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COMMUTATION OF GEOMETRIC REALIZATION FUNCTOR AND
FINITE LIMITS
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Abstract. The classic geometric realization functor | − | : S�op �� KTop , where

S is the category of sets, S�op
is the category of simplicial sets, and KTop is the cate-

gory of compactly generated Hausdorff topological spaces, is generalized to the functor

| − |Y : S�op �� A , where A is a category geometric over S via f and Y forms a

discrete fibration over f∗�op, in Cat(A), via g. It is shown that, under certain assump-
tions on A, f and g, this generalized functor commutes with finite limits if the collection
of the inclusions of the boundary Ẏ0n of Y0n into Y0n is strongly initial. It is further
shown, for certain geometric categories A over sets, in particular for the categories Fco,
ConsF co, Con, Lim, PsT , Born, and PreOrd, that initiality of the inclusion of the
boundary Ẏ0n of Y0n into Y0n guarantees commutation of the geometric realization
functor and finite limits.

1. Preliminaries

Let A be a category with finite limits and coequalizers of reflexive pairs and f : A �� S
be a geometric morphism. The direct and inverse images of the geometric morphism
f : A �� S are denoted by f∗ : A �� S and f∗ : S �� A , respectively, see [4] p 26.

Let g : Y �� f∗�op be a discrete fibration in Cat(A), see [4] p 50, where Y is an internal
category in A, and � is the category of finite ordinals regarded as an internal category in
S. Let S�op

denote the category of simplicial sets which we regard as discrete opfibrations
over �op, see [4] p50. Similarly Af∗�op

denotes the category of discrete opfibrations over
f∗�op, etc.

The functor f∗ : S �� A induces a functor, which is still denoted by f∗, from the

category S�op

to the category Af∗�op

. The discrete fibration g : Y �� f ∗ �op yields
the pullback functor along g, which we denote by g∗, from the category Af∗�op

to the
category AY . Let ColimY : AY �� A be the Lim−→ Y

defined in [4], p 51, and define:

1.1. Definition: The geometric realization functor, denoted by |− |Y is defined to be the
composition:

S�op f∗
�� Af∗�op g∗

�� AY
ColimY �� A

In this paper we assume | − |Y preserves colimits. Conditions that guarantee | − |Y has
a right adjoint, see [5], and therefore preserves colimits are given in [6] p 5, Theorem 2.4.

1.2. Definition:
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(i) A discrete fibration γ : G �� f∗C is said to be f -flat if f∗G is filtered and the pullback

of dG : KG
�� G0 × G0 along any map of the form (γ0×γ0)∗f∗(k), where k ∈ S/(C0×C0)

is an extremal epi.
(ii) By a simplex structure in A is meant an f -flat discrete fibration over f∗�op.

1.3. Lemma: If for each a ∈ A, a ×− : A �� A preserves extremal epis, f∗ preserves

reflexive coequalizers, and reflects monos and terminals, and g : Y �� f∗�op is a simplex
structure, then | − |Y preserves finite products and terminals.

Proof: Since f∗ preserves pullbacks and reflexive coequalizers, it follows that f∗ of the
i-map of α is the i-map of f∗ of α, for any morphism α in A, see [3] p 1. On the other hand
in the category S, the i-maps are monos, see [4] p 40, and f∗ reflects monos by hypothesis.
Thus in A the i-maps are monos. So A is an admissible category, see [3] p 3, and therefore
in A a map is an e.e. if and only if it is a coequalizer, see [3] Lemma 2.1. The proof now
follows from Theorem 2.4 of [6], p 5.

�

2. The standard n-simplex

Let n : 1 �� �� N be a natural number. Form the following pullbacks to get �1(−, n)
and �2(−, n):

�1(−, n)

pb

��

i1n

��

1

n

��
�1

d1

�� N

�2(−, n)
π2n

pb

��

i2n

��

�1(−, n)

i1n

��
�2

π2

pb

��

π1

��

�1

d0

��
�1

d1

�� N

Diagram I

Define the internal category �[n] in S as �[n]0 = �1(−, n),�[n]1 = �2(−, n) and let

�[n]1
d0 ��

d1

�� �[n]0 be the morphisms �2(−, n)
π2n ��
mn

�� �1(−, n) respectively, where mn =

(mi2n, !) is induced by the multiplication m : �2
�� �1 , and the unique morphism

! : �[n]1 �� 1 .
A straightforward computation shows that the diagrams:

�[n]1
d0 ��
d1

��

π1i2n

��

�[n]0

d0i1n

��
�1

d1 ��
d0

�� N

commute, and the diagram with the upper maps is in fact a pullback diagram. This
shows that �[n] : �� �op is a discrete opfibration.

2.1. Definition: The discrete opfibration : �[n] �� �op , in S�op

, is called standard
n-simplex. Note that this is just the standard n-simplex defined in [1], p25, regarded as a
discrete opfibration over �op.
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2.2. Lemma: |�[n]|Y = Y0n, where Y0n is the pullback of f∗(n) : 1 �� f∗N along

g0 : Y0
�� f∗N .

Proof: Since | − |Y = ColimY ◦ g∗ ◦ f∗, apply f∗ to �[n] and pullback along g to get the

pair Y2n

π1n ��
mn

�� Y1n as the following diagram shows:

Y2n
g2n ��

π1n

��
mn ��

i2n

��

f∗�2(−, n)
f∗π2n

��f∗mn ��
f∗i2n

��

Y1n
g1n ��

i1n

��

f∗�1(−, n)

f∗i1n

��

Y2
g2 ��

π1

��m
��

π2

��

f∗�2

f∗π2

��f∗m 		
f∗π1

��

Y1
g1 ��

d1

��

f∗�1

f∗d0

��

Y1
g1 ��

d0

��d1 ��

f∗�1

f∗d1

��f∗d0 		
Y0

g0 �� f∗N

Diagram II

So |�[n]|Y =Coeq(Y2n

π1n ��
mn

�� Y1n).

On the other hand Y2

π1 ��
m

�� Y1
d0 �� Y0 is a coequalizer, since d0π1 = d0m, and if a

morphism h is given such that hπ1 = hm, then h = hm(i × 1) = hπ1(i × 1) = hid0. Thus
h factors through d0 uniquely.

The map d0 : Y1
�� Y0 induces a map d0n : Y1n

�� Y0n such that the diagram:

Y1n
d0n

pb

��

i1n

��

Y0n

i0n

��
Y1

d0

�� Y0

Diagram III

is a pullback diagram.
Let i : Y0

�� Y1 be the inclusion of identities. Since d0i = 1, and Diagram III is a

pullback diagram, it follows that there is a unique map in : Y0n
�� Y1n such that (1)

d0nin = 1, and i1nin = ii0n. The squares f∗i1n ◦f∗mn = f∗m◦f∗i2n, f∗i2n ◦g2n = g2 ◦ i2n,
and f∗i1n ◦ g1n = g1 ◦ i1n of Diagram II are pullbacks, therefore so is the square:

Y2n
mn

pb

��

i2n

��

Y1n

i1n

��
Y2 m

�� Y1
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Diagram IV

Since m(i × 1) = 1, Diagram IV yields a unique map γn : Y1n
�� Y2n such that (2)

i2nγn = (i × 1)i1n, and mnγn = 1. Equations (1) and (2), and Diagrams II and III, imply
(3) π1nγn = ind0n. From Diagrams II and III, it follows that d0nπ1n = d0nmn. Equations
(2) and (3) imply that any map h that coequalizes π1n and mn factors uniquely through

d0n. Hence Y2n

π1n ��
mn

�� Y1n
d0n �� Y0n is a coequalizer, which proves |�[n]|Y = Y0n.

�
2.3. Definition:

(i) The boundary of the standard n-simplex, �[n], is defined to be �̇[n] = Skn−1�[n], see
[1] p 29.
(ii) The boundary of Y0n is defined to be Ẏ0n = |�̇[n]|Y .

2.4. Remark: For any simplicial set X , and for each n in N , there is an inclusion
in : SknX �� �� X of SknX into X , see [1] p 30. It follows by Definition 2.3 that there

is an inclusion in : �̇[n] �� �� �[n] of the boundary of �[n] into �[n].

2.5. Lemma: If f∗ : A �� S preserves reflexive coequalizers, and f∗Y is filtered, then

f∗| − |Y : S�op �� S preserves equalizers.

Proof: f∗ preserves finite limits and reflexive coequalizers. It follows that all the squares
in the following diagram commute.

S�op f∗
�� Af∗�op g∗

///

��

f∗
��

AY
ColimY

///

��

f∗
��

A

f∗
��

Sf∗f∗�op

[f∗(g)]∗
�� Sf∗Y

Colimf∗Y

�� S

Diagram V

Since f∗f∗ : S �� S preserves equalizers, so does f∗f∗ : S�op �� Sf∗f∗�op . The
functor [f∗(g)]∗ is the pullback functor along f∗(g), and so preserves equalizers, see [4] p 35.
Colimf∗Y : Sf∗Y �� S preserves equalizers, since f∗Y is filtered, see [4] p 70, Theorem
2.58. So by Diagram V, and Definition 1.1, f∗| − |Y preserves equalizers.

�
2.6. Corollary: If f∗ preserves reflexive coequalizers, reflects monos, and f∗Y is filtered,

then there is a mono in : Ẏ0n
�� �� Y0n , for each n in N .

Proof: By Remark 2.4, there is a mono in : �̇[n] �� �� �[n] . Apply the geometric

realization functor to get in : |�̇[n]|Y �� �� |�[n]|Y . By Definition 2.3 (ii), and Lemma

2.2, we obtain a map in : Ẏ0n
�� Y0n .

Since a mono in any topos is an equalizer, see [4] p 27, and since S�op

is a topos,
see [4] p 55, it follows that in : �̇[n] �� �� �[n] in S�op

is an equalizer. Lemma 2.5

implies that f∗(in) : f∗Ẏ0n
�� f∗Y0n is a mono. f∗ reflects monos by hypothesis, thus

in : Ẏ0n
�� Y0n is a mono.

�
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3. Strong Initiality

3.1. Definition:
(i) Given collections {an : n ∈ N or n = −1}, and {bn : n ∈ N} of objects of a category B,
and a collection {αn : bn

�� �� an } of monomorphisms of B, we say the collection {αn} is
composable if:
(a) for all n ∈ N , bn = an−1, and
(b) there is an object a, and monomorphisms in : an

�� �� a such that inαn = in−1, and

if there is an object b, and monomorphisms jn : an
�� �� b such that jnαn = jn−1, then

there is a unique morphism φ : a �� b such that φin = jn.
If the collection {αn} is composable, we say the composition of {αn}, denoted by

Comp{αn}, is the morphism i−1 : a−1
�� �� a of (b).

(ii) Let R be the image of S�op

under the geometric realization functor | − |Y . A collection
{|αn|Y : bn

�� �� an } of monos of R is said to be | − |Y -composable if the collection {αn}
is a composable collection of monos in S�op

.

3.2. Lemma: Let {αn : bn
�� �� an } be a collection of monos in S�op

. If {|αn|Y } is

| − |Y -composable, then it is composable and Comp{|αn|Y } = |Comp{αn}|Y .

Proof: If {|αn|Y } is | − |Y -composable, then {αn} is composable. Since composition is a
colimit, and | − |Y preserves colimits the rest follows.

�
3.3. Notation: Let α : a �� b , and σ : �a

Σ
�� c be morphisms in A, where �

Σ
de-

notes the coproduct over a set Σ. If the pushout of �α
Σ

: �a
Σ

�� �b
Σ along σ : �a

Σ
�� c

exists, we denote it by α(Σ, σ).

3.4. Definition:
(i) A morphism α : a �� b of A is said to be initial with respect to f∗, if given a morphism
β : c �� b in A, and a map h : f∗c �� f∗a in S, such that f∗α ◦ h = f∗β, then h can

be lifted, that is, there is a map h : c �� a such that f∗h = h, and α ◦ h = β.
(ii) Let R be the image of S�op

under the geometric realization functor | − |Y . A collection
{αn : an �� �� bn

} of monos of R is siad to be strongly initial if whenever sets Σn, and

morphisms σn in R are given such that the collection {αn(Σn, σn)} is a | − |Y - composable
collection of monos, then the composition of {αn(Σn, σn)} is initial with respect to f∗.

3.5. Lemma: Let R be the image of S�op

under the |− |Y . Suppose f∗ : A �� S pre-
serves reflexive coequalizers, reflects monos, and f∗Y is filtered. The geometric realization
functor preserves equalizers if and only if the collection {in : Ẏ0n

�� �� Y0n
} of monos of

R is strongly initial.

Proof: ⇒ : Suppose the functor | − |Y preserves equalizers. Let sets Σn, and morphisms
|σn| in R be given such that the collection {in(Σn, |σn|)} is | − |Y -composable. Then the
collection {in(Σn, σn)} is composable, and by Lemma 3.2 we have:

|Comp{in(Σn, σn)}|Y = Comp{in(Σn, |σn|)}
The morphism Comp{in(Σn, σn)} is a mono in S�op

and therefore an equalizer. | − |Y
preserves equalizers by hypothesis. So Comp{in(Σn, |σn|)} is an equalizer. It is easy to
show that equalizers in A are initial with respect to f∗. It follows that Comp{in(Σn, |σn|)}
is initial with respect to f∗. This proves {in : Ẏ0n

�� �� Y0n
} is strongly initial.



336 S. N. HOSSEINI

⇐ : Suppose the collection {in : Ẏ0n
�� �� Y0n

} is strongly initial. Let α : E �� �� F be

an equalizer in S�op

. There exist sets Σn, and morphisms σn in S�op

, see [1] p 50, such
that the following diagram is a pushout in S�op

.
∐

Σn

�̇[n] σn

po

��

�

Σn

in

��

E ∪ Skn−1F

in(Σn,σn)

��∐

Σn

�[n] �� E ∪ SknF

Since the functor |− |Y preserves colimits, Lemma 2.2 and Definition 2.3 (ii) imply that the
following diagram is a pushout in A.

∐

Σn

Ẏon
|σn|

po

��

�

Σn

in

��

|E ∪ Skn−1F |

in(Σn,|σn|)
��∐

Σn

Y0n �� |E ∪ SknF |
It is easy to show {in(Σn, σn)} is composable in S�op

with composition α : E �� �� F .

It follows that {in(Σn, |σn|)} is |− |Y -composable with composition |α| : |E| �� �� |F | . So
|α| is initial with respect to f∗.
On the other hand by Lemma 2.5, f∗|α| is an equalizer. It then follows easily that |α| is an
equalizer.

�
3.6. Theorem: If:

(1) for all a ∈ A, the functor a ×− : A �� A preserves e.e.’s.

(2) f∗ : A �� S preserves reflexive coequalizers, reflects monos and terminals.

(3) g : Y �� f∗�op is a simplex structure, and,
(4) the collection {in : Ẏ0n

�� �� Y0n
} is strongly initial,

then the geometric realization functor commutes with finite limits.

Proof: Preservation of finite products and terminals follows from Lemma 1.3. Preserva-
tion of equalizers follows from Lemma 3.5.

�

4. Applications

The categories Fco, ConsFco, Con, Lim, PsT , Born, and PreOrd are topological over
the category S of sets. See [7], [8], and [2]. Furthermore the forgetful functor U : A �� S ,
where A is one of the above mentioned categories, has a left adjoint D : S �� A called
the discrete functor. D preserves finite limits, that is the pair, (U, D) forms a geometric
morphism. See [6] Section 5. Also U has a right adjoint, (the functor that defines the
indiscrete structure on a set X), and therefore preserves colimits.

In this section we let A denote one of the categories Fco, ConsFco, Con, Lim, PsT ,
Born, or PreOrd, and we apply the previous results to the geometric morphism (U, D)
with a given discrete fibration g : Y �� D�op in Cat(A).

Let Σ be a set and for each σ ∈ Σ, let aσ be an object of A and let νσ : aσ �� �aσΣ

be the injection of the coproduct. If aσ = a for all σ ∈ Σ, we refer to the coproduct �a
Σ

as
the copower of a over Σ.
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4.1. Lemma: For any set Σ, the copower of an initial mono in A, over Σ, is an initial
mono.

Proof: We first show that monos are preserved under copower. Let α : X �� Y be a
mono in A. Since U preserves colimits, it follows that U(�α

Σ
) ≡ �U(α)

Σ
. Since U preserves

monos, U(α) is a mono. In the category S, the functor �
Σ

is easily seen to preserve monos.
It follows that U(�α

Σ
) ≡ �U(α)

Σ
is a mono. Since U reflects monos, �α

Σ
is a mono.

To show that initial monos are preserved we look at each category separately.
(1) A = Fco. Let α : (X, CX) �� �� (Y, CY ) be an initial mono. to show that the

monomorphism β = �α
Σ

: (�X
Σ

, CX) �� �� (�Y
Σ

, CY ) is initial, let F be a filter on �X
Σ

,

such that [βF ] is in CY (α(x), σ). By [7], 3.2.2., we need to show F is in CX(x, σ). Since
[βF ] belongs to CY (α(x), σ), by [7], 3.2.3, it follows that there is E in CY (α(x)), such that
νσ(E) ⊆ [βF ]. It is easy to show [α−1E] is a filter, and since α is initial that it belongs to
CX(x). So [νσ[α−1E]] is in CX(x, σ). But we have [νσ[α−1E]] = [νσα−1E], and since the
diagram

X
α

pb

��

νσ

��

Y

νσ

��∐

Σ

X
β

��
∐

Σ

Y

is a pullback, it follows that [νσα−1E] = [β−1νσE]. So we have [νσ[α−1E]] = [β−1νσE] =
[β−1[νσE]] ⊆ [β−1βF ] = F . Hence F is in CX(x, σ).
(2) For A = ConsFco, Con, and Lim, the proof is similar.
(3) For A = PsT , let α : X �� �� Y be an initial mono. To show that the monomorphism

β = �α
Σ

: (�X
Σ

, CX) �� �� (�Y
Σ

, CY ) is initial, let F be in F (X) such that [βF ] belongs to

CY (α(x), σ). We need to show F belongs to CX(x, σ). Let G be an ultrafilter containing F .
Then the ultrafilter [βG] contains [βF ] and therefore belongs to C(α(x), σ). By [7], 3.2.9,
there is an ultrafilter E in CY (α(x)) such that [νσ(E)] = [β(G)]. Initiality of α implies
[α−1(E)] is in CX(x). Therefore [νσ[α−1E]] = [νσα−1E] = [β−1νσE] = [β−1βG] = G
belongs to CX(x, σ). Hence any ultrafilter containing F is in CX(x, σ), therefore so is F .
(4) For A = Born, let α : (X, B) �� �� (Y, C) be an initial mono. To show that the

monomorphism β = �α
Σ

: (�X
Σ

, B) �� �� (�Y
Σ

, C) is initial, let D be a subset of �X
Σ

such

that β(D) is in C. By [7], 3.3.2, we need to show D is in B. By [7], 3.3.3, there are a finite
number of sets Mi in C such that β(D) ⊆ ∪νσi(Mi)

i
. This implies that D = β−1β(D) ⊆

β−1(∪νσi (Mi)
i

) = ∪(β−1νσi(Mi))
i

= ∪νσiα
−1(Mi)

i
. Initiality of α implies that α−1(Mi) is

in B, therefore νσiα
−1(Mi) is in B for all i, and so is the finite union ∪νσiα

−1(Mi)
i

. But

D ⊆ ∪νσiα
−1(Mi)

i
, therefore D is in B.

(5) Finally for A = PreOrd , let α : (X,≤) �� �� (Y,≤) be an initial mono. To show

β = �α
Σ

: (�X
Σ

,≤) �� �� (�Y
Σ

,≤) is initial, let (x, σ), and (x′, σ′) belong to �X
Σ

such that

(α(x), σ) ≤ (α(x′), σ′). By [7], 3.1.2, we need to show (x, σ) ≤ (x′, σ′). By [7], 3.1.3,
(α(x), σ) ≤ (α(x′), σ′), which in the present situation implies α(x) ≤ α(x′) and σ = σ′.
Initiality of α implies x ≤ x′. Therefore, again by applying the result of [7], 3.1.3, (x, σ) ≤
(x′, σ′) in �X

Σ
.

�
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4.2. Lemma: The pushout of an initial mono in A along any map is an initial mono.

Proof: We first show that monos are preserved under pushout. Let α : X �� Y be
a mono in A. Let σ : X �� Z be any morphism in A. Form the following pushout
diagram:

X
σ

po

��

α

��

Z

β

��
Y

δ
�� T

Diagram I

Since U : A �� S preserves colimits, applying U to the above diagram we get a
pushout diagram in S. By [4], Lemma 1.31, it follows that Uβ, and thus β is a mono,
since U reflects monos.

To show pushout preserves initial monos, we consider each category separately.
(1) A = Fco. Let α : (X, C) �� �� (Y, C) be an initial mono, and σ : (X, C) �� (Z, C)
be any morphism in Fco. Suppose Diagram I is a pushout in Fco. To show β is initial, let
F be a filter on Z such that [βF ] belongs to CT (β(z)). By [7], 3.2.2, we need to show F
belongs to CZ(z), Since {δ, β} is a final epi-sink, by [7], 3.2.3, it follows that either:
(i) There is a z′ in Z, and E in C(z′) such that β(z′) = β(z) and β(E) ⊆ [βF ] or
(ii) There is a y in Y and E in C(y) such that δ(y) = β(z) and δ(E) ⊆ [βF ].

If (i) is the case, then z = z′ and it easily follows that E ⊆ F . Therefore F ∈ β(z) since
E is. If (ii) is the case, by [4], Lemma 1.28, there is a unique x in X such that α(x) = y
and σ(x) = z. Since α is initial, it follows that [α−1E] is in CX(x), and so [σα−1E] is in
CZ(z). But [σα−1E] = [β−1δE] ⊆ [β−1βF ] = F , hence F is in CZ(z).
(2) For A = ConsFco or Con the proof is similar to (1).
(3) For A = Lim, suppose Diagram I is a pushout in Lim. To show β is initial, let F be
a filter on z such that [βF ] is in C(β(z)). By [7], 3.2.1, we need to show F is in C(z). By
[7], 3.2.6, there are a finite number of yi’s in Y , zi’s in Z, Ei’s in C(yi), and Fi’s in C(zi)
such that δ(yi) = β(z), β(zi) = β(z), and ∩[δEi]

i
∩ ∩[βFi]

i
⊆ [βF ]. δ(yi) = β(z) implies

there is xi in X such that α(xi) = yi and σ(xi) = z. β is a mono, therefore zi = z, and so
Fi is in C(z) for all i. Let F ′ = ∩Fi

i
, it follows that F ′ is in C(z), [βF ′] = ∩[βFi]

i
, and (*)

∩[δEi]
i

∩ [βF ′] ⊆ [βF ].

On the other hand initiality of α implies that α−1Ei is in C(xi) and so [σα−1Ei] is in
C(z). Hence ∩[σα−1Ei]

i
∩ F ′ is in C(z).

If K is in ∩[σα−1Ei]
i

∩F ′, then there are Gi ∈ Ei such that σα−1(Gi) ⊆ K, and K ∈ F ′.

Let G = ∪Gi
i

, it follows that σα−1(G) ⊆ K. Therefore β−1δ(G) ⊆ K ∈ F ′. Since Gi ⊆ G,

it follows that G ∈ Ei, for all i. Hence δ(G) belongs to ∩[δ(Ei)]
i

. Also β(K) ∈ [βF ′]. It

follows that δ(G)∪β(K) belongs to ∩[δ(Ei)]
i

∩[β(F ′)], and so by (*) it belongs to [β(F )]. But

β−1(δ(G) ∪ β(K)) ⊆ K. Therefore K ∈ β−1[βF ] = F . This proves ∩[σα−1(Ei)]
i

∩ F ′ ⊆ F .

Hence F belongs to C(z).
(4) A = PsT . Suppose Diagram I is a pushout in PsT . To show β is initial, let F be a
filter on Z such that [βF ] is in C(β(z)). By [7], 3.2.2, we need to show F is in C(z), which
follows if we show any ultrafilter F ′ containing F is in C(z). So let F ′ be an ultrafilter
containing F . It easily follows that [βF ′] is an ultrafilter containing [βF ]. Since [βF ] is in
C(β(z)), by [7], 3.2.9, it follows that either:
(i) There is z′ in z and an ultrafilter E in C(z′) such that β(z′) = β(z) and [βF ′] = [βF ] or
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(ii) There is y in Y and an ultrafilter E in C(y) such that δ(y) = β(z) and [δE] = [βF ′].
If (i) is the case, then z′ = z and F ′ = E is in C(z). If (ii) is the case, then there is x

in X such that α(x) = y and σ(x) = z. Since α is initial, it follows that [α−1E] is in C(x),
and so [σα−1E] is in C(z). But F ′ = [β−1βF ′] = [β−1δE] = [σα−1E], and so F ′ belongs
to C(z).
(5) A = Born. Suppose Diagram I is a pushout in Born. To show β is initial, let B ⊆ Z and
β(B) ∈ BT . By [7], 3.3.2, we need to show B ∈ BZ . By [7], 3.3.3, there is M in BY and N
in BZ such that β(B) ⊆ δ(M)∪β(N). It follows that B ⊆ β−1δ(M)∪N . Since α is initial,
it follows that α−1(M) is in BX , and so σα−1(M) is in BZ . But σα−1(M) = β−1δ(M),
and B ⊆ β−1δ(M) ∪ N , hence B is in BZ .
(6) A = PreOrd. Suppose Diagram I is a pushout in PreOrd. To show β is initial, let z
and z′ be in Z such that β(z) ≤ β(z′). By [7], 3.1.2, we need to show z ≤ z′. Note that
if δ(y1) = δ(y2), then because δ is pushout of σ, we have y1 = α(x1), y2 = α(x2), and
σ(x1) = σ(x2). It then follows from initiality of α and [7], 3.1.3, that β is initial.

�
4.3. Lemma: For each n in N, let αn : an �� �� an+1 be a mono in A. The collection

{αn : n ∈ N} is composable, and the composition is initial if each αn is.

Proof: Let U(an) = Xn, where U is the forgetful functor. Without loss of generality
assume the monomorphism U(αn) : Xn

�� �� Xn+1 is the inclusion, and let X = ∪Xn
N

,

and in : Xn
�� �� X be the inclusion. To define the structure on X we consider the

following cases:
(1) A = Fco, ConsFco, Con, or Lim. Let an = (Xn, Cn), and define the structure C on X
as follows:
C(x) = {F ∈ F (X) : ∃n ∈ N, G ∈ Cn(x) �: [in(G)] ⊆ F}.

It is straightforward to check that (X, C) is in A, and that {αn} is composable and
i0 : (X0, C0) �� �� (X, C) is the composition of {αn}.

To show that i0 is initial if each αn is, note that if [i0F ] ∈ C(x) for some filter F on X0,
then [inG] ⊆ [i0F ] for some C ∈ Cn(x). It follwos that [i−1

0 inG] = [α−1
0 α−1

1 ...α−1
n−1G] ⊆ F .

But the filter [α−1
0 α−1

1 ...α−1
n−1G] is in C0(x), since G ∈ Cn(x) and αn’s are initial. Hence F

is in C0(x) as desired.
(2) For A = PsT , define C as follows:
C(x) = {F ∈ F (x) : ∀ ultrafilters U ⊇ F,∃n ∈ N, and an ultrafilter G ∈ Cn(x) �: U =
[in(G)]}.
(3) A = Born. Let an = (Xn, Bn). Note that Bn ⊆ Bn+1, for all n. Let B = ∪Bn

N
.

It easily follows that (X, B) is in Born, and that {αn} is composable with composition
i0 : (X0, B0) �� �� (X, B) .

Now suppose αn is initial for all n in N. Let G ⊆ X0 such that i0(G) = G ∈ B. Then
G ∈ Bn, for some n in N, and so G ∈ B0, since α0, α1, ... , αn−1 are all initial.
(4) A = PreOrd. Let an = (Xn,≤n) be in Preord. Define the preorder ≤ on X by: x ≤ y
if there is n in N such that x ≤n y. It follows easily that {αn} is composable and the
composition is i0 : (X0,≤0) �� �� (X,≤) .

To show i0 is initial if each αn is, let x, y be in X0 such that x ≤ y in X . Therefore
x ≤n y for some n in N. It follows that x ≤0 y, since α0, α1, ... , αn−1 are all initial.

�
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4.4. Corollary: Let g : Y �� D�op be a discrete fibration in A such that U(Y ) is

filtered. The functor | − |Y : S�op �� A preserves equalizers if and only if for all n in N,

in : Ẏ0n
�� �� Y0n is initial.

Proof: By Lemmas 4.1, 4.2, 4.3, and Definition 3.4, the collection {in : Ẏ0n
�� �� Y0n

}
is strongly initial. Since U : A �� S preserves colimits, and obviously reflects monos,
the proof follows from Lemma 3.5.

�
4.5. Corollary: Let g : Y �� D�op be a simplex structure in A. The geometric

realization functor | − |Y : S�op �� A commutes with finite limits if and only if for each

n in N, in : Ẏ0n
�� �� Y0n is initial.

Proof: Since A = Fco, ConsFco, Con, Lim, PsT , Born or PreOrd is cartesian closed,
the functor a ×− : A �� A preserves extremal epis.

The functor U : A �� S reflects terminals, and so by Theorem 3.6 and Corollary 4.4,
the result follows.

�
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