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Abstract. The system for removing needless cells (programmed cell death - apopto-
sis) is important in coordination of structural-functional organisation of large number
of cells in an organism. Discovery of cells suicide phenomenon has allowed revising old
notions about regulation mechanisms of cellular homeostasis and importance of this
mechanisms disturbance during development of large number of diseases including
cancer, auto-immune diseases and infection processes. Intuitive understanding activ-
ity of the regulatory system connected by means of complex interaction mechanisms
between positive and negative feedback loops is very difficult. Here it is necessary for-
mal mathematical methods and computer tools for modelling corresponding regulatory
mechanisms. This work deals with some results of the quantitative analysis of simplest
regulatory mechanisms for apoptosis process based on the methods for mathematical
modeling and computer simulation.

1 Introduction Apoptosis is the programmed cell death, an energetically dependent,
and genetically controlled process, which is started by special signals, and saves an organism
from unwanted, transformed and enfeebled cell’s [1, 2]. This type of cells death is not
accompanied by inflammatory processes unlike the necrosis [1]. The discovery of such a
cell suicide phenomenon has allowed revising old notions about regulation mechanisms of
cellular homeostasis and has emphasized the importance of this mechanism’s disturbance
in the development of a large number of diseases including cancer, auto-immune diseases
and infection processes [1, 2, 3, 4].

Investigations in the decade 1995-2005 show that regulatory mechanisms of programmed
cell death are very complex and are practically not changed during yhe evolution process.
These facts give researchers a basis to discuss the fundamental biological role of apoptosis
[1]. It was established that the cell death process by apoptosis consists of four separate
stages: initial, effector, degradation and absorption. The start and realisation of the initial
phase are very complex mechanisms actuating pro-apoptotic and anti-apoptotic processes.
In the effector stage the regulation mechanism of pro-apoptotic and anti-apoptotic systems
determines the choice of further cells fortune. If the pro-apoptotic system is predominant,
then the cell“is sentenced” to death. Degradation stage is presented by typical morpholog-
ical and biochemical changes and this stage is uncontrolled and inconvertible [5]. During
end stage active phagocytes absorb apoptotic corpuscles [6]. Regulation disturbance in each
phase can led to development of pathological processes [5, 6].

An intuitive understanding of the activity of the regulatory system associated by means
of complex interaction mechanisms between positive and negative feedback loops is very
difficult. Formal mathematical methods and computer tools for modelling and imitating
corresponding regulatory mechanisms are necessary. Only natural cell death (necrosis) is
usually considered in the mathematical modelling of cellular processes [7, 8]. In [9, 10] a
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mathematical model of cellular population kinetics restoring after irradiation is considered.
This model takes both possible variants of cell death (necrosis and apoptosis) into account.
Based on quantitative analysis of cellular population during embryonic development and
mathematical modelling, K.Hardy et al [11] have revealed the essential role of cells apoptosis
for organ formation.

The initial phase of programmed cell death and questions on quantitative analysis of
apoptosis realization by caspase activation are considered in [12] using methods for mathe-
matical modelling based on ordinary differential equations. Here using law of masses action
at creation of equations like Michaelis-Menten kinetics approaches, analysis of stabilities
nature of caspases cascade during apoptosis is carried out. In [13] questions on quantitative
analysis of ways for apoptosis realization are considered. Assuming that protein consump-
tion is minimal at choosing apoptosis biochemical pathways, authors research possible ways
for application of optimization methods for control of apoptosis processes using mathemat-
ical modelling. Tomlinson I. and Bodmer W.F. quantitatively analyzed consequences after
apoptosis mechanism failure. Using the discrete mathematical model of cells population,
authors have shown a possibility for the tumors appearance due to breaking apoptosis and
differentiation mechanisms [14]. Decision making on beginning apoptosis in effector phase is
one of the main processes of programmed cell death. This work deals with some questions
on mathematical modelling and control of the regulatory mechanisms of interconnected
activity between a pro-apoptotic and anti-apoptotic systems in effector phase.

2 Apoptosis regulatorika equations in an effector phase In apoptosis effector
phase, when the ”black ticket” is received by cell, there appears question on starting sui-
cide mechanisms or continuing functional activity. Here enormous ”cellular bureaucratic
apparatus” consisting of the pro-apoptotic and anti-apoptotic systems [15, 16, 17] carefully
weighs up all the pros and cons. Based on interconnected activity of the pro-apoptotic
and anti-apoptotic systems and results of their antagonistic ”fight” the question on self-
dependent liquidation is solved. Considering genetic conditionality of programmed cell
death we can assume that pro-apoptotic and anti-apoptotic systems are controlled by cer-
tain gene-regulators. We suppose that

• starting apoptosis is realised if activity of the pro-apoptotic gene system is dominant;

• antagonistic ”fight” between pro-apoptotic and anti-apoptotic systems is carried out
on the basis of activity inhibition of corresponding genes;

• pro-apoptotic system is originally active and its functioning can actuate anti-apoptotic
system.

Then, based on functional-differential equations of living systems regulatorika [18, 19]
we can write the following system for regulatorika equations for interconnected activity
between pro-apoptotic and anti-apoptotic system of programmed cell death:
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where xi(t), yj(t) are the values, expressing activity products number for corresponding
gene-regulators of the pro-apoptotic and anti-apoptotic systems; θi, ρj are the parameters,
characterising average live time for corresponding gene-regulators activity products; h is the
time, required for feedback realisation in cell’s regulatory system; ai, bj are the parameters
characterising providing of considered system with resources; {α}, {β} are repression pa-
rameters; i = 1, 2, ..., r; j = 1, 2, ...,m; r,m are natural numbers (r ≥ 0, m ≥ 0) , expressing
the number of gene regulators for the pro-apoptotic and anti-apoptotic systems; r and m
may identified by the degrees of self-conjugate of considered systems; all parameters are
non-negative constants.

3 Qualitative study For analysing behaviour characteristics for solutions of functional-
differential equations (1) we can use small values for r and m. For example, simplest system
(1) with zero self-conjugate degrees has the following form:

dx(t)

dt
= a exp (−α1x(t − h) − β1y(t − h)) − θx(t);

(2)

dy(t)

dt
= bx(t − h) exp (−α2x(t − h) − β2y(t − h)) − ρy(t),

where x(t), y(t) are the functions, expressing genes-regulators number activity products
for pro-apoptotic and anti-apoptotic systems in cell at time t accordingly; a, b are the pa-
rameters characterizing providing pro-apoptotic and anti-apoptotic systems with resources,
accordingly; θ and ρ are the parameters, characterizing average time for genes-regulators
activity products live for pro-apoptotic and anti-apoptotic systems accordingly; h is the
characteristic time of feedbacks in cell. Values of all parameters and initial conditions are
non-negative.

We can simplify the equations (1) assuming self-repression absence in pro-apoptotic and
anti-apoptotic systems. Then denoting ǫ1 = 1/θh, ǫ2 = 1/ρh we have minimal model system
for functional-differential equations (1) based on (2) in the following form:

ǫ1
dx(t)

dt
= ae−y(t−1) − x(t);

(3)

ǫ2
dy(t)

dt
= bx(t − 1)e−x(t−1) − y(t),

where ǫ1, ǫ2, a, b are positive parameters. ǫ1, ǫ2 are called regulatorika parameters for pro-
apoptotic and anti-apoptotic systems accordingly; a, b are the parameters of pro-apoptotic
and anti-apoptotic cell’s potential accordingly.

In order to analyze the characteristic solutions of (3) we use the methods for the qual-
itative study of delay-differential equations [20, 21, 22] and ordinary differential equations
[23, 24, 25]. We apply special programs [26] when accompanying the analytical studies by
computer calculations.
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Let x0, y0 be the equilibrium point for system (3). Then

ae−y0 − x0 = 0; bx0e
−x0 − y0 = 0, (4)

where a > 0, b > 0. The trivial equilibrium point is absent. Using (4) we get

bx0e
−x0 − ln

(

a

x0

)

= 0. (5)

This relation (5) can be presented in the following form
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= b.

Let us consider

F (x0) =
ex0
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)

.

Analysing F (x0) and its derivative functions behaviour (Figure 1) we can conclude that
one equilibrium point (3) exists always. The existence of two and three equilibrium points
(Figure 2) depends on the following condition

b1 ≤ F (x0) ≤ b2,

where b1, b2 (0 < b1 ≤ b2) are the roots of equation

(x − 1) ln
(a

x

)

= 1.

Figure 1: The nature of F (x0) behaviour.

Let us consider the case when there is only one equilibrium point (Figure 3). We see
(Figure 3) that in neighborhood of the considered equilibria the isoclinals form four areas
of homogeneous behavior:

• Area A: the solution grows by both variables;

• Area B: the solution grows by variables ”y”;

• Area C: the solution decreases by both variables;
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Figure 2: The existence area for positive equilibrium points (3).

Figure 3: The isoclinic lines and gradients for the system (3).

Figure 4: Predominance of pro-apoptotic (a, y0 < x0) and anti-apoptotic (b, y0 > x0)
systems.
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• Area D: the solution decreases by variable ”y” and grows by ”x”.

Qualitative studying the behaviour of system (3) solutions shows (Figure 3) that the
considered positive equilibria is the attractor, attracting solutions from the first quadrant
of phase space. Based on the permitting suggestions we can take that, if y0 < x0 then cell
come in apoptosis process, otherwise the anti-apoptotic system does not allow cell to come in
apoptosis (Figure 4). For potential apoptosis presence at a positive values of the equilibria
coordinates we must have predominance of pro-apoptotic systems (y0 < x0). Under this
condition from second equation of (4) we have

be−x0 < 1.

Hence we need the threshold value x0 for predominance of the cell pro-apoptotic system
(x0 > ln b). Using (4) at y0 = x0 we get

a = b ln b.

Consequently, if y0 < x0 we have

a > b ln b. (6)

The condition (5) allows to choose the area for apoptosis start (Figure 5) in the parametric
space (3) and to define cell predetermination to pro-apoptotic (anti-apoptotic) processes if
the equilibrium point is stable.

Figure 5: The area of apoptosis start in the parametric space of the system (3).

Let us consider a possibility of stability failure for positive equilibria using Lyapunov
method. We replace x(t) by x0 + x1(t), y(t) by y0 + y1(t), where x1(t) and y1(t) are small.
Linearizing (3) neighborhood of the equilibrium (x0, y0) we have

ǫ1
dx1(t)

dt
= −x0y1(t − 1) − x1(t);

ǫ2
dy1(t)

dt
= (be−x0 − y0)x1(t − 1) − y1(t).

We get the characteristic equation (taking into account that y0 = bx0e
−x0) :

ǫ1ǫ2λ
2 + (ǫ1 + ǫ2)λ + 1 + y0(1 − x0)e

−2λ = 0. (7)
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The analysis shows that (7) can have positive roots, for example, if

y0 >
1

x0 − 1
. (8)

It follows that the equilibrium points are unstable if x0 < 1 (Figure 6). According to (4)
we have

y0 = ln

(

a

x0

)

, y0 = bx0e
−x0

and hence, we get instability conditions (8) in the following form

a > x0e
1/(x0−1), b >

ex0

x0

1

(x0 − 1)
. (9)

The computer calculation allows to evaluate instability area for positive equilibrium points
(3) (Figure 7).

Figure 6: The existence area for positive root (7) (the shading area).

Figure 7: Instability area of equilibrium points (3) according to (9).

When considered equilibria of system (3) loses stability, then we have Poincaré type
limit cycles (i.e. it is the attractor). If the Poincaré type limit cycles situated in the area
of y0 < x0 or y0 > x0 (Figure 8, a) then we have pro-apoptotic (or anti-apoptotic) cell
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development. If the limit cycles situated in both areas y0 < x0 and y0 > x0 (Figure 8, b),
then there exist asymptotic uncertainties (anomalies) for the cell activity: the cell partly
executes initial functional activity with the incomplete activation the pro-apoptotic and
anti-apoptotic systems. Here probability the cell entering in apoptosis is decreased and the
apoptotic index of cell population falls. Thereby, if cellular anti-apoptotic potential is high
(above determined level) then the apoptotic signal can lead to the anomalous type of the
cell development.

Figure 8: Possible types of the cell developments in apoptosis effector phase according to (9)
(a - deterministic development by pro-apoptotic (A), anti-apoptotic (B) ways; b - abnormal
behaviour).

Existence of two positive equilibrium points (3) is low-probably and for small changes
of the values of parameters there exist one or three equilibrium points. At existence of
three positive (α, β, γ) equilibrium points (Figure 2) there are two attractors - α, γ, and one
anti-attractor β (Figure 9).

Figure 9: Existence of three equilibrium points (3) in the first quadrant.

Depending on initial conditions, the solutions (3) tends to α or γ. Comparison of
existence area for three equilibrium points (Figure 2) and instability area (Figure 7) shows
possibility of stability loss for α and γ . Using computer (at ǫ1 = ǫ2 = 1) studies we
observed auto-oscillations (Figure 10a (a = 17, b = 25)) and irregular oscillations (Figure
10b (a = 10, b = 14), Figure 11 (a = 16, b = 15)).
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Figure 10: The regular (a) and irregular (b) solutions of (3).

Figure 11: The chaotic nature of the equations (3) solutions.



218 M. B. HIDIROVA

In the last case model behaviour has the dynamic chaos nature. In some cases the
oscillatory regimes envelop both sides of bisector 6 XOY . Here domination is passed to the
pro-apoptotic and anti-apoptotic systems consecutively (but in unpredictable regime).

4 Conclusion Thus, results of the qualitative studies and the computing experiments
have shown that there are several regimes of interconnected activity between pro-apoptotic
and anti-apoptotic systems: predominance one of them, periodic activation and unpre-
dictable, chaotic predominance. Consequently, if there is apoptotic signal, then cells with
the pro-apoptotic and anti-apoptotic development, cells with asymptotically unpredictable
(abnormal) activity and cells with chaotic behaviour can be observed in multi-cellular organ-
isms. In the last case the normal functioning is disturbed in cell’s molecular-genetic system
(activation of silent genes, intensification of genes mutations, failure of cellular regulatorika
etc.).
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