ω,(7.1)

Lku := γkDmk
x u(0, y) + δkDmk

x u(1, y) +
mk−1∑
j=0

Nkj∑
s=1

TkjsD
j
xu(xkjs, ·)|y

= ϕk(y), y ∈ G, k = 1, . . . , 4,(7.2)

B�u :=
∑

|β|≤p�

b�β(y′)Dβ
y u(x, y′) = 0, (x, y′) ∈ [0, 1] × ∂G, � = 1, . . . , m,(7.3)

where 0 ≤ m1, m2 ≤ 1, m3 = m1 + 2, m4 = m2 + 2, p� ≤ 2m − 1; γk and δk are
complex numbers, xkjs ∈ [0, 1]; f and ϕk are given functions; Bk(x), for any x ∈ [0, 1],
and Tkjs are, generally speaking, unbounded operators in Lq(G), 1 < q < ∞; Dx := ∂

∂x ,
Dα

y := Dα := Dα1
1 · · ·Dαn

n , Dj := −i ∂
∂yj

, |α| = α1 + · · · + αn.
Let Au(y) :=

∑
|α|=2m

aα(y)Dαu(y) be an (M, ω0)-elliptic operator (see, e.g., [7, p.790])

with complex-valued coefficients aα ∈ Cγ(G), |α| = 2m, and complex-valued coefficients
of the boundary conditions B�, b�β ∈ C2m−pj+γ(G), where γ ∈ (0, 1) (the continuation of
the coefficients from ∂G into G is possible without loss of generality). We assume that
(A,B1, . . . , Bm) satisfies the Lopatinskii-Shapiro condition (see, e.g., [3, p.100]) at every
point y′ ∈ ∂G.

By Bs
q,p(G) we denote the standard Besov space and by Hs

q (G) - the standard Bessel
potential space, see, e.g., [11, section 4.2.1]. If s = 0, 1, 2, . . . , then Hs

q (G) coincides with
Sobolev spaces W s

q (G).

Theorem 7. Let, in addition to the above, the following conditions be satisfied:
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1. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1(−1)m1 0 δ1 0

0 γ3(−1)m1 0 δ3

γ2(−1)m2 0 δ2 0

0 γ4(−1)m2 0 δ4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0;

for m1 
= m2, γk = γk+2, δk = δk+2, k = 1, 2;

2. for any ε > 0 and for almost all x ∈ [0, 1], k = 0, . . . , 3,

‖Bk(x)u‖Lq(G) ≤ ε‖u‖
H

2m− mk
2

q (G)
+ C(ε)‖u‖Lq(G), u ∈ H

2m−mk
2

q (G);

for u ∈ H
2m−mk

2
q (G), the function x → Bk(x)u from [0, 1] into Lq(G) is measurable

for some 1 < q < ∞;

3. 1 < p < ∞; operators Tkjs from B
2m− jm

2 − m
2p

q,p (G;B�u = 0, p� < 2m − jm
2 − m

2p − 1
q ), if

all p� 
= 2m− jm
2 − m

2p −
1
q , 4 into B

2m−mkm

2 − m
2p

q,p (G;B�u = 0, p� < 2m− mkm
2 − m

2p −
1
q ),

if all p� 
= 2m − mkm
2 − m

2p − 1
q (a similar footnote as above takes place), are compact.

Then, the operator L : u → Lu :=
(
L(D)u, L1u, L2u, L3u, L4u

)
from W 4

p ((0, 1); W 2m
q (G;

B�u = 0, � = 1, . . . , m), Lq(G)) into Lp((0, 1); Lq(G))
4

+̇
k=1

B
2m−mkm

2 − m
2p

q,p (G;B�u = 0, p� <

2m − mkm
2 − m

2p − 1
q ) is bounded and Fredholm.

Proof. Let us denote E := Lq(G). Consider in E an operator A4 which is defined by the
equalities

D(A4) := W 2m
q (G;B�u = 0, � = 1, . . . , m), A4u := Au(y) + νu(y),

where ν > 0 is sufficiently large. Then, problem (7.1)–(7.3) can be rewritten in the operator
form

u′′′′(x) + A4u(x) +
3∑

k=0

Mk(x)u(k)(x) = f(x), x ∈ [0, 1],

γku(mk)(0) + δku(mk)(1) +
mk−1∑
j=0

Nkj∑
s=1

Tkjsu
(j)(xkjs) = ϕk, k = 1, . . . , 4,

(7.4)

where M0(x) = B0(x) − νI, Mk(x) = Bk(x), k = 1, 2, 3; u(x) := u(x, ·), f(x) := f(x, ·) are
functions with values in the Banach space E := Lq(G) and ϕk := ϕk(·).

Let us apply Theorem 1 to problem (7.4). The operator A4 is an isomorphism from
W 4+s

q (G) into W s
q (G), for any integer s ≥ 0 (see, e.g., [12, Theorem 4.2.2/1]). R-sectoriality

of A4 follows from [3, Theorem 8.2]. Therefore, condition (1) of Theorem 1 is satisfied.

4If p = q and there exists � such that p� = 2m − jm
2

− m
2p

− 1
q

then one should take, for this �,

B�u ∈ B̃
1
p
p,p(G) instead of B�u = 0 (see, e.g., [11, formula 4.3.3/(8)]), where B̃s

q,p(G) = {u | u ∈ Bs
q,p(�n),

supp(u) ⊂ G}.
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Condition (2) of Theorem 1 follows from, e.g., [11, Theorem 3.2.5]. Condition (3) of Theorem
1 is obvious since A2 = 0.

Let us now check condition (4) of Theorem 1. From [7, Proposition 9.8] it follows that the
operator A4 has a bounded H∞-calculus in Lq(G), therefore, A4 has BIP in Lq(G). Then,

by [11, Theorem 1.15.3], E(A1− k
2m

4 ) = [Lq(G),W 2m
q (G;B�u = 0, � = 1, . . . , m)]1− k

2m
, k =

1, . . . , 2m− 1. On the other hand, by virtue of [11, Theorem 4.3.3], [Lq(G),W 2m
q (G;B�u =

0, � = 1, . . . , m)]1− k
2m

= W 2m−k
q (G;B�u = 0, p� < 2m − k), k = 1, . . . , 2m − 1. Hence,

E(A1− k
2m

4 ) = W 2m−k
q (G;B�u = 0, p� < 2m − k), k = 0, . . . , 2m − 1. In particular, E2 :=

E(A
1
2
4 ) = Wm

q (G;B�u = 0, p� < m).
Further, if L0(λ) = λ4I +A4 then L0(iσ)−1 = −R(−σ4, A4), σ ∈ R, and for A4 we have

already checked condition (1) of Theorem 1. Therefore,

R{σ4L0(iσ)−1 : σ ∈ R}Lq(G) < ∞.(7.5)

Since A4L0(iσ)−1 = I − σ4L0(iσ)−1 then, using, e.g., [3, Proposition 3.4], we get

R{A4L0(iσ)−1 : σ ∈ R}Lq(G) < ∞.(7.6)

So, (7.5) and (7.6) are two first inequalities in condition (4) of Theorem 1.
It was mentioned above that the operator A4 has a bounded H∞-calculus in Lq(G),

therefore, A4 has also a bounded H∞-calculus in the domain of fractional powers of A4,
i.e., in E(A1− k

2m
4 ) = W 2m−k

q (G;B�u = 0, p� < 2m− k), k = 1, . . . , 2m− 1. In particular, A4

has a bounded H∞-calculus in E2 := E(A
1
2
4 ) = Wm

q (G;B�u = 0, p� < m). This implies that
A4 is an R-sectorial operator in E2. So, taking into account that L0(iσ)−1 = −R(−σ4, A4),
we get

R{σ4L0(iσ)−1 : σ ∈ R}E2 < ∞.(7.7)

As above, from (7.7) we get

R{A4L0(iσ)−1 : σ ∈ R}E2 < ∞.(7.8)

Inequalities (7.7) and (7.8) are two last inequalities in condition (4) of Theorem 1.
Condition (5) of Theorem 1 is just condition (1). Condition (6) of Theorem 1 follows

from condition (2) since, as above, using [11, Theorems 1.15.3 and 4.3.3], one can see that

E(A1− k
4

4 ) ⊂ H
2m−mk

2
q (G), k = 0, . . . , 3. Condition (7) of Theorem 1 follows from condition

(3), in view of [11, Theorem 4.3.3].

Consider now, in the domain Ω := [0,∞) × G, the following boundary value problem

L(D)u := D4
xu(x, y) +

∑
|α|=2m

aα(y)Dα
y u(x, y) = f(x, y), (x, y) ∈ Ω,

L1u := αu(0, y) + βDxu(0, y) = ϕ1(y), y ∈ G,

L2u := αD2
xu(0, y) + βD3

xu(0, y) = ϕ2(y), y ∈ G,

B�u :=
∑

|β|≤p�

b�β(y′)Dβ
y u(x, y′) = 0, (x, y′) ∈ [0,∞) × ∂G, � = 1, . . . , m,

where α, β are complex numbers and all other data as previously.
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Theorem 8. Let at least one of two numbers α and β be not equal to zero; �αβ−1 ≤ 0 if
β 
= 0.

Then, the operator L : u → Lu := (L(D)u, L1u, L2u) from W 4
p ((0,∞);W 2m

q (G; B�u =

0, � = 1, . . . , m), Lq(G)) into Lp((0,∞);Lq(G))+̇B
2m− sm

2 − m
2p

q,p (G;B�u = 0, p� < 2m − sm
2 −

m
2p − 1

q )+̇B
m− sm

2 − m
2p

q,p (G;B�u = 0, p� < m− sm
2 − m

2p − 1
q ), if all p� 
= 2m− sm

2 − m
2p − 1

q and

= m − sm

2 − m
2p − 1

q ,5 where s = 0 if β = 0 and s = 1 if β 
= 0, q ∈ (1,∞), p ∈ (1,∞), is
an isomorphism.

Proof. The proof is the same as that of Theorem 7. We only apply Theorem 2 instead of
Theorem 1.

Examples of the operators Bk and Tkjs satisfying conditions of Theorem 7.
One can take for Bk(x) some differential-integral operators in Lq(G), where the dif-

ferential part is of order ≤ 2m − mk
2 − 1 and the integral part contains integrals of the

function and its derivatives with respect to y ∈ G up to order ≤ 2m − mk
2 − 1. Indeed, in

this case, the operators Bk(x) are bounded from H
2m−mk

2 −1
q (G) into Lq(G). On the other

hand, the embedding H
2m−mk

2
q (G) ⊂ H

2m−mk
2 −1

q (G) is compact (see, e.g., [11, Theorem

4.10.2]). Therefore, the operators Bk(x) are compact from H
2m−mk

2
q (G) into Lq(G), i.e., by

[12, Lemma 1.2.7/3], condition (2) of Theorem 7 is satisfied.
The first simple example of Tkjs is (Tkjsu)(y) := γkjsu(y), where γkjs ∈ C. Indeed,

since the embeddings B
2m− jm

2 − m
2p

q,p (G) ⊂ B
2m−mkm

2 − m
2p

q,p (G), j = 0, . . . , mk − 1, are compact
(see, e.g., [11, Theorem 4.10.2]) then condition (3) of Theorem 7 is satisfied.

Let us now take another model example of (Tkjsu)(y) :=
∫

G
Tkjs(x, y)u(x)dx, where

Tkjs(x, y) ∈ Lt′(G×G), 1
t′ + 1

t = 1, t = min{q, q′}, 1
q′ + 1

q = 1, and Tkjs(x, y) are 2m-times
continuously differentiable with respect to y ∈ G, and all these derivatives also belong

to Lt′(G × G). Since the operators Tkjs from H
2m− jm

2
q (G) into H

2m−mkm

2
q (G) and from

H
m− jm

2
q (G) into H

2m−mkm

2
q (G), j = 0, . . . , mk−1, are bounded then, by virtue of [11, Theo-

rem 1.3.3/(a)], the operators Tkjs from (H2m− jm
2

q (G),Hm− jm
2

q (G)) 1
2p ,p into (H2m−mkm

2
q (G),

H
2m−mkm

2
q (G)) 1

2p ,p are also bounded. On the other hand, by [11, Theorem 4.3.1, for-

mula 2.4.2/(14)], (H2m− jm
2

q (G),Hm− jm
2

q (G)) 1
2p ,p = B

2m− jm
2 − m

2p
q,p (G) and (H2m−mkm

2
q (G),

H
2m−mkm

2
q (G)) 1

2p ,p = B
2m−mkm

2
q,p (G). Therefore, the operators Tkjs from B

2m− jm
2 − m

2p
q,p (G)

into B
2m−mkm

2
q,p (G) are bounded. Taking into account that the embedding B

2m−mkm

2
q,p (G) ⊂

B
2m−mkm

2 − m
2p

q,p (G) is compact (see [11, Theorem 4.10.2]), we get that the operators Tkjs

from B
2m− jm

2 − m
2p

q,p (G) into B
2m−mkm

2 − m
2p

q,p (G) are compact, i.e., condition (3) of Theorem 7
is satisfied.
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