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Abstract. One dimensional difference equations are widely used in population biol-
ogy. These seemingly simple models can show a variety of behaviors from stability to
chaos. (see Cull, Yorke, May, Feigenbaum) We show how the enveloping technique
can be used to demonstrate global and semi-global stability. We discuss the issue of
whether local stability implies global stability. We give some examples of more com-
plicated behavior which can co-exist with local stability. We show that local stability
implies global stability even for models slightly more complicated than the usual mod-
els. We address the issue of how complicated a model must be to have local without
global stability, and we describe our candidates for the simplest such models.

1 Introduction Populations wax and wane. To understand these changes in population,
we often use simple models. In this paper, we will study difference equation [10] models of
population growth.

Often these models have a single equilibrium point and for some values of the param-
eters this equilibrium is stable. Biological modelers have often checked for stability with
respect to small perturbations and then treated the equilibrium as being stable with re-
spect to large perturbations. Remarkably, this logical jump never caused any difficulties.
Eventually, a number of mathematical papers [4, 34, 32] showed that for some of the usual
population models local stability implies global stability. These papers used a variety of
methods including Lyapunov functions [23, 18, 19] Schwartzian derivative [34], and some
ad hoc techniques [34, 1, 2, 4, 3, 5, 32]. But, one uniform technique applicable to all usual
population models was lacking. In particular, it was unclear whether the single hump of
population models was sufficient to derive global stability from local stability. Finally, Cull
and Chaffee [9, 8] were able to show that the usual population models were bounded by
linear fractional functions and that this bounding was enough to show global stability from
local stability.

One aspect of the above approaches is the assumption that the models were three times
continuously differentiable. Huang [22] pointed out that for some of these arguments, the
continuously differentiable assumption was essential. It was also unclear whether biological
modelers really wanted to make such an assumption about their models. Cull [13] showed
that bounding (enveloping) by linear fractionals did not depend on differentiability, and, in
fact, such enveloping could apply to discontinuous multi-functions.

In contrast to such stability May [25, 26] and others have shown that without local
stability, population models can show complicated behavior including chaos [24, 14]. But,
is more complicated behavior possible for population models when local stability is assumed?
We investigate some generalizations of the usual population models and show that YES,
more complicated behavior is possible even with local stability. How much more complicated
does a population model have to be to allow more complicated behavior? We show that
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our examples are, in a sense, the simplest population models showing more complicated
behavior by showing that 3rd order polynomial models and 2nd order exponential models
are enveloped by linear fractionals and thus still have local stability implies global stability.

We also give an example of a piecewise simple population model which has cycles of
every period, but computationally behaves as if it were globally stable.

1.1 Definitions A population model is a difference equation of the form

xt+1 = f(xt)

where f is a continuous function from the nonnegative reals to the nonnegative reals and
there is a positive number x, the equilibrium point, such that

f(0) = 0 ,

f(x) > x for 0 < x < x ,

f(x) = x for x = x ,

f(x) < x for x > x ,

and if f ′(xm) = 0 and xm ≤ x then

f ′(x) > 0 for 0 ≤ x < xm ,

f ′(x) < 0 for x > xm such that f(x) > 0.

We will allow the possibility that f(x) = 0 for all x ≥ x∞ and therefore, that f(x) is
not strictly differentiable at x∞. Otherwise, we assume that f is three times continuously
differentiable.

We want to know what will happen to xt for large values of t. Clearly we expect that
if x0 is near x then xt will overshoot and undershoot x. Possibly this oscillation will be
sustained, or possibly xt will settle down at x. The next definitions codify these ideas. A
population model is globally stable if and only if for all x0 such that f(x0) > 0 we have

lim
t→∞

xt = x

where x is the unique equilibrium point of xt+1 = f(xt). A population model is locally

stable if and only if for every small enough neighborhood of x , if x0 is in this neighborhood,
then xt is in this neighborhood for all t, and

lim
t→∞

xt = x.

2 Global Stability For global stability, a slight modification of a very general theorem
of Sarkovskii [33] gives:

Theorem 1. A continuous population model is globally stable iff it has no cycle of period
2. (That is, there is no point except x such that f(f(x)) = x.)

This theorem has been noted by Cull[1] and Rosenkranz[32].
We now state Sarkovskii’s Theorem which we will need again later.

Theorem 2 (Sarkovskii’s Theorem [33]). Order the Natural Numbers as follows: 3 ≺
5 ≺ 7 ≺ 9 ≺ 11 ≺ 13 ≺ 15 ≺ . . . ≺ 2 ·3 ≺ 2 ·5 ≺ 2 ·7 ≺ 2 ·9 ≺ . . . ≺ 2 ·2 ·3 ≺ 2 ·2 ·5 ≺ 2 ·2 ·7
≺ 2 · 2 · 9 ≺ . . . ≺ 2 · 2 · 2 · 3 ≺ . . . ≺ 25 ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1. Now let f be a continuous
function from the Reals to the Reals and suppose p ≺ q in the above ordering. Then if f
has a point of least period p, then f also has a point of least period q.
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3 Enveloping

Theorem 3 (Enveloping Theorem [13]). Assume that f(x) maps the open interval (a, b)
into itself. (The map f(x) may be discontinuous and/or multi-valued.) Further assume
that f(p) = p is the unique fixed point of f in this interval, and that there is a continuous
self-inverse function φ(x) which envelops f(x) on (a, b). Then if x0 is any initial point in
this interval and 〈xn〉 is any sequence consistent with xt+1 = f(xt) then 〈xn〉 converges to
p.

We say the f(x) is enveloped by φ(x) on the interval (a, b) containing p when strict
bounding holds on the whole interval, that is:

• φ(x) > f(x) > x for x ∈ (a, p) ,

• φ(x) < f(x) < x for x ∈ (p, b) ,

and to avoid limiting points of f(x) on either φ(x) or on x, except at the fixed point p, we
assume that for every sequence 〈x〉,

• if lim〈x〉−→q f(x) = q then q = p, and

• if lim〈x〉−→q f(x) = φ(q) then q = p.

3.1 Enveloping Figure The following figure shows a globally stable multi-function en-
veloped by a linear fractional.
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Figure 1: A discontinuous multi-function enveloped by a linear fractional. The linear fractional φ(x) =
(32 − 17 ∗ x)/(17 − 2 ∗ x) is the curve descending from upper left to lower right. The straigh line y = x is
the diagonal going from lower left to upper right. The other curves, lines, points, and blobs are parts of
the multifunction. Notice that all these pieces are inside the “wedges” formed by the linear fractional and
y = x. This picture should suggest why we say that the multifunctioned is enveloped.
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3.2 Showing Enveloping From Sarkovskii’s Theorem, f(x) is globally stable iff it has
has no cycle of period 2. So knowing that one function f2(x) has no period 2 cycles can be
used to show that another function f1(x) has no period 2 cycles and thus f1(x) is globally
stable.

Corollary 1. If f1(x) is enveloped by f2(x), and f2(x) is globally stable, then f1(x) is
globally stable.

As the Enveloping Theorem states, the enveloping function does not have to be globally
stable. Rather, it can be “critical” in the sense of having every point be in a cycle of period
2. For example, the straight line y = 2−x is a self-inverse function which envelops x e2(1−x)

and shows that 1 is the globally stable equilibrium point for g2(x) = x e2(1−x). Further
since this g2(x) envelops x eα (1−x) for each α in (0, 2), we can conclude that 1 is the globally
stable equilibrium point for this set of models, f(x) = x eα (1−x) with α in (0, 2]

While a straight line was sufficient to envelop xe2(1−x), a straight line fails to envelop
the closely related function x[1 + 2(1 − x)]. To get a more general enveloping function, we
consider the ratio of two linear functions and assume that the ratio is 1 when x = 1 and
the derivative of this function is −1 when x = 1, which gives the following definition.

A linear fractional function is a function of the form

φ(x) =
1 − αx

α − (2α − 1)x
where α ∈ [0, 1) .

These functions have the properties

• φ(1) = 1

• φ′(1) = −1

• φ(φ(x)) = x

• φ′(x) < 0.

The shape of our linear fractional functions changes markedly as α varies. For α = 0,
φ(x) = 1/x, which has a pole at x = 0, and decreases with an always positive second
derivative. For α ∈ (0, 1/2), φ(x) starts (for x = 0) at 1/α and decreases with a positive
second derivative. For α = 1/2, φ(x) = 2 − x, which starts at 2 and decreases to 0 with
a zero second derivative. For α ∈ (1/2, 1), φ(x) starts at 1/α, decreases with a negative
second derivative, and hits 0 at 1/α which is greater than 1. We are only interested in
these functions when x > 0 and φ(x) > 0, so we do not care about the pole in these linear
fractionals because the pole occurs outside the area of interest. Figure 2 shows the three
different shapes of linear fractional functions.

Corollary 2. If f(x) is enveloped by a linear fractional function, then f(x) is globally
stable.

A function h(z) is doubly positive iff

1. h(z) has a power series
∑∞

i=0 hiz
i ,

2. h0 = 1, h1 = 2 ,

3. for all n ≥ 1 , hn ≥ hn+1 ,

4. for all n ≥ 2 , hn − 2hn+1 + hn+2 ≥ 0 .
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Figure 2: Three linear fractional functions, α = 1
4 , α = 1

2 , α = .9.

Theorem 4. Let xt+1 = f(xt) where f(x) = xh(1 − x) and h(z) is doubly positive, then
f(x) is enveloped by the linear fractional function

φ(x) =
1 − αx

α + (1 − 2α)x
,

where α = 3−h2

4−h2

≥ 1
2 , and the model xt+1 = f(xt) is globally stable.

While this doubly positive condition will be sufficient for a number of models, it is
not sufficient for all the examples. In particular, models fV(x), fVI(x), and fVII(x), in the
following table, are not doubly positive over their whole parametric regions of stability. The
following observation will be useful in many cases.

Observation 1. Let φ(x) = A(x)/B(x), f(x) = C(x)/D(x) and G(x) = A(x)D(x) −
B(x)C(x). If G(1) = 0, G′(1) = 0, and G′′(x) > 0 on (0, 1) and G′′(x) < 0 for x > 1, then
φ(x) envelops f(x). (We are implicitly assuming that A,B, C,D are all positive, and all
functions are twice continuously differentiable.)

4 Summary Table for Some Population Models The following table summarizes the
stability conditions for seven population models. It contains the models, their parametric
regions of stability, references to the original sources, and the bounding linear fractionals.
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Model Function Parametric Region References Enveloping

Number for Stability Fractionals

I fI(x) = xer(1−x) 0 < r ≤ 2 [18], [25], [27], [31] 2 − x

II fII(x) = x(1 + r(1 − x)) 0 < r ≤ 2 [26], [35] (4 − 3x)/(3 − 2x)

III fIII(x) = x(1 − r lnx) 0 < r ≤ 2 [28] (3 − 2x)/(2 − x)

IV fIV(x) = x

(

1

b + cx
− d

)

d−1
(d+1)2 ≤ b < 1

d+1 [37] (11 − 8x)/(8 − 5x)

V fV(x) =
(1 + aeb)x

1 + aebx
0 < a, 0 < b, [29] 2 − x for b ≤ 2

a(b − 2)eb ≤ 2 b−(b−1)x
(b−1)−(b−2)x for b ≥ 2

VI fVI(x) =
(1 + a)

b
x

(1 + ax)
b

0 < a, 0 < b, [20] 1/x for b ≤ 2

a(b − 2) ≤ 2 2(b−1)−(b−2)x
(b−2)+2x

for b ≥ 2

VII fVII(x) =
rx

1 + (r − 1)xc
r(c − 2) ≤ c [36] 1/x for c ≤ 2

c−1−(c−2)x
c−2−(c−3)x for c ≥ 2
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5 Instability and Stability in Polynomial Models In polynomials of degree four it
is possible to have local without global stability. This was first introduced in Cull [1], with
the example f(x) = x(x − 3/2)(−2 − (x − 1) − 6(x − 1)2) . The graph of this function is
seen in Figure 3.
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Figure 3: Graph of f(x) = x(x − 3/2)(−2x − (x − 1) − 6(x − 1)2) plotted with y = x. The
point where the two curves cross is the equilibrium point x̄.

A cobweb plot is an easy way to visualize how a given population model behaves over
a series of iterations given an initial population value. In these plots, we draw a vertical
line from our initial population value on the x-axis to the point where this value gets
mapped (i.e. from (x0, 0) to (x0, f(x0))). Then, we draw a horizontal line to the line
y = x, i.e. to the point (f(x0), f(x0). Then, a vertical line to the function y = f(x),
the point (f(x0), f(f(x0))). Since f(x0) = x1, this is the same as drawing a line to the
point (x1, f(x1)). We continue this pattern – alternating vertical and horizontal lines going
between y = x and y = f(x).

An example of a cobweb plot using the previously defined f(x) with initial population
of .7 is shown in Figure 4a. Here we can see that when x0 = .7, the population ends up at
the equilibrium point, x̄ = 1.

To see where different initial population values tend to after many iterations, we can
look at sequence plots. In a sequence plot, the initial population values are along the x-axis,
and for each initial x0, the sequence 〈xn〉 evaluated for 300 iterations, the first 100 iterates
are discarded and the remainder are plotted.

Figure 5a is the sequence plot for our previously defined f(x). From this plot, we can see
that there are various intervals where initial population values do not go to 1 after multiple
iterations. Since 1 is our equilibrium point, we can see that this is not a globally stable
model.

Another way to visualize instabilities in a model is through the application of Sarkovskii’s
Theorem. According to the theorem, if a function is globally stable, then it has no period-
two cycles. In other words, if it has any cycles of any length, then it necessarily has a
period two point. To easily check for period two points, we can graph y = f(f(x)) and
the line y = x. Any points of intersection between these two lines are either equilibrium
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(a) Cobweb Plot for f(x) with
x0 = .7 we see that the cobweb
spirals in to the point (1, 1), our
equilibrium point.
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(b) Cobweb plot with x0 = 1.25.
When our initial value, x0 is 1.25,
the function tends to the equilibrium
point after a large number of itera-
tions.

Figure 4: Web plots showing local stability.

points or cycle two points. If there are other points of intersection besides the equilib-
rium, then the function is not globally stable. Figure 5b shows the graph of f(f(x)) for
f(x) = x(x − 3/2)(−2 − (x − 1) − 6(x − 1)2).

From the graph of f(f(x)) we can see that f(x) has two cycles of period two, one
that oscillates between approximately .25 and 1.45 and another that oscillates between
approximately .625 and 1.35. Since these cycles do not show up in our sequence plot, we
can conjecture that they are both unstable cycles, that is, there is no small neighborhood
around these points such that the points in this neighborhood map to the cycles.

To see where points in the different regions map, we look at the cobweb plots for different
initial values. A few cobweb plots for different starting values are shown in Figures 4 and
6.

From Figures 4a and 4b, we can see that 1 is a locally stable point, since values slightly
above and slightly below 1 tend towards 1. On the other hand, both period two cycles are
unstable, since for values slightly above or below these cycles, the iterates tend towards 1
after many iterations. In Figure 6a and 6b, we can see that the population stays near the
two cycle for a short while, but does end up going to 1 after several iterations.

This quartic raises some interesting questions. If a period two oscillation can occur in
the quartic, can it arise in lower degree polynomials as well?

6 Local Stability Implies Global Stability for Polynomials of Degree 3 Let us
consider a degree 3 polynomial as a population model. By our assumptions on population
models f(0) = 0 and f(1) = 1 and so the polynomial model has the form

f(x) = x
(

1 + b (1− x) + c (1 − x)2
)

.
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(a) Sequence Plot for f(x) =

x(x−3/2)(−2−(x−1)−6(x−1)2).
The x-values that map to 1 are
points that, after a large number
of iterations, tend to the equilib-
rium point. Since not all x-values
tend to the equilibrium point, this
model is not globally stable.
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(b) Graph of f(f(x)) against x.

Since the function f(f(x)) crosses
the function x at more points than
just 0 and x̄ this model is not glob-
ally stable.

Figure 5: Sequence Plot for f(x) = x(x− 3/2)(−2− (x − 1)− 6(x− 1)2). The x-values that map to 1 are
points that, after a large number of iterations, tend to our equilibrium point. Since not all x-values tend to
the equilibrium point, this model is not globally stable.

It is easy to see that for any fixed value of c, f1(x) with parameter b1 is enveloped by f2(x)
with with parameter b2 if b2 > b1. Further, for local stability b ≤ 2. So, to demonstrate
global stability for 3rd polynomial population models, we only need to establish global
stability for models of the form:

f(x) = x
(

1 + 2 (1 − x) + c (1 − x)2
)

.

We can put a limit on c. For a population model f ′(0) ≥ 1, and so we can assume that
c ≥ −2.

We want a population model to map nonnegative values to nonnegative values, but a
third degree polynomial may map some positive values to negative values. Specifically, if
c ≤ 0 we can find an x∞ so that f(x) < 0 for x > x∞. We can make a population model,

f̂(x) from such an f(x) by

f̂(x) =

{

f(x) 0 ≤ x ≤ x∞

0 x ≥ x∞

.

On the other hand, if c > 0 then f(x) may have two positive real roots. In particular,
for 0 < c < 1 the first root occurs at

1 +
1

c
−

√
1 − c

c
.

We can take this root as x∞ and as above use f̂(x) as our population model. At c = 1,
these two roots coalesce, but we can still use this double root as the cut-off x∞.
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(a) Cobweb plot with x0 = 1.45.
This initial value is near to the pe-
riod two point detected by plot-
ting f(f(x)) against x. Notice
how it tends to 1. This means that
the period two cycle is unstable.
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(b) Cobweb plot with x0 = 1.35.
This, like our cobweb plot for x0 =
1.45, is a cobweb plot for an ini-
tial value close to a detected pe-
riod two point. Notice how the
cobweb forms a dark box, show-
ing that the function maintains a
period two cycle for a short while.
However, after a large number of
iterations, this function tends to 0.

Figure 6: Two cobweb plots showing the period 2 cycles.

For c > 1 there is no positive root, but there is a second positive fixed point, that is,

f

(

1 +
2

c

)

= 1 +
2

c
.

Up to c = 3, we can use our usual enveloping. (For the critical value, c = 3, 1/x serves
as the enveloping function.) But right at this parametric point a change in geometry has
occurred. For c < 3 we the enveloping function goes to 0 at a finite point xf and we only
need to check that f(x) ≥ 0 for x > xf . So we will have no difficulty in taking a cut-off

x∞ and letting our “population model” have f̂(x) = 0 for x > x∞. But, for c = 3, 1/x
does not go to 0 for any finite value of x and so we cannot make our “population model”
become 0 for large values of x.

This is telling us that even for c < 3, we could have let f̂(x) have any nonnegative value

less than x for x > xf , and specifically we could just let f̂(x) = f(x) up to the second
positive fixed point. By the geometry of this situation, for any x0 less than this fixed
point one of the subsequent iterates f (j)(x0) will be less than 1, and then the enveloping
argument will show that subsequent iterates will converge to 1, and, hence, we will have
“global convergence” for

xt+1 = f(xt) for all x with F.P. > x > 0

where F.P. is the second positive fixed point .
This second fixed point, F.P., is a repellor. Any x slightly less than F.P. is repelled

toward smaller values, and any x slightly greater than F.P. is repelled toward larger values.
From the argument in the next subsection, we’ll see that f(x) is inside the wedges formed
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by φ(x) and x on (0, 1) and by x and φ(x) on (1, F.P.). So allowing f(x) to follow a third
order polynomial and increase toward its second fixed point will still give “global” stability
on (0, F.P.)

So, for 3 ≥ c ≥ −2 , we can create resonable ideas for “population models” and as
we’ll show if one of these has local stability then it is enveloped by a linear fractional and
displays global stability.

Let us now consider 4 > c > 3. For c > 3, enveloping becomes a little funny. Our
enveloping linear fractional φ(x) will have a pole in (0, 1), and φ(x) will be negative on
(0, pole). So, we cannot expect such a linear fractional to upper bound a positive function.
We can save enveloping here by noting that “all the action” occurs on (xM , f(xM )) rather
than on the whole interval (0, x∞). So if we can show enveloping on (xM , f(xM )), we will
get global stability on (0, x∞) because any point in the wider interval will be eventually
mapped by repeated iterations to a point in the interval of envelopment.

Our argument (below) will show that for c < 4 we can envelop the 3rd degree polynomial
with a linear fractional. But, when c = 4 (or c > 4) such enveloping is not possible. For
c = 4, xM = 1/2, the pole of the linear fractional is at 1/2, and

f

(

1

2

)

=
3

2
= F.P.

and so we cannot have “global” stability on (0, F.P.). If c > 0, f(x) has a fixed point, F.P.
= 1 + 2/c. Further f(1/2) = 1 + c/8 and 1 + c/8 ≥ 1 + 2/c if c2 ≥ 16. So f(1/2) = F.P.
if c ≥ 4 and the model lacks global stability. For c > 4, x0 = 1/2 gives an increasing
sequence x0, x1, x2, x3, . . . which goes off toward +∞.

Our result is still that local stability implies global stability for 3rd degree polynomial
population models. But, we can extend enveloping to include 3rd degree polynomial “pop-
ulation models” which do not satisfy our definition of population models.

We should mention if 2 ≥ c ≥ 0 then f(x) = xh(z) has h(z) doubly positive and by
Theorem 4, f(x) is globally stable. Here we need a cut-off x∞ which we can take as the
positive root of f(x) for 1 ≥ c ≥ 0 or as the fixed point, F.P., for 2 ≥ c ≥ 1.

6.1 Enveloping by a linear fractional According to our definition, a linear fractional
has the form

φ(x) =
1 − αx

α − (2α − 1)x
where α ∈ [0, 1) ,

but here we’ll find it more convenient to recast these functions by using the variable z where
z = 1 − x and the parameter β where β = α

1−α
giving

φ(z) =
1 + βz

1 − (1 − β)z
= 1 + z + (1 − β) z2 +

(1 − β)2 z3

1 − (1 − β)z
.

We want to envelop a third degree polynomial population model. We can assume that
the model has the form

f(x) = xh(z) = (1 − z)h(z)

= (1 − z) [1 + 2z + c z2]

= 1 + z + (c − 2) z2 − c z3

To envelop (1 − x)h(z) by φ(z), we take 1 − β = (c − 2), and after eliminating terms,
we need to show that

(c − 2)2 z3

1 − (c − 2)z
⊲⊳ −c z3,
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but dividing by z3 and taking account of the signs, we need

(c − 2)2

1 − (c − 2)z
> −c (∗∗)

for all relevant values of z. We might mention that (**) is obviously valid for c = 2 and for
c = 3.
For our usual enveloping, we need this inequality for 1 > z > −1/β, but we’ll also want
to consider some slight modifications of this usual enveloping.)

Since (c−2)2

1−(c−2)z is decreasing for c < 2, we can establish enveloping by checking the

inequality (∗∗) at z = 1. We want (c−2)2

1−(c−2) > −c. We can cross multiply by 3 − c because

2 ≥ c, and after subtracting terms, we get the valid inequality 4 > c.

Since (c−2)2

1−(c−2)z is increasing for c > 2, we can establish enveloping by checking the

inequality (∗∗) at z = −1/β = −1/(3 − c). We want

(c − 2)2

1 + c−2
3−c

= (3 − c) (c − 2)2 > −c

and we establish this inequality by using γ = c − 2 making the inequality

(−γ + 1) γ2 > −(γ + 2)

or − γ3 + γ2 + γ + 2 = −(γ − 2) (γ2 + γ + 1)

which is obviously valid for 2 > γ ≥ 0, i.e., for 4 > c ≥ 2.

The situation is slightly more complicated for 4 > c > 3. Here we are dealing with
abnormal enveloping because the pole of the linear fractional occurs in the x interval (0, 1).
the linear fractional is not even a linear fractional according to our definition because
α = 3−c

4−c
< 0.

Instead of enveloping on the whole x range (0, F.P.), we will establish enveloping on the
x range (pole, F.P.). This is enough to establish global stabilty on the larger x range as
long as the the maximum point xM for f(x) occurs above the pole.

Since, as we mentioned above, (c−2)2

1−(c−2)z is increasing for c > 2, we can establishing envelop-

ing by checking the inequality (∗∗) at the most negative value of z which is 1− F.P. = −2/c,
but there’s nothing to check because (**) is obviously valid for negative z’s since with c > 2
the LHS is positive and the RHS is negative.
We verify that xM occurs after the pole, 3−c

2−c
, by showing that f ′(3−c

2−c
) is positive. In mixed

x, z notation,
f ′(x) = [1 + 2z + cz2] − x [2 + 2cz] .

Substituting x = 3−c
2−c

and z = 1
c−2 gives, after some simplification,

f ′(pole) =
2

c − 2
> 0 .

We summarize these results in the following theorem.
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Theorem 5. Any locally stable population model of the form

f(x) = x [ b (1 − x) + c (1 − x)2 ]

can be enveloped by a linear fractional with α = 3−c
4−c

, and hence will be globally stable.
For 1 ≥ c ≥ −2, this is normal enveloping on the range from x = 0 to the positive root of
f(x).
For 3 ≥ c > 1, this is normal enveloping on the range from x = 0 to the positive fixed
point of f(x).
For 4 > c > 3, this is enveloping on the restricted range of x from the pole of φ(x) to the
positive fixed point of f(x).

7 Exponential Function Population Models It is also possible to have an exponen-
tial function that displays local but not global stability. One such function, which we will
examine next, is the exponential function f(x) = e−q(x) where

q(x) = 1.9(x − 1) − (7.6 − 8 ln 3)(x − 1)3.

The graph of the function is in Figure 7

1.25

0.25

1.75

1.5

1.0

0.75

0.5

0.0

3.02.52.01.51.00.50.0

Figure 7: Plot of f(x) = e−q(x) where q(x) = 1.9(x − 1) − (7.6 − 8 ln 3)(x − 1)3.

Since this function does not go to zero, as the last one did, we will not have the same
type of instabilities as the previous function. This function, however, is also not globally
stable. We can easily see this from looking at a sequence plot.

In Figure 8, we see that not only is this graph not globally stable (i.e. not every initial
population value tends to 1), but also that there is a stable period two. If we look at the
plot of f(f(x)) and y = x, we can see that in fact this function has two period two cycles.
One of these cycles is stable, while the other is not. In Figures 9 and 10, we can see where
different initial population values tend to by looking at the different cobweb plots.
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(a) Sequence plot of f(x). Notice how in ad-
dition to the places that tend to 1 after several
iterations, there are initial values that tend to
two values after several iterations. These are
period two cycles.
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(b) Plot of f(f(x)) against x.

Since the graph of f(f(x)) crosses
the line y = x in places other than
0 and the equilibrium point, f(x)
is not globally stable.

Figure 8: Two plots showing that period 2 cycles exist.
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(a) Cobweb Plot for f(x) with
x0 = .25. This initial value was
in the region of the sequence plot
that mapped to two values. Notice
how it gives a period two cycle.
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(b) Cobweb Plot for f(x) with
x0 = .80. This initial value was
in the region of the sequence that
mapped to 1. Notice how it spirals
in to one equilibrium point.

Figure 9: Two plots showing a period 2 cycle and a stable equilibrium.

8 Local Stability implies Global Stability for f(x) = xe−q(x) Here, we will show
that local stability implies global stability for population models of the form

f(x) = x eq(x) = x edegree 2 polynomial .

It will be convenient to write f(x) in the form:

f(x) = x ea + b z + c z2

where z = 1 − x.
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(a) Cobweb Plot for f(x) with
x0 = .50. This is an initial
value for a value slightly before the
part of the sequence plot where it
goes from tending to two points to
tending toward one point.
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(b) Cobweb Plot for f(x) with
x0 = .52. This initial value is
slightly after the part of the se-
quence plot where it changes from
tending toward two points to tend-
ing toward one. The above cobweb
plot shows that it tends towards
the equilibrium, but the darkness
of the plot indicates it takes a long
time to converge.

Figure 10: Two plots showing the approach to and divergence away from the unstable period two cycle
toward the stable equilibrium.

We now use the conditions on population modes to restrict the values of the three parameters
a, b, c. Since f(1) = 1, we are forced to take a = 0. For a fixed value of c, if b > B then
fb(x) envelops fB(x). Also, f ′(1) = 1− b, and so for local stability 2 ≥ b. Finally, if c > 0
then f(x) would have a second fixed point at some x greater than 1. These considerations
allow us to limit our arguments to f(x)’s of the form

f(x) = x e 2 z + c z2

with c ≤ 0.

Besides its fixed point at x = 1, f(x) has a fixed point at 1 + 2/c. For positive c, this point
will be above x = 1 and we have to dismiss this possibility for a population model. For
negative c, this point will be below x = 0 if c is between 0 and −2, but if c < −2 this fixed
point appears in the interval ( 0, 1 ). So we only have to consider f(x)’s of the form

f(x) = x e 2 z + c z2

with − 2 ≤ c ≤ 0.

We demonstrate the global stability of such f(x)’s by showing that they are enveloped
by linear fractionals. Instead of using x, we work with functions of z where z = 1−x. Our
linear fraction φ(z) is

φ(z) =
1 + β z

1 − (1 − β) z
where β =

α

1 − α
.

We choose β = c − 1, so that the linear fractional matches f(x) through 2nd order terms.
Then we want to show that

1 + (1 − c) z

1 − c z
⊲⊳ (1 − z)h(z) = (1 − z) e2 z + c z2

.
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Taking logarithms and rearranging, we want to show that

L(x) ⊲⊳ 0

where
L(x) = ln[1 + (1 − c)z] − ln[1 − cz] − ln[1 − z] − 2z − cz2 .

Since L(1) = 0, we can establish the inequality by showing that L′(x) ≤ 0 throughout
the interval of interest. In x, this interval is the positive reals from 0 up to the zero of the
linear fractional. In z, this interval is (− 1

(1−c) , 1 ).

Taking the derivative L′(x) with respect to x, we have

L′(x) = − 1 − c

1 + (1 − c)z
− c

(1 − cz)
− 1

(1 − z)
+ 2( 1 + cz ).

Adding the first two terms gives

L′(x) =
−1

[1 − cz] [1 + (1 − c)z]
− 1

(1 − z)
+ 2( 1 + cz ).

Multiplying by [1 − cz] leaves

[1 − cz] L′(x) =
−1

[1 + (1 − c)z]
− [1 − cz]

(1 − z)
+ 2( 1 − c2 z2 ).

Adding 1 to each of the first two terms and subtracting 2 from the last term gives

1 − −1

[1 + (1 − c)z]
+ 1 − [1 − cz]

(1 − z)
− 2 c2 z2

= (1 − c)z

[

1

[1 + (1 − c)z]
− 1

(1 − z)

]

− c2 z2

=
−(2 − c)(1 − c) z2

(1 − z) [1 + (1 − c)z]
− 2 c2 z2

This quantity is clearly less than 0 (except for z = 0) on the whole interval of interest.
We summarize these results in the following theorem.

Theorem 6. Any locally stable population model of the form

f(x) = x e b z + c z2

can be enveloped by a linear fractional with α = 1−c
2−c

and hence will be globally stable.

9 Piecewise Simple Model With All Periods From the previous sections, the ques-
tion arose as to how complicated a model has to be to show local stability but not global
stability. Here, we present a piecewise simple function displaying a period three cycle. From
Sarkovskii’s Theorem [33], a continuous function with a period three cycle has cycles of ev-
ery other integer length. Here, we look at creating a piecewise population model that has a
cycle of period three and then see where the periods of other lengths appear. Our function,
which is shown in Figure 11a, is

g(x) =































2x if 0 < x ≤ .25,

3x − .25 if .25 < x ≤ .5,

−.5 x + 1.5 if .75 < x ≤ 1.15,

−6.75x + 8.6875 if 1.15 < x ≤ 1.25,

e−4 ln(.25)(1−x) if 1.25 ≤ x.

(1)



ONE DIMENSIONAL POPULATION MODELS 45

0.5

0.75

1.25

1.0

0.5

0.25

0.0

2.01.51.00.0

(a) Plot of the piecewise popula-
tion model function with period 3.
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(b) Cobweb plot for g(x). When the
initial value is x0 = .5, the function
has a period three cycle through the
three points where the cobweb meets
the graph of g(x).

Figure 11: A population model with a period 3 cycle.

This function was designed so that g(.5) = 1.25, g(1.25) = .25 and, g(.25) = .5. Notice
that the function consists of five pieces. The first four segments are straight lines. The fifth
segment is an exponential “tail”. This design has the properties of a population model. It
starts at 0, rises to a maximum, falls to the equilibrium, and tails off to 0 for large vales
of x. Of course, there is only one positive equilibrium which occurs at x = 1. Further, by
design, this equilibrium is locally stable because the slope, f ′(1) = −.5 is less steep than
−1.

The function has a period three cycle, which can be through the three points where the
cobweb meets the graph of g(x) in Figure 11b.

We can look for other cycles by plotting y = x and g(g(g(...g(x)...))) where the number
of g’s is equal to the length of the cycle. For example, if we wanted to find a five cycle,
we would plot y = x and g(g(g(g(g(x)))))). This plot in Figure 12a indicates that there are
two cycles of period 5..

In spite of the fact that g(x) has cycles of every period, these cycles almost never show
up. Figure 12b shows a sequence plot, i.e. the values of g(K)(x) for large values of K when
the initial point is x. Notice that for almost all initial points, the only value that shows up
after a large number of iterations is 1. There are four exceptional points which eventually
map to the period 3 cycle. Three of these four are actually on the period 3 cycle.

10 Conclusion Nonlinear models are are often difficult or impossible to analyze. [12] Lo-
cal linearity gives local results, but more global results require addressing the nonlinearity.
A central question is when does local stability imply global stability. As we have pointed
out, biological modelers have been correct in their jump from local to global stability. We
want to know why this extrapolation was valid. We have attempted to answer this question
by saying that local implies global for simple models. But, this forces the question: What
does “simple” mean? We provided a reasonable geometric answer – a function is “simple”
if it can be bounded by a linear fractional function. We showed that seven standard pop-
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(a) Plot of y = g(g(g(g(g(x))))).
Since there are points where the
graph crosses the line y = x, there
are cycles with period 5.

(b) A sequence plot showing
that for most initial points, the
iterates converge to 1. The pe-
riod 3 cycle shows up for a few
initial points.

Figure 12: Iterations of g(x) showing that cycles and stability both occur.

ulation models can be bounded by linear fractionals. We also showed that enveloping by
a linear fractional is more general than these usual models in that the specific single-hump
form is not necessary for enveloping. A reasonable conjecture is that modelers may have
tried to draw single-hump functions with not too steep a negative slope. As long as one does
this as a “smooth” drawing one is almost certain to produce a curve that can be enveloped
by a linear fractional. (Try it!)

From the examples in the Table, the standard population models, also, have simple
formulas. Can we say anything about how simple a formula must be to have local stability
implies global stability? For polynomials, we showed that there is a 4th degree polynomial
population model which has local stability without global stability. On the other hand,
we proved that every 3rd degree polynomial population model (and some non population
models) are enveloped by linear fractionals and so have local stability implies global stability.

For exponential functions, we displayed a population model which has a 3rd degree poly-
nomial in the exponent and is locally but not globally stable. On the other hand, we proved
that all population models with which have a have a polynomial of degree at most 2 in the
exponential are enveloped by linear fractionals and thus have local stability implies global
stability.

What sort of behavior is possible when a population model is not globally stable? We
included three examples which show some of the possibilities. As we showed, the 4th degree
polynomial population model example has two period 2 cycles and the possibility of crashing
to zero. Our computational checks showed that the period 2 cycles are unstable, and that
a significant fraction of the initial conditions would cause the population to crash to zero.

For the 3rd degree exponential model, there are again two period 2 cycles, but this time,
one cycle is stable and one cycle is unstable. Computer runs showed that a significant
fraction of the initial conditions led to this stable period 2 cycle.

Finally, we looked at a piecewise simple model with a period 3 cycle and hence cycles
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of every period. We demonstrated that some of these periods, e.g. period 5, exist. But,
somewhat strangely, this model behaved as if it were almost globally stable, that is, except
for four points, all initial conditions gave convergence to the equilibrium.

Our main conclusion, then, is that “simple” population models obey local stability im-
plies global stability, and that “simple” includes the usual population models and some slight
generalizations. When we were able to quantify the change from “simple” to “complicated”,
we found that this change required an increase of at least 2 in the the degree of a polynomial
appearing in the formula for the model.

References

[1] P. Cull. Global Stability of Population Models. Bulletin of Mathematical Biology, 43:47–58,
1981.

[2] P. Cull. Local and Global Stability for Population Models. Biological Cybernetics, 54:141–149,
1986.

[3] P. Cull. Local and Global Stability of Discrete One-dimensional Population Models. In Ric-
ciardi [30], pages 271–278.

[4] P. Cull. Stability of Discrete One-dimensional Population Models. Bulletin of Mathematical

Biology, 50(1):67–75, 1988.

[5] P. Cull. Linear Fractionals - Simple Models with Chaotic-like Behavior. In Dubois [16], pages
170–181.

[6] P. Cull. Convergence of iterations. In R. Moreno-Diaz et al, editor, EUROCAST 2005. LNCS

3643, pages 457–466. Springer-Verlag, Berlin Heidelberg, 2005.

[7] P. Cull. Enveloping Implies Global Stability. In L. Allen B., Aulbach, S. Elaydi, and R. Sacker,
editors, Difference Equations and Discrete Dynamical Systems, pages 170–181. World Scien-
tific, Hackensack, NJ, 2005.

[8] P. Cull and J. Chaffee. Stability in discrete population models. In D. M. Dubois, editor,
Computing Anticipatory Systems: CASYS’99, pages 263–275. Conference Proceedings 517,
American Institute of Physics, Woodbury, NY, 2000.

[9] P. Cull and J. Chaffee. Stability in simple population models. In R. Trappl, editor, Cybernetics

and Systems 2000, pages 289–294. Austrian Society for Cybernetics Studies, 2000.

[10] P. Cull, M. Flahive, and R. Robson. Difference Equations: from Rabbits to Chaos. Springer,
New York, 2005.

[11] Paul Cull. Stability in one-dimensional models. Scientiae Mathematicae Japonicae, 58:349–
357, 2003.

[12] Paul Cull. Difference Equations as Biological Models. Scientiae Mathematicae Japonicae,
64:217– 233, 2006.

[13] Paul Cull. Population Models: Stability in One Dimension. Bulletin of Mathematical Biology,
69(3):989–1017, April 2007.

[14] R. Devaney. An Introduction to Chaotic Dynamical Systems. Benjamin, Redwood City, 1986.

[15] D. Dubois. Computing Anticipatory Systems with Incursion and Hyperincursion. In D. M.
Dubois, editor, Computing Anticipatory Systems:CASYS’97 - First International Conference,

Conference Proceedings 437, pages 3–29. American Institue of Physics, Woodbury, N.Y., 1998.

[16] D. M. Dubois, editor. Computing Anticipatory Systems:CASYS 2001 - Fifth International

Conference, Conference Proceedings 627. American Institue of Physics, Woodbury, N.Y.,
2002.

[17] M. J. Feigenbaum. Quantitative Universality for a Class of Non-Linear Transformations. J.

Stat. Phys., 19:25–52, 1978.



48 P. CULL, K. WALSH AND J. WHERRY

[18] M.E. Fisher, B.S. Goh, and T.L. Vincent. Some Stability Conditions for Discrete-time Single
Species Models. Bulletin of Mathematical Biology, 41:861–875, 1979.

[19] B. S. Goh. Management and Analysis of Biological Populations. Elsevier, New York, 1979.

[20] M.P. Hassel. Density Dependence in Single Species Populations. Journal of Animal Ecology,
44:283–296, 1974.

[21] N. Heinschel. Sufficient Conditions for Global Stability in Population Models. Oregon State

University REU Proceedings, pages 51–67, 1994.

[22] Y.N. Huang. A Counterexample for P. Cull’s Theorem. Kexue Tongbao, 31:1002–1003, 1986.

[23] J.P. LaSalle. The Stability of Dynamical Systems. SIAM, Philadelphia, 1976.

[24] T-Y. Li and J. Yorke. Period Three Implies Chaos. American Mathematical Monthly, 82:985–
992, 1975.

[25] R.M. May. Biological Populations with Nonoverlapping Generations: Stable Points, Stable
Cycles, and Chaos. Science, 186:645–647, 1974.

[26] R.M. May. Simple Mathematical Models with Very Complicated Dynamics. Nature, 261:459–
467, 1976.

[27] P.A.P. Moran. Some Remarks on Animal Population Dynamics. Biometrics, 6:250–258, 1950.

[28] A. Nobile, L.M. Ricciardi, and L. Sacerdote. On Gompertz Growth Model and Related Dif-
ference Equations. Biological Cybernetics, 42:221–229, 1982.

[29] C.J. Pennycuick, R.M. Compton, and L. Beckingham. A Computer Model for Simulating the
Growth of a Population, or of Two Interacting Populations. Journal of Theoretical Biology,
18:316–329, 1968.

[30] L. M. Ricciardi, editor. Biomathematics and Related Computational Problems. Kluwer, Dor-
drecht, 1988.

[31] W.E. Ricker. Stock and Recruitment. Journal of the Fisheries Research Board of Canada,
11:559–623, 1954.

[32] G. Rosenkranz. On Global Stability of Discrete Population Models. Mathematical Biosciences,
64:227–231, 1983.

[33] A. Sarkovskii. Coexistence of Cycles of a Continuous Map of a Line to Itself. Ukr. Mat. Z.,
16:61–71, 1964.

[34] D. Singer. Stable Orbits and Bifurcation of Maps of the Interval. SIAM Journal on Applied

Mathematics, 35(2):260–267, Sept 1978.

[35] J.M. Smith. Mathematical Ideas in Biology. Cambridge University Press, Cambridge, 1968.

[36] J.M. Smith. Models in Ecology. Cambridge University Press, Cambridge, 1974.

[37] S. Utida. Population Fluctuation, an Experimental and Theoretical Approach. Cold Spring

Harbor Symposium on Quantitative Biology, 22:139–151, 1957.

Paul Cull

Computer Science Dept., Oregon State University

Corvallis, OR 97331 USA
E-mail: pc@cs.orst.edu

Katie Walsh

Mathematics Dept., George Washington University

Washington, DC 20052 USA
E-mail: kwalsh3@gmail.com

Jon Wherry

Mathematics Dept., Oregon State University

Corvallis, OR 97331 USA
E-mail: wherryj@onid.orst.edu


