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In 1989, H.-J. Hoehnke and I began to collaborate on a question I had posed on the
group determinant of Dedekind and Frobenius. Very few modern accounts of representation
theory give a thorough account of Frobenius’ early work on group matrices and the group
determinant, which led to group representation theory, but there are accounts in [5], [7],
[8], [9] , [14], [15].

Our work relied heavily on Hoehnke’s great expertise in the theory of norm forms. Frobe-
nius’ construction of an irreducible factor of the group determinant from the character χ of
an irreducible representation involved the construction of a series of ”k-characters” χ(k) :
Gk → C. Each factor of the group determinant is a multiplicative norm form and this was
the connection with Hoehnke’s work. His approach to constructive algebra could be applied
to answer not only the original question of whether the group determinant determines its
group (first proved by Formanek and Sibley after Hoehnke’s ideas were communicated to
them) but that the 1-,2- and 3-characters of any representation which contained at least
one copy of each irreducible representation determined a group, see [11], [12]. The result
was an answer to one of the questions of Brauer in [1] : which information in addition to
the character table determines a group? Other sets of invariants which determine a group
were given by Roitman and Gallagher, and in [13] it was possible to describe these in terms
of k-characters.

This demonstrates a close connection between group representation theory and the mul-
tiplicative norm form work of Hoehnke and the school of A. Bergmann. Hoehnke described
the use of norm forms and associated objects as similar to the use by Felix Klein of invariant
theory as a substitute for group representations in his work on the solution of equations
[16]. While the k-characters have not yet provided new tools within finite group theory,
there are indications that in several of the areas in which group representations are applied
they have advantages over traditional tools. A few examples are given below.

(1) The problem of how, given a group class function it can be decided whether it is a
character of a representation was given a solution by Helling in [10]. Helling’s criterion can
be restated in terms of k-characters: a class function f is a character if and only if fk = 0
for some positive integer k, where the definition of fk proceeds exactly as for k-characters
(the underling field needs to be algebraically closed). This criterion appeared in work of
Wiles and Taylor in papers leading up to the Fermat theorem. For any finite dimensional
representation of a group they define a pseudocharacter to be a class function f for which
fk = 0 for some k and use pseudocharacters instead of genuine representations (for fields
which are not algebraically closed) see [22], [18], [17].

(2) Vazirani in [19] has built on the generalisations of k-characters first appearing in [13]
to describe connections with Schur functions, combinatorics and other aspects of represen-
tation theory.

(3) In [2] Buchstaber and Rees use k-characters to produce a constructive proof of
a generalisation of the theorem of Gelfand and Kolmogorov which identifies a compact
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Hausdorff space X with space of maximal ideals of the ring of continuous functions on X
and later in [3] produce a new proof of the above theorem. They also prove that for a
suitable trace function f on a Frobenius algebra f (1),f (2) and f (3) determine the structure
constants of the associated Jordan algebra, which leads to a more elementary proof of the
result on 3-characters mentioned above. See also [4].

(4) In [6] Cooper and Walsh introduce the group determinant of a group G in geometric
work on 3-manifolds.

(5) Wavelets. Waldron and collaborators ( [21], [20]), use the gram matrix of a tight
frame in their work on wavelets. This is a version of the group matrix of the symmetry
group.

I think that the effects of Hoehnke’s insight in this area are only beginning to appear.
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