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Abstract. In the discussion of the equivalence between Furuta inequality and Ando-
Hiai inequality, the key is the inequality that if A ≥ B > 0, then

A−r � r
p+r

Bp ≤ I for p, r ≥ 1.

Here �α is the α-geometric mean in the sense of Kubo-Ando. In this note, we assume
that A−r � r

p+r
Bp ≤ I for some p, r ≥ 1 instead of A ≥ B > 0. Then we show that

A−r � δ+r
p+r

Bp ≤ A−r � δ+r
µ+r

Bµ for 0 ≤ δ ≤ µ ≤ p,

and for each t ∈ [0, r]

A−r � δ+r
p+r

Bp ≤ A−t � δ+t
p+t

Bp for − t ≤ δ ≤ p.

As an application, we discuss recent development of grand Furuta inequality due to
Furuta himself.

1. Introduction. A real-valued continuous function on [0,∞) is called operator
monotone if it is order-preserving, i.e.,

A ≥ B ≥ 0 =⇒ f(A) ≥ f(B).

The Löwner-Heinz inequality says that the function tα is operator monotone for α ∈ [0, 1],
cf. [18] and [12]. It induces the α-geometric operator mean defined for α ∈ [0, 1] as

A �α B = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2

if A > 0, i.e., A is invertible, by the Kubo-Ando theory [17]. Incidentally, we use �s for
s �∈ [0, 1] instead of �s because it is not an operator mean.

Now, one of the most interesting operator inequalities related to the α-geometric mean
is the Ando-Hiai inequality [1], say (AH). So we cite it first:

Ando-Hiai inequality. For A,B > 0,

A �α B ≤ 1 ⇒ Ar �α Br ≤ 1 for r ≥ 1.(1)

By the way, one of the motivation of the Ando-Hiai inequality might be the Furuta
inequality, see [2], [7], [9], [10], [14], [15] and [19]:

Furuta inequality. If A ≥ B > 0, then for each r ≥ 0

(A
r
2 BpA

r
2 )

1
q ≤ A

p+r
q
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holds for p ≥ 0 and q ≥ 1 satisfying (1 + r)q ≥ p + r.
Recently, we discussed in [7] the equivalence between the Ando-Hiai inequality and the

Furuta inequality, whose key is that if A ≥ B > 0, then

A−r � r
p+r

Bp ≤ I for p, r ≥ 1.

It is a ”usual order” version of the chaotic Furuta inequality [3]:
log A ≥ log B if and only if

A−r � r
p+r

Bp ≤ I for p, r ≥ 0.

To clarify the difference between the usual order and the chaotic order, i.e., log A ≥ log B,
we point out that the essense of the Furuta inequality is as follows:

(FI) If A ≥ B > 0, then

A−r � 1+r
p+r

Bp ≤ A for p ≥ 1 and r ≥ 0.(2)

2. Recent development of grand Furuta inequality. For reader’s convenience, we
cite the grand Furuta inequality (GFI). It was established by Furuta [11] and interpolates
Ando-Hiai and Furuta inequalities.
(GFI) If A ≥ B > 0 and t ∈ [0, 1], then

[A
r
2 (A− t

2 BpA− t
2 )sA

r
2 ]

1−t+r
(p−t)s+r ≤ A1−t+r

holds for r ≥ t and p, s ≥ 1.
We note that (GFI) for t = 1, r = s (resp. t = 0, s = 1) is just (AH) (resp. (FI)).

For fixed A > 0, B ≥ 0, t ∈ [0, 1] and p ≥ 1, we define an operator function F (λ, µ) by

F (λ, µ) = A−λ � 1−t+λ
(p−t)µ+λ

(A− t
2 BpA− t

2 )µ(3)

for λ ≥ t − 1 and µ ≥ 1−t
p−t .

As another simultaneous extension of (FI) and (AH), we presented the following inequal-
ity in [8] recently.

Theorem A. If A ≥ B ≥ 0 and A > 0, then F (r, s) ≤ F (0, 1), i.e.,

A−r+t � 1−t+r
(p−t)s+r

(At �s Bp) ≤ At � 1−t
p−t

Bp

holds for r ≥ t and s ≥ 1.

If we take t = 0 and s = 1 in Theorem A, then we have the satellite form of (FI), due to
Kamei [14], cf. Kamei-Nakamura [16]:

(SF) If log A ≥ log B for A, B > 0, then

A−r � 1+r
p+r

Bp ≤ B for p ≥ 1 and r ≥ 0,(4)

which means that Theorem A interpolates (AH) with (SF) instead of (FI). Motivated by
Theorem A, Furuta [13] showed the following inequality including both (GFI) and Theorem
A very recently.

Theorem 1. (Furuta) Let F (λ, µ) be as in above for fixed A > 0, B ≥ 0, t ∈ [0, 1]
and p ≥ 1. If A ≥ B ≥ 0, then

(i) F (r, w) ≥ F (r, 1) ≥ F (r, s) ≥ F (r, s′)

holds for r ≥ t, w ∈ [ 1−t
p−t , 1] and s′ ≥ s ≥ 1, and

(ii) F (q, s) ≥ F (t, s) ≥ F (r, s) ≥ F (r′, s)
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holds for q ∈ [t − 1, t], s ≥ 1 and r′ ≥ r ≥ t.

We would like to mention that Theorem 1 is surprising from the viewpoint of Tanahashi’s
work [20] on the best possibility of (GFI).

3. Operator inequalities of Ando-Hiai type. In this section, we propose operator
inequalities of Ando-Hiai type. We will point out that Theorem 1 is reduced to our Ando-
Hiai type theorem mentioned in the below.

For the sake of convenience, we cite a useful lemma which we will use frequently in the
below.

Lemma 2. For X, Y > 0 and a, b ∈ [0, 1],
(i) transposition: X �a Y = Y �1−a X,
(ii) multiplicativity: X �ab Y = X �a (X �b Y ).

Now we prepare the following lemma:

Lemma 3. If A−r � r
p+r

Bp ≤ I for some p, r ≥ 0, then

(i) A−r � δ+r
p+r

Bp ≤ Bδ for 0 ≤ δ ≤ p,

(ii) A−r �λ+r
p+r

Bp ≤ Aλ for −r ≤ λ ≤ 0.

Proof. We can prove them by the use of Lemma 2. For (i), we note that

A−r � δ+r
p+r

Bp = Bp � p−δ
p+r

A−r = Bp � p−δ
p

(Bp � p
p+r

A−r).

Since Bp � p
p+r

A−r = A−r � r
p+r

Bp ≤ I by the assumption, we have

A−r � δ+r
p+r

Bp ≤ Bp � p−δ
p

I = I � δ
p

Bp = Bδ.

Similarly, if −r ≤ λ ≤ 0, then we have

A−r �λ+r
p+r

Bp = A−r �λ+r
r

(A−r � r
p+r

Bp) ≤ A−r �λ+r
r

I = I �−λ
r

A−r = Aλ,

which shows (ii).

We here state our main theorem:

Theorem 4. Suppose that A−r � r
p+r

Bp ≤ I for some p, r ≥ 0. Then (i) for each
δ ∈ [0, p]

A−r � δ+r
p+r

Bp ≤ A−r � δ+r
µ+r

Bµ for µ ∈ [δ, p],

(ii) for each t ∈ [0, r]

A−r � δ+r
p+r

Bp ≤ A−t � δ+t
p+t

Bp for δ ∈ [−t, p].

Proof. The former (i) follows from Lemma 2 (ii) and Lemma 3 (i) that

A−r � δ+r
p+r

Bp = A−r � δ+r
µ+r

(A−r �µ+r
p+r

Bp) ≤ A−r � δ+r
µ+r

Bµ.

The latter (ii) is obtained by Lemma 2 (ii) as follows:

A−r � δ+r
p+r

Bp = Bp � p−δ
p+r

A−r = Bp � p−δ
p+t

(Bp � p+t
p+r

A−r)

= Bp � p−δ
p+t

(A−r �−t+r
p+r

Bp) ≤ Bp � p−δ
p+t

A−t = A−t � δ+t
p+t

Bp.
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4. Lemma related to a generalized Ando-Hiai inequality. In this section,
we prepare two lemmas in order to apply Theorem 4 to Theorem 1. The first one is a
generalized Ando-Hiai inequality itself, see [5] and [6].

Lemma 5. If A �α B ≤ I for some A, B > 0 and α ∈ [0, 1], then

(i) Ar � αr
αr+1−α

B ≤ I for r ≥ 1,

(ii) A � α
α+(1−α)s

Bs ≤ I for s ≥ 1,

(iii) Ar � αr
αr+(1−α)s

Bs ≤ I for r, s ≥ 1.

As prologue of a proof of Theorem 1, we put

B1 = (A− t
2 BpA− t

2 )
1

p−t(5)

for fixed A > 0, B ≥ 0, t ∈ [0, 1] and p ≥ 1. Then we remark that the operator function
F (λ, µ) is expressed as

F (λ, µ) = A−λ � 1−t+λ
(p−t)µ+λ

B
(p−t)µ
1 ,

and we have the following lemma connecting Theorem 1 with Theorem 4.

Lemma 6. Notation as in above. If A ≥ B ≥ 0, then

(i) A−r � r
p−t+r

Bp−t
1 ≤ I for r ≥ t,

(ii) B
(p−t)s
1 � (p−t)s+q

(p−t)s+t

A−t ≤ A−q for q ∈ [t − 1, t].

Proof. Since A ≥ B ≥ 0 and t ∈ [0, 1], Löwner-Heinz inequality ensures that At ≥ Bt,
so that

(†) A−t � t
p

Bp−t
1 = A− t

2 BtA− t
2 ≤ I.

Applying (i) in Lemma 5 for r1 = r
t and α = t

p , we have

A−r � r
p−t+r

Bp−t
1 = (A−t)r1 � αr1

1−α+αr1
Bp−t

1 ≤ I.

On the other hand, since it has been proved that (At �s Bp)
1

(p−t)s+t ≤ B ≤ A in [2; Theorem
2], we have

A−t � 1
(p−t)s+t

B
(p−t)s
1 = A− t

2 (At �s Bp)
1

(p−t)s+t A− t
2 ≤ A1−t.

Therefore it follows from Lemma 2 that

B
(p−t)s
1 � (p−t)s+q

(p−t)s+t

A−t = A−t � t−q
(p−t)s+t

B
(p−t)s
1

= A−t �t−q (A−t � 1
(p−t)s+t

B
(p−t)s
1 )

≤ A−t �t−q A1−t = A−q,

which proves (ii).

Now we give a proof of Theorem 1, in which Theorem 4 is the main tool and Lemma 6
is the starting point of a proof.
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Proof of Theorem 1. (i) By Lemma 6 (i), we know that A−r � r
p−t+r

Bp−t
1 ≤ I. So we

take δ = 1 − t, p1 = p − t and µ = (p − t)w in Theorem 4. Since 0 ≤ δ ≤ µ ≤ p1 by the
assumption, it implies that

F (r,w) = A−r � 1−t+r
(p−t)w+r

B
(p−t)w
1 ≥ A−r � 1−t+r

p−t+r
Bp−t

1 = F (r, 1).

Successively we take δ = 1− t, p1 = (p− t)s and µ = p− t. Then we have 0 ≤ δ ≤ µ ≤ p1

by p, s ≥ 1 and so the second inequality of (i) is obtained by Theorem 4 (i).
Finally we take δ = 1 − t, µ = (p − t)s and p1 = (p − t)s′. Then 0 ≤ δ ≤ µ ≤ p1 by

s′ ≥ s ≥ 1 and so the final inequality of (i) holds.
(ii) The first inequality follows from Lemma 2 and Lemma 6 (ii). As a matter of fact,

we have

F (t, s) = A−t � 1
(p−t)s+t

B
(p−t)s
1

= B
(p−t)s
1 � (p−t)s−1+t

(p−t)s+t

A−t

= B
(p−t)s
1 � (p−t)s−1+t

(p−t)s+q

(B(p−t)s
1 � (p−t)s+q

(p−t)s+t

A−t)

≤ B
(p−t)s
1 � (p−t)s−1+t

(p−t)s+q

A−q

= A−q � 1−t+q
(p−t)s+q

B
(p−t)s
1 = F (q, s).

Next we prove the second inequality by applying Theorem 4 (ii). For this, we have to
obtain the inequality

A−r � r
(p−t)s+r

B
(p−t)s
1 ≤ I.

Fortunately it is implied by applying Lemma 5 (ii) to Lemma 6 (i) and α
(1−α)s+α = r

(p−t)s+r

for α = r
p−t+r . We here put p1 = (p − t)s for convenience. Then it is rephrased as

A−r � r
p1+r

Bp1
1 ≤ I.

Hence it follows from Theorem 4 (ii) that

A−r � δ+r
p1+r

Bp1
1 ≤ A−t � δ+t

p1+t
Bp1

1

and putting δ = 1 − t,

F (r, s) = A−r � 1−t+r
p1+r

Bp1
1 ≤ A−t � 1

p1+t
Bp1

1 = F (t, s).

Finally we apply Lemma 5 (iii) for α = r
p−t+r , r1 = r′

r ≥ 1 and s ≥ 1 to Lemma 6 (i).
Then

A−r′
� r′

(p−t)s+r′
B

(p−t)s
1 = (A−r)r1 � αr1

(1−α)s+αr1
B

(p−t)s
1 ≤ I.

Therefore it follows from Theorem 4 (ii) for δ = 0 that

F (r′, s) = A−r′
� r′

(p−t)s+r′
B

(p−t)s
1 ≤ A−r � r

(p−t)s+r
B

(p−t)s
1 = F (r, s),

which completes the proof.

Remark 7. From our viewpoint, we review Theorem A by proving it. As a matter of
fact, Lemma 6 (i) is extended by Lemma 5 (iii) as follows:

Notation as in Lemma 6. If A ≥ B ≥ 0, then

A−r � r
(p−t)s+r

B
(p−t)s
1 ≤ I for r ≥ t and s ≥ 1.
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Furthermore Theorem 4 (i) implies that

A−r � δ+r
p1+r

Bp1
1 ≤ A−r � δ+r

µ+r
Bµ

1

for 0 ≤ δ ≤ µ ≤ p1 = (p − t)s.
Therefore we have Theorem A by taking δ = 1 − t in above.
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