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FUNCTIONAL DEPENDENCE ON SMALL SETS OF INDICES
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Abstract. Let f : Y → Z with Y ⊆ XI := Πi∈I Xi. Then
(a) J ⊆ I is essential if there are x, y ∈ Y such that d(x, y) = J and f(x) �= f(y),

where d(x, y) := {i ∈ I : xi �= yi}; Jf := {i : {i} is essential}; an essential J is optimally
essential if no essential J ′ ⊆ J satisfies |J ′| < |J |; J ∈ �f if J is a maximal family of
pairwise disjoint optimally essential sets; λf := sup{|J | : J ∈ �f}.

(b) f depends on J ⊆ I if [x, y ∈ Y, xJ = yJ ] ⇒ f(x) = f(y); Df := {J ⊆ I : f
depends on J}; µf := min{|J | : J ∈ Df}.

Theorem 1. J ∈ Df ⇒ λf ≤ |J |.
Theorem 2. J ∈ �f ⇒ �J ∈ Df .
That context is strictly set-theoretic. Henceforth let XI and Z be spaces with Z

Hausdorff, and let f ∈ C(Y, Z). This is known: (*) if Y contains a σ-product then
J ∈ Df iff Jf ⊆ J . The authors give examples to show: Jf ∈ Df in (*) can fail, if
any one of the three hypotheses are omitted; J ,J ′ ∈ �f , with |J | �= |J ′|, can occur;
J ∈ Df ⇒ |J | > λf can occur; J ∈ �f ⇒ |J | < λf can occur; |J | ≤ λf ⇒ J /∈ Df

(hence, λf < µf ) can occur.
The authors’ interest in (*) is motivated by their observation that when XI has the

κ-box topology, its obvious analogue, say (*)κ, can fail. They propose and prove (what
seem to be) appropriate modifications of (*)κ.

1. Introduction and Historical Perspective

Conventions, Notation, Definitions 1.1. (a) Topological spaces considered here are
not subjected to any special standing separation properties. Additional hypotheses are
imposed as required.

(b) ω is the least infinite cardinal, c is the cardinality of [0, 1], and α and κ are infinite
cardinals. For I a set and β an arbitrary cardinal we write [I]β := {J ⊆ I : |J | = β};
the notation [I]<β is defined analogously. Also, for A and B sets, we write A∆B :=
(A\B) ∪ (B\A).

(c) For a set {Xi : i ∈ I} of sets and J ⊆ I, we write XJ := Πi∈J Xi; and for every
generalized rectangle A = Πi∈I Ai ⊆ XI the restriction set of A, denoted R(A), is the set
R(A) = {i ∈ I : Ai �= Xi}. When each Xi = (Xi, Ti) is a space, the symbol (XI)κ denotes
XI with the κ-box topology; this is the topology for which {Πi∈I Ui : Ui ∈ Ti, |R(U)| < κ} is
a base. Thus the ω-box topology on XI is the usual product topology. We note that even
when κ is regular, the intersection of fewer than κ-many sets, each open in (XI)κ, may fail
to be open in (XI)κ.

(d) For x, y ∈ XI = Πi∈I Xi, the symbol d(x, y) denotes the difference set of {x, y}—that
is, the set d(x, y) = {i ∈ I : xi �= yi}.

(e) For p ∈ XI = Πi∈I Xi, the κ-Σ-product of XI based at p is the set Σκ(p) := {x ∈ XI :
|d(p, x)| < κ}.
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(f) A set Y ⊆ XI is κ-invariant [12] provided for every x, y ∈ Y and J ∈ [I]<κ the point
z ∈ XI defined by xJ = zJ , yI\J = zI\J , is in Y .

(g) For spaces Y and Z we denote by C(Y, Z) the set of continuous functions from Y
into Z.

(h) If κ is a cardinal number then D(κ) denotes the discrete space with cardinality κ.

Remarks 1.2. (a) In the notation of 1.1(e), the usual Σ-product based at p ∈ XI is the
set Σ(p) = Σω+(p), and the “little σ-product” [7] is the set σ(p) := Σω(p) ⊆ XI . If |Xi| ≥ 2
for all i ∈ I then πJ [Σκ(p)] = XJ iff J ∈ [I]<κ, so if the sets Xi are topological spaces then
each Σκ(p) ⊆ XI is dense in (XI)κ.

(b) Clearly, every Σκ-space in XI , also every generalized rectangle in XI , is κ-invariant.
(Note that the notion κ-invariant is closely related to, but different from, the notion of a
subspace invariant under projection defined in [15].)

The following definition and lemma are strictly set-theoretic, in the sense that topology
plays no role in their statements. For the applications, of course, Xi and Z will be spaces,
and f ∈ C(Y, Z).

Definition 1.3. Let f : Y → Z, with Y ⊆ XI = Πi∈IXi.
(a) If J ⊆ I, then f depends on J if [x, y ∈ Y and xJ = yJ ] ⇒ f(x) = f(y). In this

case, fJ : πJ [Y ] → Z is well-defined by the rule f = fJ ◦ πJ |Y ;
(b) Jf := {i : i ∈ I and there exist x, y ∈ Y such that d(x, y) = {i} and f(x) �= f(y)};
(c) Df := {J ⊆ I : f depends on J};
(d) µf := min{|J | : J ∈ Df}.

Remark 1.4. The function f of Definition 1.3 depends on J = ∅ if and only if f is a
constant function; in this case, the function f∅ = fJ is not defined. In what follows we use
the notation fJ only with the understanding that J �= ∅.
Lemma 1.5. Let Y ⊆ XI and f : Y → Z. If J ∈ Df then Jf ⊆ J .

Proof. For i ∈ Jf there are x, y ∈ Y with d(x, y) = {i} and f(x) �= f(y). If i ∈ J fails then
xJ = yJ with f(x) �= f(y), a contradiction.

In Statement 1.6 below we use our notation and terminology to restate (the contrapositive
of) Proposition 3.3 in [16], which appears in [16] without proof.

Statement 1.6. Let f : XI → Z be a function between the sets XI := Πi∈I Xi and Z, and
let Jf ⊆ J ⊆ I. Then

(a) J ∈ Df ; and
(b) if XI and Z are topological spaces and f is continuous, then fJ is also continuous.

Discussion 1.7. In our view, Statement 1.6 is seriously flawed. First, Remark 1.4 shows
for constant functions f that 1.6(b) is meaningless (fJ being then undefined since J = ∅)—
but the condition that f be non-constant is not given in [16]. More seriously, Example 1 in
Discussion 1.10 shows that even when Xi and Z are topological spaces and f ∈ C(XI , Z)
is non-constant, the relation Jf ∈ Df of 1.6(a) may fail; in that example one has Jf = ∅
(or Jf = {i} where i ∈ I), but for J ⊆ I one has J ∈ Df if and only if |I\J | < ω (see also
Example 2.1 below).

In remarks parallel to those of Mǐsčenko [16], Hušek [11] pointed the way to the following
proposition.

Proposition 1.8. Let XI be a product space, Y be a subspace of XI, Z be a Hausdorff
space, and f ∈ C(Y, Z). If there is p ∈ XI such that σ(p) ⊆ Y , then for each J ⊆ I:
J ∈ Df iff J ⊇ Jf .
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Remark 1.9. Proposition 1.8 is not explicitly stated in [11] but it can be found implicitly
(without proof) there on page 33. For a full and direct proof of Proposition 1.8 see Corollary
1.12 below, and for a generalization see Lemma 2.32. The condition in Proposition 1.8 that
Z is a Hausdorff space is not mentioned in [11], but its applications in [11] are in that
setting. In Discussion 1.10 below we indicate the necessity of some of the hypotheses in
(our formulation of) Proposition 1.8.

For Hušek’s comments on this matter, see pp. 33 and 36 of [11].

Discussion 1.10. We give three simple examples showing that the conclusion of Propo-
sition 1.8 can fail if any one of the three hypotheses (a) Z is a Hausdorff space, (b) f is
continuous, and (c) there is p ∈ XI such that σ(p) ⊆ Y , is omitted.

Let XI = Πi∈I Xi with |I| > ω and with each Xi a Hausdorff space such that |Xi| > 1.
We will arrange in each case that f is non-constant on Y and Jf = ∅, so f does not depend
on Jf .

Example 1: (a) fails, (b) and (c) hold. Let Z ⊆ XI be maximal with respect to the
property p, q ∈ Z, p �= q ⇒ σ(p) ∩ σ(q) = ∅. Then XI =

⋃
p∈Z σ(p) and the map f :

Y := XI → Z given by f(x) := p ∈ Z if x ∈ σ(p) is well-defined from XI onto Z, and
continuous when Z is given the indiscrete (“concrete”) topology. (Here Jf = ∅. To preserve
the foregoing essential properties, but with Jf �= ∅, fix p ∈ Z and i ∈ I, choose q ∈ σ(p)
so that d(p, q) = {i} and now define f(x) as before when x /∈ σ(p). When x ∈ σ(p) define
f(x) = q whenever xi = qi and f(x) = p otherwise. Then f : XI → Z ∪ {q}, (a) fails and
(b) and (c) hold, and Jf = {i} �= ∅.)

Example 2: (b) fails, (a) and (c) hold. Take data as in Example 1, but with Z now given
the usual topology inherited from Y = XI . Then f is not continuous since for p ∈ Z the
set f−1(p), which is σ(p), is proper and dense in Y , hence is not closed. Again (c) holds,
just as in (a), since Y = XI =

⋃
p∈XI

σ(p).
Example 3: (c) fails, (a) and (b) hold. Choose any Y ⊆ XI such that |Y ∩ σ(p)| = 1 for

each p ∈ XI . (It is easy to see, arguing as in [3, 2.4], that Y may even be chosen dense in
XI .) Then f := id : Y → Z := Y are as required.

[As an alternative to Example 3, take XI := {0, 1}I with |I| ≥ ω, fix p ∈ XI and
set Y := {x ∈ XI : |{i ∈ I : xi �= pi}| is even}. Then Y is again dense in XI , and
f := id : Y → Z = Y are as required.]

Lemma 1.11. Let XI be a product space, p ∈ XI , and σ(p) ⊆ Y ⊆ XI . Let Z be a
Hausdorff space, f ∈ C(Y, Z), and g := f |σ(p). Then

(a) Jg = Jf ;
(b) Jf ∈ Df ; and
(c) Jg ∈ Dg.

Proof. (a) We first show Jg ⊆ Jf . If i ∈ Jg then there are x, y ∈ σ(p) ⊆ Y such that
f(x) = g(x) �= g(y) = f(y) and d(x, y) = {i}, so i ∈ Jf .

Now we show Jf ⊆ Jg. Given i ∈ Jf , there are x, y ∈ Y such that d(x, y) = {i} and
f(x) �= f(y), and since Z is a Hausdorff space and f ∈ C(Y, Z) there are basic neighborhoods
U and V of x and y, respectively, such that f [U ] ∩ f [V ] = ∅. Now define x′, y′ ∈ XI by

x′
i = xi and y′

i = yi,
x′

j = xj = yj = y′
j if j �= i, j ∈ R(U) ∪ R(V ),

x′
j = y′

j = pj if j ∈ I\(R(U) ∪ R(V )).
Then x′, y′ ∈ σ(p) and d(x′, y′) = {i}, and from x′ ∈ U , y′ ∈ V follows g(x′) = f(x′) �=
f(y′) = g(y′), hence i ∈ Jg.

(b) Suppose there are x, y ∈ Y such that xJf
= yJf

and f(x) �= f(y). We claim there is
a net s(λ) = (x(λ), y(λ)) in σ(p) × σ(p) such that
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(i) s(λ) converges to (x, y), and
(ii) x(λ)i = y(λ)i for all λ and all i ∈ Jf .

Indeed, using the density of σ(p)× σ(p) in Y ×Y , begin with a net s′(λ) = (x′(λ), y′(λ)) in
σ(p) × σ(p) which converges to (x, y) and define x(λ) and y(λ) by

x(λ) := x′(λ) , and

y(λ)i :=
{

y′(λ)i if i /∈ Jf

x(λ)i if i ∈ Jf

(1)

The finite set d(y′(λ), x′(λ)) contains d(y(λ), x(λ)), so from x′(λ) = x(λ) ∈ σ(p) follows
y(λ) ∈ σ(p); condition (i) holds since x(λ)i and y(λ)i converge to xi and yi, respectively,
for all i ∈ I; and condition (ii) is obvious. The claim is established.

Since Z is a Hausdorff space and the nets f(x(λ)) and f(y(λ)) converge to f(x) and f(y),
respectively, there is λ such that

g(x(λ)) = f(x(λ)) �= f(y(λ)) = g(y(λ)).(2)

We have x(λ)Jf
= y(λ)Jf

by (1) and hence x(λ)Jg = y(λ)Jg by (a), so g(x(λ)) = g(y(λ)),
contrary to (2). It follows for x, y ∈ Y that if xJf

= yJf
then f(x) = f(y)—i.e., (b) holds.

(c) This is immediate from (a) and (b), since if x, y ∈ σ(p) and xJf
= yJf

, then g(x) =
f(x) = f(y) = g(y).

Corollary 1.12. Let XI , Y , Z, f and g be as in Lemma 1.11. Then for each J ⊆ I these
conditions are equivalent:

(a) J ∈ Df ;
(b) J ∈ Dg;
(c) J ⊇ Jf ; and
(d) J ⊇ Jg.

Proof. This is clear from Lemma 1.5 (where continuity of f is not assumed) and Lemma
1.11.

Remark 1.13. We note that if p, Y, XI , Z, f and g are as in Lemma 1.11, then there is a
least (= smallest) set J ⊆ I on which f depends, and a least set J ⊆ I on which g depends.
These sets coincide: we have J = Jf = Jg. Clearly in this case µf = µg = |J |.

2. Some more general results

We would like to generalize Proposition 1.8 (or, equivalently, Corollary 1.12) to the κ-box
topology. One might expect that the appropriate legitimate generalization is this (this is
the “obvious analogue” (*)κ of (*) to which we refer in the Abstract):

(†) Let XI be a product space, Y be a subspace of (XI)κ, Z be a Hausdorff space, and
f ∈ C(Y, Z). If there is p ∈ XI such that Σκ(p) ⊆ Y , then Jf ∈ Df .

The following example shows that statement (†) is invalid. In this example we have even
Y = (XI)κ.

Example 2.1. Let {Xi : i ∈ I} be a family of discrete spaces and κ > |I| ≥ ω be a
cardinal number. Then (XI)κ is discrete. As in Example 1 of Discussion 1.10, let Z ⊆ XI

be maximal with respect to the property [x, y ∈ Z, x �= y] ⇒ σ(x) ∩ σ(y) = ∅. Then
XI =

⋃
x∈Z σ(x), and since (XI)κ is discrete, the map f : XI � Z given by f(x) = p if

x ∈ σ(p) is continuous. Here Jf = ∅ so f , since it is not a constant function, does not
depend on Jf . For a set J ⊆ I we have J ∈ Df if and only if |I \ J | < ω.

Example 2.1 shows that there are continuous functions f defined on subspaces of product
spaces, equipped with the κ-box topology, such that Jf /∈ Df . In seeking for a set that



FUNCTIONAL DEPENDENCE ON SMALL SETS OF INDICES 147

can replace Jf in a correct generalization to the κ-box topology of the cited works of
Mǐsčenko [16] and Hušek [11], we have been led to the concepts of essential and optimally
essential sets. Before defining these concepts we introduce some terminology.

Terminology 2.2. (a) Given a set X and F ⊆ P(X), a family A ⊆ F is F -cellular, or
cellular for F , if the elements of A are non-empty and pairwise disjoint. And S(F), the
Souslin number of F , is defined by S(F) := min{κ : no F−cellular family A satisfies |A| =
κ}.

(b) The conventions of (a) are consistent with standard topological practice, where a
cellular family for a topological space X = (X, T ) is (in our notation) a T -cellular family,
and S(X) = S(X, T ), the Souslin number of X = (X, T ), is (in our notation) S(T ).

(c) We here follow the conventions mentioned in (a) and (b). That is, given a space
X = (X, T ), we refer to a T -cellular family simply as cellular, and we write S(X) in place
of S(T ).

Definition 2.3. Let f : Y → Z, with Y ⊆ XI .
(a) If J ⊆ I, then J is essential if there are x, y ∈ Y such that d(x, y) = J and f(x) �=

f(y);
(b) J is optimally essential if J is essential and no essential set J ′ ⊆ J satisfies |J ′| < |J |;
(c) Of := {J ⊆ I : J is optimally essential};
(d) Jf := {J : J is maximal Of -cellular family};
(e) λf := sup{|J | : J ∈ Jf}.
Evidently for data as in Definition 2.3 and i ∈ I, we have i ∈ Jf if and only if {i} is

essential. The following proposition is then obvious.

Proposition 2.4. Let f : Y → Z with Y ⊆ XI , and fix i ∈ I. Then these conditions are
equivalent.

(a) i ∈ Jf ;
(b) {i} is essential;
(c) {i} is optimally essential—i.e., {i} ∈ Of .

Proposition 2.5. Let f : Y → Z, with Y ⊆ XI . If J ⊂ I is essential, then there is an
optimally essential set J ′ ⊆ J .

Proof. Among all essential subsets of J , choose J ′ of minimal cardinality. Then J ′ ∈ Of .

Proposition 2.6. Let f : Y → Z, with Y ⊆ XI , and let J ∈ Jf . Then {i} ∈ J for each
i ∈ Jf . Hence λf ≥ |Jf |.
Proof. Let i ∈ Jf and suppose that {i} /∈ J . If there is J ′ ∈ J such that i ∈ J ′ then
{i} �= J ′, hence we have |{i}| < |J ′|. Since {i} ∈ Of by Proposition 2.4(c), this contradicts
the condition J ′ ∈ Of . Therefore there is no J ′ ∈ J such that i ∈ J ′. The containment
J ⊆ J ∪{i} is then proper, with J ∪{i} Of -cellular, contrary to the maximality of J .

The following results indicate the utility of optimally essential sets.

Theorem 2.7. Let f : Y → Z, with Y ⊆ XI , and let J ⊆ I. Then these conditions are
equivalent.

(a) J ∈ Df ;
(b) J intersects every essential set; and
(c) J intersects every optimally essential set.

Proof. (a) ⇒ (b). Assume that J ∈ Df and let J ′ be an essential set such that J ′ ∩ J = ∅.
Let x, y ∈ Y be such that d(x, y) = J ′ and f(x) �= f(y). Then xJ = yJ and f(x) = f(y), a
contradiction.
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(b) ⇒ (c). This is obvious.
(c) ⇒ (a). Suppose there are x, y ∈ Y such that xJ = yJ and f(x) �= f(y). Then

J ′ := d(x, y) ⊂ I \ J is an essential set. Let J ′′ ⊆ J ′ be an optimally essential set, as given
by Proposition 2.5. Clearly, J ∩ J ′′ = ∅, which is a contradiction.

Corollary 2.8. Let f : Y → Z, with Y ⊆ XI , J ⊆ I, and J ∈ Df . If J ′ := {i ∈ J : i ∈
d(x, y) for some x, y ∈ Y , such that f(x) �= f(y)} then J ′ ∈ Df .

Proof. Suppose that J ′ /∈ Df . Then there exist x, y ∈ Y such that xJ′ = yJ′ and f(x) �=
f(y). Clearly d(x, y) is essential, so d(x, y)∩J �= ∅ by Theorem 2.7(b). Thus d(x, y)∩J ′ �= ∅,
which contradicts to xJ′ = yJ′ .

The following theorem shows that if J is a maximal Of -cellular family then
⋃
J ∈ Df

and therefore µf ≥ λf .

Theorem 2.9. Let f : Y → Z, with Y ⊆ XI , and let J ∈ Jf . Then
(a)

⋃
J ∈ Df ; and

(b) if J ⊆ I is such that J ∈ Df then |J | ≥ |J |.

Proof. (a) Let J :=
⋃
J and suppose there are x, y ∈ Y such that xJ = yJ and f(x) �= f(y).

Then J ′ := d(x, y) ⊂ I \ J is an essential set. Let J ′′ ⊆ J ′ be an optimally essential set, as
given by Proposition 2.5. Then J ∪ {J ′′} is an Of -cellular family properly containing J ,
contrary to the maximality of J .

(b) Since J is Of -cellular, (b) is immediate from Theorem 2.7.

Corollary 2.10. Let f : Y → Z, with Y ⊆ XI . If J ⊆ I is such that J ∈ Df then |J | ≥ λf ,
hence µf ≥ λf .

Corollary 2.11. Let f : Y → Z, with Y ⊆ XI , and let J ∈ Jf . Then |
⋃
J | ≥ λf .

Proof.
⋃
J ∈ Df by Theorem 2.9(a), so Corollary 2.10 applies.

It is clear that |
⋃
J | ≥ |J |. Example 2.12 below, which is established in detail in

[4], shows that it is possible that |
⋃
J | > λf and |J | = λf . Indeed, in this example,

for any space Z and any non-constant function f : Y → Z, the only essential set (which
is then necessarily optimally esential) is the full index set I; hence |

⋃
J | = |I| > 1, and

|J | = λf = 1. It is easily seen in this case (and it follows from Theorem 2.7) that f depends
on each i ∈ I.

Example 2.12 ([4, 2.4]). Let I be an index set with 0 < |I| ≤ c and XI = [0, 1]I. There is
a dense subspace Y of XI such that for each i ∈ I the restriction πi|Y : Y � [0, 1]i = [0, 1]
is a bijection onto [0, 1].

It is reasonable to ask whether every two maximal Of -cellular families have the same
cardinality. The following example gives a strong negative answer to that question.

Example 2.13. Let K be an index set with ω ≤ |K| ≤ c, α := |K|, and {K(η) : η < α}
be disjoint copies of K. Let also I =

⋃
η<α K(η) and XI :=

∏
η<α[0, 1]K(η). For each

η < α let Yη be a dense subspace of XK(η) := [0, 1]K(η) such that for each i ∈ K(η) the
restriction πi|Yη : Yη � [0, 1]i = [0, 1] is a bijection onto [0, 1] (see Example 2.12). Finally,
let Y :=

∏
η<α Yη, J ⊆ I be such that |J ∩ Kη| = 1 for each η < α, and f : Y → [0, 1]J be

the natural projection.

The following lemma sets forth the relevant properties of Example 2.13.
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Lemma 2.14. Let K, I, Y , J , α and f be as in Example 2.13. Then
(a) Y is dense in XI , f is continuous, |J | = α, and J ∈ Df ;
(b) if η < α, J ′ ⊆ I is essential, and J ′ ∩ K(η) �= ∅, then K(η) ⊆ J ′;
(c) for ∅ �= S ⊆ α, the set

⋃
η∈S K(η) is essential; and

(d) for each cardinal β such that 1 ≤ β ≤ α there is a maximal Of -cellular family J
such that |J | = β.

Proof. (a) If x, y ∈ Y and xJ = yJ then xi = yi for each i ∈ J , so x = y and hence
f(x) = f(y). The remaining assertions are clear.

(b) If x, y ∈ Y and xi �= yi (say with i ∈ K(η)), then each j ∈ K(η) satisfies xj �= yj.
Thus for each i ∈ d(x, y), say with i ∈ K(η), we have K(η) ⊆ d(x, y).

(c) For each η < α choose and fix distinct points p(η), q(η) in XK(η). (Then for each
i ∈ K(η) we have p(η)i �= q(η)i.) Now given S ⊆ α, define x(S),y(S) ∈ Y by

x(S)i = p(η)i if i ∈ K(η), η ∈ S,
y(S)i = q(η)i if i ∈ K(η), η ∈ S, and
x(S)i = y(S)i = p(η)i if i ∈ K(η), η ∈ α\S.

Then d(x(S), y(S)) =
⋃

η∈S K(η), and for i ∈ K(η) with η ∈ S we have f(x(S))i = p(η)i �=
q(η)i = f(y(S))i.

(d) It is immediate from (b) that every essential set, since it contains one of the sets K(η)
(with |K(η)| = α), is optimally essential. Now, for 1 ≤ β ≤ α let {Sζ : ζ < β} be a partition
of α with each Sζ �= ∅, and define Jζ :=

⋃
{K(η) : η ∈ Sζ}. Then J := {Jζ : ζ < β} is an

Of -cellular family with |J | = β, and J is maximal since
⋃
J = I.

In relation to the construction of the set J in Example 2.13 the following more general
result is valid.

Lemma 2.15. Let f : Y → Z, with Y ⊆ XI , and J ∈ Jf be such that for each J ′ ∈ J and
each index i ∈ J ′ the projection πi : πJ′ [Y ] → Xi is an injection. For each J ′ ∈ J fix an
index iJ′ ∈ J ′ and let J := {iJ′ : J ′ ∈ J }. Then J ∈ Df and hence |J | = |J | = λf .

Proof. Suppose that there exist x, y ∈ Y such that xJ = yJ and f(x) �= f(y). Since for
each J ′ ∈ J and each index i ∈ J ′ the projection πi : πJ′ [Y ] → Xi is an injection we
have xJ′ = yJ′ . Therefore x∪J = y∪J and since

⋃
J ∈ Df by Theorem 2.9(a), we have

f(x) = f(y), a contradiction. Therefore J ∈ Df and clearly |J | = |J |.
To see that |J | = λf take J ′ ∈ Jf and let J ′ ∈ J ′. Since

⋃
J ∈ Df , it follows from

Theorem 2.7(c) that J ′ ∩
⋃
J �= ∅. Let J ′′ ∈ J be such that J ′ ∩ J ′′ �= ∅. If x, y ∈ Y are

such that J ′ = d(x, y) then J ′′ ⊆ d(x, y) ⊆ J ′. Thus every J ′ ∈ J ′ contains some J ′′ ∈ J .
The map J ′ → J ′′ is clearly injective, so |J ′| ≤ |J |.

Discussion 2.16. We showed in Theorem 2.7(c) that if f : Y → Z with Y ⊂ XI , f depends
on some J , and J ′ ∈ Of , then J ∩J ′ �= ∅. The above example shows that the set J ∩J ′ may
fail to be essential. Further, from Theorem 2.7 it follows that if J ⊆ I meets every optimally
essential set then f will depend on J , and clearly |J | ≥ λf . In the setting of Lemma 2.15
(and Example 2.13) there is J ′ ∈ Jf such that f depends on J ⊆ I iff J ∩ J ′ �= ∅ for each
J ′ ∈ J ′. In contrast, in Example 2.1 there is a function f which depends on no J such
that |J ∩ J ′| = 1 for each J ′ ∈ J . Notice also that if the cardinality of each set J ∈ Of is
less than λf (which is the case in Example 2.1 if |I| > ω) then each maximal Of -cellular
family J satisfies |J | = λf , for f depends on

⋃
J according to Theorem 2.9(a) and if

|J | < λf then |
⋃
J | < λf , which contradicts to Corollary 2.11. Therefore, in the setting

of Example 2.1, we have |
⋃
J | = λf .

The above observations motivate but do not answer the following question.
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Question 2.17. Does there always exist a set J ⊆ I with |J | = λf such that J ∈ Df?

With the following theorem we show that the answer to Question 2.17 is in the negative.

Theorem 2.18. Let κ ≥ 2c, I := {0, 1}κ, and XI := {0, 1}I with the usual product topol-
ogy. Let also C be the set of open-and-closed subsets of I, and for C ∈ C define x(C) ∈ XI

by x(C)i = 1 if i ∈ C and x(C)i = 0 if i ∈ I\C. Now, define Y := {x(C) : C ∈ C} and let
f := id : Y � Y = Z. Then

(a) Y is dense in XI ;
(b) if x(A), x(B) ∈ Y , A �= B, then there is C ∈ C such that d(x(A), x(B)) = C;
(c) if ∅ �= J ⊆ I, then these conditions are equivalent:

(i) J is essential;
(ii) J is optimally essential; and
(iii) J ∈ C.

(d) λf = ω (and, λf is “assumed”);
(e) there is no J ⊆ I such that |J | = λf = ω and J ∈ Df .

Proof. It is clear that each non-empty C ∈ C satisfies |C| = 2κ. Also, we have ∅ ∈ C, and
x(∅)i = 0 for all i ∈ I.

(a) Let U be a basic open set in XI . Then there exist two disjoint finite subsets F0 and
F1 of I such that

U = {x ∈ XI : x|F1 ≡ 1 and x|F0 ≡ 0}.

Let C ⊆ I be an open-and-closed set such that F1 ⊆ C and F0∩C = ∅. Then x(C) ∈ U ∩Y .
(b) Let A,B ∈ C with A �= B and define C := A∆B = (A\B)∪ (B\A). Then ∅ �= C ∈ C

and d(x(A), x(B)) = C.
(c) (i) ⇒ (ii). It follows from (b) that every essential set J satisfies |J | = 2κ. Thus every

essential set is optimally essential.
(ii) ⇒ (iii). If J is (optimally) essential then there are x(A), x(B) ∈ Y such that

d(x(A), x(B)) = J , and from (b) we have J = A∆B ∈ C.
(iii) ⇒ (i). Let ∅ �= J ∈ C. Then d(x(∅), x(J)) = J and f(x(∅)) = x(∅) �= x(J) = f(x(J)),

so J is essential.
(d) I is an infinite Hausdorff space, hence S(I) ≥ ω+ [5, 3.3(b)] and we have λf ≥ ω.

On the other hand, being a product of separable spaces, I contains no uncountable family
of pairwise disjoint, non-empty open subsets [8, 2.7.10(d)], [5, 3.9(b)]—that is, S(I) ≤ ω+.
Hence λf ≤ ω.

(e) Let J ⊆ I be any countable set. Since every separable Hausdorff space S satisfies
|S| ≤ 2c, while |I| = 2κ ≥ 22c

> 2c, there is C ∈ C such that J ∩ C = ∅. Then x(∅)i =
x(C)i = 0 for all i ∈ J , so x(∅)J = x(C)J , but f(x(∅)) = x(∅) �= x(C) = f(x(C)). Thus
J /∈ Df .

Discussion 2.19. Definition 2.3(e) suggests a natural question: Given Y ⊆ XI and f :
Y → Z, must there exist a (maximal) Of -cellular family J such that |J | = λf? (In other
words, can “sup” be replaced by “max” in the definition of the cardinal number λf?) We
show in Theorem 2.24 (in ZFC) that in general the answer is “No”. It is interesting that
a simpler construction, similar to that of Theorem 2.18, holds in a model of ZFC with an
uncountable regular limit cardinal. Here is the argument when such a cardinal is available.

Theorem 2.20. Let κ = sup{κη : η < κ} be an uncountable regular limit cardinal, where
κη < κη′ when η < η′ < κ, let I := Πη<κ D(κη), and XI := {0, 1}I. Let C be the set of
open-and-closed subsets of I, and for C ∈ C define x(C) ∈ XI by x(C)i = 1 if i ∈ C and
x(C)i = 0 if i ∈ I\C. Define Y := {x(C) : C ∈ C} and let f := id : Y � Y = Z. Then
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(a) Y is dense in XI ;
(b) if x(A), x(B) ∈ Y , A �= B, then there is C ∈ C such that d(x(A), x(B)) = C;
(c) if ∅ �= J ⊆ I, then these conditions are equivalent:

(i) J is essential;
(ii) J is optimally essential; and
(iii) J ∈ C.

(d) λf = κ; and
(e) there is no Of -cellular family J such that |J | = κ.

Proof. Let κ′ = Πη<κ κη. (The theorem of J. König (see for example [5, 1.19]) gives κ′ > κ,
but this is not important for the present proof.) Clearly each C ∈ C satisfies |C| = κ′. The
proofs of (a), (b) and (c) now follow verbatim the parallel proofs in Theorem 2.18, with κ′

now replacing 2κ. Clearly λf ≥ κη for each η < κ, so λf ≥ κ. It was N. A. Shanin, using his
own early version [17] of the “∆-system” methods developed later by Erdős and Rado [9],
who showed that S(I) ≤ κ [19, Theorem 5]; indeed of any κ-many open sets, some κ-many
have non-empty intersection [18, Theorem 5]. See [5, 3.8], [13, 5.10 and 7.6], [6, 3.28] for
detailed proofs and commentary. In view of (c), Shanin’s result from [18] completes the
proof of (d) and gives (e).

The existence of uncountable regular limit cardinals cannot be established in ZFC [14,
4.13], so Theorem 2.20 does not provide a definitive negative solution to the “sup = max”
problem for cardinals of the form λf . The next theorem, which provides such a solution
in ZFC, has features in common with Theorems 2.18 and 2.20, but it is necessarily more
subtle: It is easily seen directly, as in [5, p. 71] or [6, 3.10], that when κ is a singular cardinal
then the space K := Πλ<κ D(λ) can be expressed as the union of κ-many pairwise disjoint
open sets (and hence S(K) = κ+).

Discussion 2.21. Here we establish notation for use in 2.22 — 2.24. In the interest of
simplicity and specificity we take κ0 = ω, κ1 = 2κ0 , · · · , κn+1 = 2κn , · · · , and κ =

∑
n<ω κn.

(That is, κ = �ω(ω).) We write K = Πn<ω D(κn). (As in the proof of Theorem 2.20 we
have |K| > κ, but we do not need this fact in this proof.)

Lemma 2.22. Let K = Πn<ω D(κn). There is a set I ⊆ K such that
(a) I is dense in K;
(b) |I| = κ;
(c) if i, i′ ∈ I and i �= i′ then |{n < ω : in = i′n}| < ω; and
(d) for each non-empty finite set F ⊂ I, there is n = n(F ) < ω such that πn : K � D(κn)

is injective on F .

Proof. Let D be a dense subset of K such that |D| = κ. (The existence of such D is given
by the Hewitt-Marczewski-Pondiczery theorem ([5, 3.18], [13, 5.5], or [8, 2.3.15]).) Let
D = {d(η) : η < κ}, for η < κ let n = n(η) be the least n < ω such that η < κn, and define
i(η) ∈ K by

i(η)n = d(η)n if n < n(η), i(η)n = η if n(η) ≤ n.

[We note for clarity that if η = m < ω = κ0 then n(η) = 0 and i(η)n = i(m)n = m for all
n < ω.]

We set I := {i(η) : η < κ} and we verify (a), (b), (c) and (d).
(a) It suffices to show, given n0 < n1 < · · · < nm < ω and ηk < κnk

for k ≤ m, and
V := {x ∈ K : xnk

= ηk for k ≤ m}, that there is η < κ such that i(η) ∈ V ∩I. Since D∩V
is dense in V with |V | ≥ κ, we have |D∩V | = κ. (For otherwise, say with |D∩V | ≤ κn < κ,
we have the contradiction
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κ ≤ |V | ≤ |D ∩ V
K | ≤ 22κn = κn+2 < κ.)

Then there is η < κ such that d(η) ∈ D∩V and η > κnm . Therefore n0 < n1 < · · · < nm <
n(η), so i(η)nk

= d(η)nk
= ηk for k ≤ m and hence i(η) ∈ V ∩ I.

(b) From (a) follows κ ≤ |I| ≤ |D| ≤ κ.
(c) Given distinct i(η), i(η′) ∈ I, there is n such that n > n(η), n > n(η′). Then

i(η)n = η �= η′ = i(η′)n for all n > n.
(d) is immediate from (c). (More directly, it is enough to choose n < ω such that n > n(η)

for each i(η) ∈ F .)

With that preamble, we can show that cardinals of the form λf , defined as in Defini-
tion 2.3, may fail to be assumed.

Discussion 2.23. In Theorem 2.24 below we shall use the following notation. I is as in
Lemma 2.22. For n < ω and non-empty F ∈ [κn]<ω let E(n, F ) := {i ∈ I : in ∈ F}. Let
En := {E(n, F ) : ∅ �= F ∈ [κn]<ω}, and E :=

⋃
n<ω En. Also, given n < n′ < ω, η < κn and

F ′ ∈ [κn′ ]<ω, set S(n, η, n′, F ′) := {i ∈ I : in = η, in′ /∈ F ′} = E(n, {η})\E(n′, F ′), and let
S := {S(n, η, n′, F ′) : n < n′ < ω, η < κn, F ′ ∈ [κn′ ]<ω}.

Clearly sets in E and sets in S are open in I and hence have cardinality κ (for proof see
the proof of Lemma 2.22(a)).

Theorem 2.24. Let XI := {0, 1}I. For E ∈ E define x(E) ∈ XI by x(E)i = 1 if i ∈ E
and x(E)i = 0 if i ∈ I\E. Define Y := {x(E) : E ∈ E} and let f := id : Y � Y = Z. Then

(a) Y is dense in XI ;
(b) if x(E1), x(E2) ∈ Y , E1 �= E2, then there is S ∈ S such that S ⊆ d(x(E1), x(E2));
(c) every essential set is optimally essential;
(d) λf = κ; and
(e) no Of -cellular family satisfies |J | = κ.

Proof. (a) It is enough to show that if F0, F1 are disjoint finite subsets of I then there is
E ∈ E such that F1 ⊆ E and F0 ∩ E = ∅ (for then x(E) ∈ Y satisfies x(E)i = 1 when
i ∈ F1, x(E)i = 0 when i ∈ F0). By Lemma 2.22(d) there is n < ω such that the restricted
projection πn|I : I → D(κn) is injective on F0 ∪ F1, and then E := E(n, πn[F1]) ∈ En ⊆ E
is as required.

(b) We take Ei = E(ni, Fi) (i = 1, 2) and we consider two cases.
Case 1. n1 = n2. Take arbitrary η ∈ F1∆F2, say η ∈ F1\F2, let n′ > n1 and η′ ∈ D(κn′);

then S := S(n1, η, n′, {η′}) is as required.
Case 2. Case 1 fails, say n1 < n2. Then for arbitrary η ∈ F1 the set S := S(n1, η, n2, F2)

is as required.
(c) Given distinct x(E1), x(E2) ∈ Y and choosing S as in (b), we have κ = |I| ≥

|d(x(E1), x(E2))| ≥ |S| ≥ κ since S is non-empty and open in Y , so d(x(E1), x(E2)) ∈ Of .
(d) For each n < ω the set Jn := {E(n, {η}) : η ∈ κn} is Of -cellular with |Jn| = κn, so

λf ≥ κ; then since |I| = κ we have λf = κ.
(e) In view of (a), it is enough to show S(S) ≤ κ.
Let J be a cellular family for S and let n < ω be the minimal number for which

there is a set S(n, η, n′, F ′) ∈ J . Let also S(n1, η1, n
′
1, F

′
1) be another set in J . Then

n1 ≥ n. Since S(n, η, n′, F ′) ∩ S(n1, η1, n
′
1, F

′
1) = ∅ we have either [n1 = n and η �= η1]

or [n1 = n′ and η1 ∈ F ′]. For each η1 ∈ κn such that η �= η1 there is at most one set
of the form S(n, η1, n

′
1, F

′
1) with n = n1 in J . Therefore, there are at most κn-many sets

S(n1, η1, n
′
1, F

′
1) in J such that n1 = n. Also, there are |F ′| < ω possible choices for

n1 = n′ and η1 ∈ F ′. And, as before, for each η1 ∈ F ′ there is at most one set of the
form S(n′, η1, n

′
1, F

′
1) in J with n1 = n′. Therefore the cardinality of J cannot exceed

κn + |F ′| = κn.
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Discussion 2.25. (a) Constructions similar to those given in 2.21—2.24 are available when
the space K is equipped with the κ-box topology. To achieve those, we need the appropriate
generalization to the κ-box topology of the Hewitt-Marczewski-Pondiczery theorem ([8,
2.3.15]), together with computations of the density character and the Souslin number. For
our results in this direction, see our paper [2]. To keep the present paper self-contained and
coherently focused, we omit detailed statements.

(b) It is reassuring to observe that the construction given in 2.21—2.24 is not in conflict
with the theorem of Erdős and Tarski [10] asserting that for every topological space X the
Souslin number S(X) is a regular cardinal. (For a proof of that result and for some of its
consequences, the reader may see [5], [13], [6].) It is immediate from this result that, in the
case of the dense subspace I of K = Πn<ω D(κn), where S(I) ≥ κn for each n < ω, the
relation S(I) = κ is not possible since κ is singular. From |I| = κ then follows S(I) = κ+.
Thus in contrast with Theorem 2.24(e), which deals with the small family Of of open sets,
the “sup = max” question for the topology of I has a positive solution.

(c) We find it amusing, though logically inessential to the principal thrust of our paper,
that in the setting of Theorem 2.24 the families Of and S, though they are not rich enough
to be a base for the topology inherited by I from K, are subbases for that topology. Since we
do not recall instances in the literature where families other than the usual or obvious family
are shown to generate the product topology, we outline the argument in Theorem 2.26.

Since Theorem 2.26 is intended as a curiosity of stand-alone interest, we discuss the
full product space K = Πn<ω D(κn) rather than the particular dense subspace I ⊆ K
defined and studied in Lemma 2.22. Accordingly, for n < ω and ∅ �= F ∈ [κn]<ω, we write
Ẽ(n, F ) := {x ∈ K : xn ∈ F}, then Ẽ := {Ẽ(n, F ) : n < ω, ∅ �= F ∈ [κn]<ω}. Similarly, for
n < n′ < ω, η < κn and F ′ ∈ [κn′ ]<ω, we write S̃(n, η, n′, F ′) := {x ∈ K : xn = η, xn′ /∈ F ′},
then S̃ := {S̃(n, η, n′, F ′) : n < n′ < ω, η < κn, F ′ ∈ [κn′ ]<ω}.

The function f now plays no role, so we write simply Õ := {Ẽ0�Ẽ1 : Ẽi ∈ Ẽ}.
The product topology on K is denoted T , and B is the usual (canonical) basis for T .

Theorem 2.26. (a) Ẽ is a subbase for T ; and
(b) Õ is a subbase for T .

Proof. It is clear that Ẽ ⊆ T and Õ ⊆ T .
(a) Choose arbitrary U ∈ B, say U =

⋂
k<m {p ∈ K : pnk

= ηk} with 0 < m < ω and
ηk < κnk

for k < m. It suffices to fix p ∈ U and to show that there are S̃k (k < m) such
that p ∈

⋂
k<m S̃k ⊆ U . For this choose n′ > max{nk : k < m} and arbitrary non-empty

F ′ ∈ [κn′ ]<ω such that pn′ /∈ F ′, and take S̃k := S̃(nk, ηk, n′, F ′).
(b) With (a) proved, it suffices to show that for each S̃ = S̃(n, η, n′, F ′) ∈ S̃ there are

F ′
1, F

′
2 ∈ [κn′ ]<ω such that

S̃ = [Ẽ(n, η)�Ẽ(n′, F ′
1)] ∩ [Ẽ(n, η)�Ẽ(n′, F ′

2)](3)

(for each of the sets Ẽ(n, η)�Ẽ(n′, F ′
i ) (i = 1, 2) is in Õ). We assume without loss of

generality, enlarging F ′ ⊆ κn′ if necessary, that |F ′| > 1. Then (3) holds when F ′
1, F

′
2

are chosen non-empty so that F ′
1 ∩ F ′

2 = ∅ and F ′
1 ∪ F ′

2 = F ′, for in that case, using
Ẽ(n′, F ′

1) ∩ Ẽ(n′, F ′
2) = ∅, we have

[Ẽ(n, η)�Ẽ(n′, F ′
1)] ∩ [Ẽ(n, η)�Ẽ(n′, F ′

2)] =

[Ẽ(n, η)\Ẽ(n′, F ′
1)] ∩ [Ẽ(n, η)\Ẽ(n′, F ′

2)] =

S̃(n, η, n′, F ′
1) ∩ S̃(n, η, n′, F ′

2) = S̃.
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We prove in Theorem 2.29 below that, under suitable conditions on XI , Y , Z and f ,
every maximal Of -cellular family J satisfies not only

⋃
J ∈ Df but also |

⋃
J | = λf . This

gives a positive answer to Question 2.17 in that setting. For the proof of Theorem 2.29 we
need the following lemma.

Lemma 2.27. Let κ ≥ ω be a cardinal number, XI be a product space, Y be a subspace
of (XI)κ that contains a dense κ-invariant subspace Y ′, Z be a Hausdorff space, and f ∈
C(Y, Z) be a non-constant function.

(a) If J ⊆ I is an essential set then there exist x̃, ỹ ∈ Y ′ ⊆ Y such that f(x̃) �= f(ỹ),
|d(x̃, ỹ)| < κ, and d(x̃, ỹ) ⊆ J ;

(b) if J ⊆ I is such that J ∈ Of then |J | < κ;
(c) if J ⊆ I is an essential set with 1 < |J | < κ then for every non-empty proper subset

J ′ of J either J ′ or J \ J ′ contains an essential set. If, in addition, J ∈ Of then at least
one of the sets J ′ or J \J ′ contains an optimally essential set that has the same cardinality
as J ; hence J is infinite;

(d) if J, J ′ ⊆ I are such that J ∈ Df and J ′ ∈ Of , then J ∩ J ′ contains an optimally
essential set; hence |J ∩ J ′| = |J ′|; and

(e) if J ⊆ I is such that J ∈ Df and J := {Jα : α < β} is a maximal Of -cellular family
then J ′ :=

⋃
{J ∩ Jα : α < β} ∈ Df .

Proof. (a) Let x, y ∈ Y be such that f(x) �= f(y) and d(x, y) = J . Since Z is a Hausdorff
space and f is continuous, there are disjoint basic open neighborhoods U and V in (XI)κ

of x and y, respectively, such that f [U ∩ Y ] ∩ f [V ∩ Y ] = ∅. Without loss of generality, we
can assume (shrinking Ui and Vi, if necessary) that Ui = Vi whenever xi = yi. Since Y ′ is
dense in Y there exist x′ ∈ U ∩ Y ′ and y′ ∈ V ∩ Y ′. Clearly, f(x′) �= f(y′). Now define
x̃ := x′ and define ỹ ∈ XI as follows:

ỹi = y′
i if i ∈ R(U) ∪ R(V ) and xi �= yi, and

ỹi = x′
i if xi = yi or i ∈ I\(R(U) ∪ R(V )).

Then from |R(U) ∪ R(V )| < κ we have x̃, ỹ ∈ Y ′ ⊆ Y , |d(x̃, ỹ)| < κ, and d(x̃, ỹ) ⊆ J . Since
x̃ = x′ ∈ U and ỹi ∈ Vi whenever i ∈ R(V ) we have ỹ ∈ V . Therefore f(x̃) �= f(ỹ).

(b) Suppose there is an optimally essential J ⊆ I such that |J | ≥ κ and let x, y ∈ Y
be such that f(x) �= f(y) and d(x, y) = J . Let x̃, ỹ ∈ Y ′ be as in (a). Then f(x̃) �= f(ỹ),
d(x̃, ỹ) ⊆ J , and |d(x̃, ỹ)| < κ ≤ |J |, contrary to the fact that J ∈ Of .

(c) It follows from (a) that there exist x̃, ỹ ∈ Y ′ such that f(x̃) �= f(ỹ) and d(x̃, ỹ) ⊆ J .
Let J ′ be a non-empty proper subset of J . We define w ∈ XI by wi = x̃i if i ∈ I \ J ′

and wi = ỹi if i ∈ J ′. It is clear that w ∈ Y ′ ⊆ Y and therefore f(w) is well-defined. If
f(w) �= f(x̃) then J ′ contains an essential set since d(x̃, w) ⊆ J ′, and if f(w) = f(x̃) then
f(w) �= f(ỹ) and then J \ J ′ contains an essential set since ∅ �= d(ỹ, w) ⊆ J \ J ′. Clearly an
optimally essential set with a proper essential subset cannot be finite.

(d) It follows from Theorem 2.7 that J ∩ J ′ �= ∅. If J ′ \ J = ∅ then there is nothing to
prove. If J ′ \ J �= ∅ then, according to (c), either J ′ \ J or J ∩ J ′ contains an essential set,
and since J intersects every essential set, we conclude that J ∩ J ′ contains an essential set
and therefore it contains an optimally essential set. Hence, |J ∩ J ′| = |J ′|.

(e) Let J and J := {Jα : α < β} be as hypothesized. Let also J ′ :=
⋃
{J ∩ Jα : α < β}.

It follows from (d) that each non-empty set J ∩Jα contains an optimally essential set; hence
J ′ contains a cellular family of optimally essential sets.

Suppose that J ′ /∈ Df . Then there exist x, y ∈ Y such that xJ′ = yJ′ and f(x) �= f(y).
Let K ⊆ d(x, y) be an optimally essential set (Proposition 2.5). Then, according to Theorem
2.7(c), K ′ := K ∩ J �= ∅ and from (d) we conclude that K ′ contains an optimally essential
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set K ′′. Clearly K ′′ ∩ Jα = ∅ for each α < β, contrary to the maximality of J . Therefore
f depends on J ′.

Remark 2.28. In the case when Y ′ = Σκ(p) for some p ∈ XI then in Lemma 2.27(d)
the set J ∩ J ′ is itself optimally essential; in that case, Lemma 2.27(e) may be restated as
follows: Every set J ⊆ I with J ∈ Df contains a subset J ′ such that J ′ ∈ Df and J ′ is a
union of a cellular family of optimally essential sets (compare with Theorem 2.9(a)).

As a corollary of the above lemma we obtain the following result.

Theorem 2.29. Let κ ≥ ω be a cardinal number, XI be a product space, Y be a subspace
of (XI)κ that contains a dense (in Y ) κ-invariant subspace Y ′, Z be a Hausdorff space, and
f ∈ C(Y, Z) be a non-constant function. If J ∈ Jf then

(a) if κ ≤ λf then |
⋃
J | = λf ;

(b) if λf ≤ κ then |
⋃
J | ≤ κ; and

(c) if λf < cf(κ) then |
⋃
J | < κ.

Proof. According to Lemma 2.27, if J ∈ J then |J | < κ.
(a) If κ ≤ λf then |

⋃
J | = |

⋃
{Jα : α < |J |}| ≤ κ|J | ≤ κλf = λf . It follows from

Corollary 2.11 that |
⋃
J | ≥ λf ; hence |

⋃
J | = λf .

(b) We have |J | ≤ λf ≤ κ and |J | < κ for each J ∈ J , so |
⋃
J | ≤ κ.

(c) We have |J | ≤ λf < cf(κ) and |J | ≤ κ for each J ∈ J , so |
⋃
J | < κ.

If in Theorem 2.29(a) more information is available about λf and κ then stronger con-
clusions are available.

Theorem 2.30. Let κ ≥ ω be a cardinal number, XI be a product space, Y be a subspace
of (XI)κ that contains a dense (in Y ) κ-invariant subspace Y ′, Z be a Hausdorff space, and
f ∈ C(Y, Z). If λf > κ, or λf = κ and κ is regular, then

(a) there is an Of -cellular family J such that |J | = λf ;
(b) |J | = |J ′| whenever J ,J ′ ∈ Jf .

Proof. Let λf > κ, or λf = κ with κ regular.
(a) Suppose that |J | < λf for each Of -cellular family J . Then there exists a set

{Jδ : δ < γ} of maximal Of -cellular families such that λf = sup{|Jδ| : δ < γ} and
|Jδ1 | < |Jδ2 | whenever δ1 < δ2 < γ. Let Jδ1 be one of these families and let J :=

⋃
Jδ1 . In

the case when λf > κ we choose Jδ1 to be such that |Jδ1 | > κ. Then J ∈ Df by Theorem
2.9(a). Since the cardinality of each optimally essential set is < κ (Lemma 2.27) we have
|J | ≤ κ|Jδ1 | = |Jδ1 | in the case λf > κ, and we have |J | < κ in the case λf = κ and κ is
regular. In either case there exists δ2 > δ1 such that |J | < |Jδ2 |. According to Theorem
2.7(c), K ∩ J �= ∅ for each K ∈ Jδ2 and since the elements of Jδ2 are pairwise disjoint sets,
we get a contradiction with |J | < |Jδ2 |.

(b) According to (a) there is a (maximal) Of -cellular family J such that |J | = λf .
Suppose that there is another maximal Of -cellular family J ′ such that |J ′| < λf . Then
J :=

⋃
J ′ ∈ Df by Theorem 2.9(a) and |J | < λf . According to Theorem 2.7(c), K ∩ J �= ∅

for each K ∈ J and since the elements of J are pairwise disjoint sets, we get a contradiction
with |J | < λf = |J |.

Remark 2.31. To see that when λf < κ we cannot always make the same conclusion as in
Theorem 2.30(b), consider Example 2.1 with |I| = ω and κ = ω1. There, λf = ω and there
are maximal Of -cellular families of every positive cardinality ≤ ω. For each such family J
we have |

⋃
J | = ω, which agrees with Theorem 2.29(c).

For some applications of Theorems 2.29 and 2.30 see [1].
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In the special case κ = ω of Lemma 2.27, the optimally essential sets can be identified
in concrete form.

Lemma 2.32. Let XI be a product space, Y be a subspace of XI that contains a dense (in
Y ) ω-invariant subspace Y ′, Z be a Hausdorff space, and f ∈ C(Y, Z) be a non-constant
function. If J ⊆ I is optimally essential, then |J | = 1. Therefore Jf =

⋃
J for every

J ∈ Jf . Thus, J := {{i} : i ∈ Jf} is the only maximal Of -cellular family, Jf ∈ Df , and if
J ′ ⊂ I is such that J ′ ∈ Df then Jf ⊆ J ′.

Proof. Let J ⊂ I be an optimally essential set. It follows from Lemma 2.27(b) that J is
finite. Let x, y ∈ Y be such that f(x) �= f(y) and J = d(x, y). According to Lemma 2.27(a)
there exist points x̃, ỹ ∈ Y ′ ⊆ Y such that f(x̃) �= f(ỹ) and d(x̃, ỹ) ⊆ J . Since J ∈ Of and
is finite we have d(x̃, ỹ) = J . Assume that |J | > 1. Then it follows from Lemma 2.27(c)
that |J | ≥ ω, which is a contradiction. Therefore |J | = 1, hence Jf =

⋃
J . The final

assertions, that Jf ∈ Df and that Jf ⊆ J ′ whenever J ′ ∈ Df follow directly from Theorem
2.9 and Theorem 2.7.
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