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Abstract. A stochastic model of tumor growth incorporating several key elements
of the growth processes is presented. Generalizing a previous work by the authors,
two one-dimensional diffusion processes representing populations of proliferating and
quiescent cells are obtained. Their forms turn out by their relation with total tumor
population analysed in [1]. The proposed model is able to incorporate the effects of the
mutual interactions between the two subpopulations. It is also used to simulate the
effects of two kinds of time-dependent therapies: non-specific cycle and specific cycle
drugs. Moreover, the first-exit-time problem is analyzed to study cancer evolution in
the presence of a time-dependent therapy.

1 Introduction and background Tumor is one of the main causes of death in our so-
ciety so, in the last twenty years a lot of attempts have been made to describe the tumor
kinetic.
Cancer cells population consists of a combination of proliferating, quiescent and dead cells
that determine tumor growth based on surrounding environmental conditions (cf. [5]).
Furthermore, since experimental data show the existence of more or less intense random
fluctuations in tumor growth, in a previous work (see [1]) the authors provided a stochastic
generalization of the Gompertz law in order to model monoclonal tumor growth. So tumor
size is described by means of a one-dimensional diffusion process X(t) and the first exit time
problem (FET) for X(t) from a region D has been analysed. In particular, D is restricted
by two absorbing boundaries representing healing threshold and the carrying capacity.
A first natural generalization consists of including all the essential biological phenomena of
a cellular population. To this aim, following Kozusko and Bajzer (cf. [7]), we split tumor
population in two subpopulations: proliferating and quiescent cells. In this direction, in
[7], the authors proposed a deterministic model to describe tumor dynamics, assuming that
the transition rates between proliferating and quiescent populations depend on the total
population size. By imposing that the total population is governed by the Gompertz law,
Kozusko and Bajzer resolved analytically the model and obtained the dynamics of prolif-
erating and quiescent populations as functions of the whole population size. Following this
approach, we describe proliferating and quiescent populations via two new diffusion pro-
cesses, generally time-non-homogeneous, connected to the process X(t). The FET problem
for such processes through suitable boundaries is considered. The followed approach per-
mits to analyse the effect of different therapies on tumor cells.
In Section 2 we will review the main characteristics of the model proposed in [1] in which
the effect of a therapy is seen as a moderation term of the growth rate of the tumor cells.
In Section 3 we generalize the deterministic model by Kozusko and Bajzer by obtaining two
diffusion processes P (t) and Q(t) representing the populations of proliferating and quies-
cent cells, respectively. Finally, in Section 4 the effect of a therapy on X(t) is investigated
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to simulate the corresponding modification of the processes P (t) and Q(t). The cases of
non-specific cycle and specific cycle drugs are considered.

2 Generalizing Gompertz growth In [1] the diffusion process X(t) representing tumor
size in the case of a monoclonal tumor is obtained by generalizing Gompertz growth

ẋ(t) = α x − β x log x(1)

with the initial condition x(0) = x0. More precisely, to make the ”random environment”
assumption, we considered the discrete version of Eq. (1), i.e.:

x(n+1)τ − xnτ = (ατ − βτ log xnτ )xnτ(2)

and we interpreted ατ , i.e. the intrinsic relative change in the population size during the
time interval [nτ, (n + 1)τ) n = 0, 1, . . ., as the mean of a sequence of random variables
(r.v.’s) independent and identically distribuited Z0, Zτ , ..., Znτ , ... characterized by the fol-
lowing probability distribution:

Pr(Znτ = σ
√

τ) =
1

2
+

α
√

τ

2σ
, Pr(Znτ = −σ

√
τ) =

1

2
− α

√
τ

2σ
,(3)

where σ > 0 is an arbitrary constant representing the width of the environmental fluctu-
ations. So we obtained a time-homogeneous diffusion process X(t) characterized by drift
and infinitesimal variance

A1(x) = αx − βx ln x , A2(x) = σ2x2(4)

and defined on the interval I ≡ (0, +∞). The boundaries 0 and +∞ of the process (4) are
natural non attracting.

The effect of a therapy is introduced in the deterministic equation (1) by assuming
that it consists in the elimination of a portion C(t) of the tumor cells. More precisely,
C(t) represents the regression rate of the tumor due to the therapy. By proceeding as for
the process X(t), we obtained a diffusion process XC(t), generally time-non-homogeneous,
characterized by infinitesimal moments:

AC
1 (x, t) = [α − C(t)]x − βx ln x , AC

2 (x) = σ2x2(5)

and defined in (0, +∞). We are interested on the evolution of the process XC(t) inside
the region delimited by a lower boundary S1, representing the ”recovery level”, and an
upper boundary S2, representing the carrying capacity, already present in the deterministic
model. So our problem becomes a FET problem for a time-non-homogeneous process.
Figure 1 shows an hypothetical sample path of the considered process.

Generally, FET problems for time-non-homogeneous processes are mathematically not
accessible; however, as shown in [1], XC(t) can be transformed in a time-homogeneous
Ornstein-Uhlenbeck (OU) process Y (t) with infinitesimal moments

B1(z) =
(

α − σ2/2
)

− βz, B2(z) = σ2(6)

via the transformation

z = lnx + d(t) , z0 = lnx0 + d(t0),(7)

with
d(t) = ϕ(t) exp(−βt),(8)
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Figure 1: A realization of the process XC(t) in the region (S1, S2).

where

ϕ(t) =

∫ t

C(τ) exp(βτ) dτ.(9)

In this way, the FET problem for XC(t) from (S1, S2) is equivalent to the FET problem
of Y (t) from (S̄1(t), S̄2(t)), where

S̄1(t) = lnS1 + d(t), S̄2(t) = lnS2 + d(t).(10)

We explicitly observe that the only hypothesis related to the function C(t) is that it is
C1-class. Moreover, we point out that the process X(t), i.e. resulting in the absence of
therapy, is obtained from XC(t) by setting C(t) = 0 in (5). In this case the transformed
boundaries for the OU process Y (t) are

S̄1 = lnS1 S̄2 = lnS2(11)

Assuming Y (0) = y0 ∈ (S̄1(0), S̄2(0)), we define the r.v.’s:

T−= inf
t≥0

{t : Y (t) < S̄1(t); Y (θ) < S̄2(θ),∀ θ ∈ (0, t)}, Y (0) = y0,

T += inf
t≥0

{t : Y (t) > S̄2(t); Y (θ) > S̄1(θ),∀ θ ∈ (0, t)}, Y (0) = y0,

T = inf {T−, T +}, Y (0) = y0

and the respective probability density functions (pdf’s)

γ−(t|y0) =
∂

∂t
P (T− < t);

γ+(t|y0) =
∂

∂t
P (T+ < t);(12)

γ(t|y0) =
∂

∂t
P (T < t).

The FET problem for the OU process Y (t) and for a width class of boundaries can be solved
by using the numerical procedure introduced by Buonocore et al. in [2]. In [1] the authors
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considered also the effects of a logarithmic therapy:

C(t) = C0 log(e + ξt).

However, we observe that the results obtained in [1] are limited to consider an un-diversified
tumor mass, i.e. it is assumed that the tumor cells are all characterized by a same prolifer-
ation rate.

3 Proliferating and quiescent populations A first and natural generalization of the
model proposed in [1] is to consider a model that incorporates all the essential biological
phenomena of a cellular population. To this aim, in every cellular population we recognize
three separate compartments in base of their proliferating capability:

• the compartment A constituted by proliferating cells, in phase G1 (GAP 1);

• the compartment B constituted by quiescent cells, in phase G0 (out cellular cycle);

• the compartment C which contains cells in necrosis or diversified.

Kozusko and Bajzer in [7] , by extending a previous model by Gyllenberg and Webb (cf.
[6]), proposed a dynamic model for the populations of proliferating and quiescent cells in
which the transition rates of the two populations are functions of the total tumor population.
Furthermore, the form of the two subpopulations emerges from the assumption that the total
population is governed by the Gompertz equation. Under such assumption they analytically
solved the model of Gillenberg-Webb, by getting the expressions for the proliferating and
quiescent populations as functions of the total tumor population. In particular, called p(t)
and q(t) the size of proliferating and quiescent populations respectively, in [7], the authors
showed that

p(t) = ρ(t)x(t)

(13)

q(t) = ω(t)x(t)

with

ρ(t) =
µq + α e−β t

η − µp + µq

and ω(t) =
η − µp − α e−β t

η − µp + µq

.(14)

Clearly x(t) = p(t) + q(t) describes the total population and, in the deterministic case, it
follows the Gompertz law. The parameters µp ≥ 0 and µq ≥ 0 represent the death rates of
the populations p(t) and q(t) respectively; η > 0 is the birth rate of the proliferating cells
p(t). Like before, the parameters α and β represent the growth rates of the total population
x(t). Moreover, in order to get p(t) and q(t) ≥ 0, it has to be η − µp > α.
By the stochastic generalization of the Gompertz equation or rather of the population x(t)
discussed in [1] and briefly summarized in Section 2, it is natural to generalize the model
by Kozusko and Bajzer so to obtain the following stochastic relations:

P (t) = ρ(t)X(t)

(15)

Q(t) = ω(t)X(t),

where X(t) is characterized by infinitesimal moments (4) (in the absence of therapy), so its
transition pdf is:

fX(x, t|x0, t0) =
1

x
√

2πV (t − t0)
exp

{

− [ln x − M(t|x0, t0)]
2

2 V (t − t0)

}

(16)
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with

M(t|x0, t0) =
α − σ2/2

β

(

1 − e−β (t−t0)
)

+ ln x0 e−β (t−t0),

V (t) =
σ2

2 β

(

1 − e−2β t
)

.

Since ρ(t) and ω(t) are strictly monotone and non negative functions, from relations (15),
it follows that P (t) and Q(t) are diffusion processes defined in the interval (0, +∞).
We point out that by expressing the relations between the quiescent and proliferating sub-
populations and the total population, we can study in a separate way the processes P (t)
and Q(t) even if they are strictly connected. Indeed, the covariance of the two populations
is:

cov[P (t), Q(t)] = cov[ρ(t)X(t), ω(t)X(t)] = ρ(t)ω(t) varX(t)

and, since it results

E[X(t)] = exp
{

M(t | x0, t0) +
V (t − t0)

2

}

,

var[X(t)] = exp
{

2[M (t | x0, t0) + V (t − t0)]
}

− exp
{

2M (t | x0, t0) + V (t − t0)
}

,

one has:

cov[P (t), Q(t)] = ρ(t)ω(t) exp
{

2[M (t | x0, t0) + V (t − t0)]
}

(eV (t−t0) − 1).

The transition pdf’s of the processes P (t) and Q(t) describing the proliferating and quiescent
populations are linked to (16) by the following relations:

fP (x, t|x0, t0) =
1

ρ(t)
fX

(

x

ρ(t)
, t | x0

ρ(t0)
, t0

)

(17)

fQ(x, t|x0, t0) =
1

ω(t)
fX

(

x

ω(t)
, t | x0

ω(t0)
, t0

)

,

therefore, we have

fP (x, t|x0, t0) =
1

x
√

2πV (t − t0)
exp

{

−
[ln x − ln ρ(t) − M(t | x0

ρ(t0) , t0)]
2

2 V (t − t0)

}

(18)

fQ(x, t|x0, t0) =
1

x
√

2πV (t − t0)
exp

{

−
[ln x − ln ω(t) − M(t | x0

ω(t0)
, t0)]

2

2 V (t − t0)

}

.(19)

From (18) and (19) we obtain the infinitesimal moments of the processes P (t) and Q(t).

Indeed, called AP
i (x, t) and AQ

i (x, t) the infinitesimal moments of P (t) and Q(t) respectively,
we have:

AL
i (x, t) = lim

∆ t↓ 0

1

∆ t

∫ ∞

0

(z − x)ifL(z, t + ∆ t | x, t) dz

i = 1, 2; L = P, Q.(20)

After some calculations we get:

AP
1 (x, t) =

[

α +
ρ′(t)

ρ(t)
+ β ln ρ(t)

]

x − β x ln x AP
2 (x, t) = σ2 x2(21)
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and

AQ
1 (x, t) =

[

α +
ω′(t)

ω(t)
+ β lnω(t)

]

x − β x ln x AQ
2 (x, t) = σ2 x2,(22)

so the processes P (t) and Q(t) are time-non-homogeneous. We can obtain the infinitesimal
moments (21) and (22) in a more immediate way by relations (15), as shown in the following:

Remark 1 The processes P (t) and Q(t) satisfy the following stochastic differential equa-
tions:

dP (t) =
[ρ′(t)

ρ(t)
+ α − β log

(

P (t)/ρ(t)
)

]

P (t) dt + σ P (t) dW (t)(23)

dQ(t) =
[ω′(t)

ω(t)
+ α − β log

(

Q(t)/ω(t)
)

]

Q(t) dt + σ Q(t) dW (t)(24)

Proof. From (15) we have:

dP (t) = d [ρ(t)X(t)] = ρ′(t)X(t) dt + ρ(t) dX(t)(25)

= ρ′(t)X(t) dt + ρ(t)[α X(t) − β X(t) log
(

X(t)
)

] dt + σ X(t) dW (t)

and substituting in the second member X(t) = P (t)/ρ(t), we obtain (23).
In analogous way we obtain (24).

In Figure 2 four hypothetical sample paths of the processes P (t) and Q(t) are shown for
different choices of the parameter σ representing the width of the random fluctuations on
the population X(t).
An interesting remark is the following:

Remark 2 The infinitesimal moments (21) and (22) can be write as in (5), indeed

AP
1 (x, t) = [α − G(t)]x − β x ln x,

AQ
1 (x, t) = [α − H(t)]x − β x ln x,

where

G(t) = −ρ′(t)

ρ(t)
− β ln ρ(t) e H(t) = −ω′(t)

ω(t)
− β lnω(t).(26)

Remark 2 allows us to analyse mathematically the processes P (t) and Q(t). Indeed, we can
see P (t) and Q(t) as particular cases of XC(t), so that it is possible to find a transformation
which leads P (t) and Q(t) in an OU process, as shown in the following proposition:

Proposition 1 The processes P (t) and Q(t) are transformable in an OU process charac-
terized by infinitesimal moments (6).

Proof. We note that, from Remark 2, the process P (t) can be formally write as a process
XG(t) describing the whole tumor population in the presence of a therapy G(t) given in (26).
So, as shown in Section 2, P (t) can be transformed into an OU process with infinitesimal
moments (6) through the transformation (7) where d(t) and ϕ(t) are given in (8) and (9)
respectively, so

d(t) = − ln ρ(t).(27)

Analogously, Q(t) is transformed in OU process (6) by using (7) with

d(t) = − ln ω(t).(28)
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Figure 2: Trajectories of P (t) (red curve) and Q(t) (blue curve) for different choices of the param-
eter σ. From left to right and from top to bottom we choose σ = 0, 0.1, 0.5, 1).

At this point it is natural to extend the FET analysis of the process describing the total
tumor population to the two subpopulations P (t) and Q(t). From Proposition 1 we have

that the FET problem for P (t) [Q(t)] through an arbitrary real interval (SP
1 , SP

2 ) [(SQ
1 , SQ

2 )]
is equivalent to the FET problem for the OU process Y (t) characterized by infinitesimal

moments (6) through the interval (S̄P
1 , S̄P

2 ) [(S̄Q
1 , S̄Q

2 )], where, for i = 1, 2, we have set

S̄P
i (t) = ln

(SP
i (t)

ρ(t)

)

[

S̄Q
i (t) = ln

(SQ
i (t)

ω(t)

)

]

.

As made in [1], we choose two boundaries S1 and S2 for the total tumor population; this
infers two boundaries on the populations P (t) and Q(t). Indeed from (13), called SP

1 (t) and
SP

2 (t) the boundaries for the process P (t), they are connected to S1 and S2 introduced for
the process X(t) by the relation:

SP
i (t) = ρ(t)Si i = 1, 2.(29)

In the same way, called SQ
1 (t) and SQ

2 (t) the boundaries for Q(t), we have:

SQ
i (t) = ω(t)Si i = 1, 2.(30)

The following proposition shows the relation between the FET problem of the process
P (t) [Q(t)] and the already analysed FET problem for X(t).
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Proposition 2 The first-exit-time problem for P (t) [Q(t)] from the region (SP
1 (t), SP

2 (t))

[(SQ
1 (t), SQ

2 (t))] is equivalent to the FET problem for X(t) from (S1, S2) where S1 = SP
1 (t)+

SQ
1 (t) and S2 = SP

2 (t) + SQ
2 (t), with SP

i (t), SQ
i (t) (i = 1, 2) defined in (29) and (30).

Proof. We obtain the thesis for the process P (t). An analogous argument can be used
for Q(t). By Proposition 1 the FET problem for P (t) through (SP

1 (t), SP
2 (t)) is equivalent

to the FET problem for the OU process (6) through the interval (S̄P
1 (t), S̄P

2 (t)) with

S̄P
i (t) = ln

(

SP
i (t)

ρ(t)

)

= ln Si (i = 1, 2),(31)

where use of (27) has been made. So, the analysis of the FET problem for P (t) through
SP

i (t) (i = 1, 2) given in (29) corresponds to consider the FET problem for the process Y (t)
through S̄1 and S̄2 defined in (10). Since this last one is equivalent to the FET problem
from (S1, S2) for X(t), we obtain the thesis.

4 The effect of a therapy On the basis of connection between cytotoxic activity and
cell cycle, antitumoral drugs are classified in two classes:

• Non-specific cycle drugs: they can damage tumor cells in any phase of the cellular
cycle;

• Specific-cycle drugs: they can damage tumor cells only in a fixed phase of the cell
cycle.

Our approach, consisting to “split” the total tumor population in the two subpopulations
P (t) and Q(t), allows us to introduce in our model the effect of the aforementioned drugs,
as we will see in this section.

4.1 Non-specific cycle drugs We said that the effect of non-specific cycle drugs is un-
connected to the presence of cells in cycle, so this drugs type damages both the proliferating
population and quiescent population. Our aim is to analyse how the effect of a therapy C(t)
applied at the whole population X(t) is transferred on the populations P (t) and Q(t).
To this aim, we assumed that the effect of a therapy applied to the tumor population X(t)
mathematically corresponds to the parametric perturbation

α → α − C(t),(32)

where C(t) represents the regression rate of the tumor due to the therapy. So, called PC(t)
and QC(t) the proliferating and quiescent population size in the presence of a non-specific-
therapy C(t), introducing the parametric perturbation (32) in (15), we obtain:

PC(t) = ρ̃(t)XC(t)

(33)

QC(t) = ω̃(t)XC(t),

where XC(t) is defined in (5) and the functions ρ̃(·) and ω̃(·) are obtained from ρ(·) and
ω(·) defined in (14) substituting α with the parameter α − C(t), that is

ρ̃(t) =
µq + [α − C(t)] e−β t

η − µp + µq

e

ω̃(t) =
η − µp − [α − C(t)] e−β t

η − µp + µq

.
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Proposition 3 The processes PC(t) and QC(t) satisfy the following stochastic differential
equations:

dPC(t) =
[

α − C(t) +
ρ̃′(t)

ρ̃(t)
− β log

(

PC(t)/ρ̃(t)
)

]

PC(t) dt + σ PC(t) dW (t)

(34)

dQC(t) =
[

α − C(t) +
ω̃′(t)

ω̃(t)
− β log

(

QC(t)/ω̃(t)
)

]

Q(t) dt + σ Q(t) dW (t).

Proof. The thesis follows from (33), proceeding as in Remark 1.

So, by Proposition 3 the process PC(t) [QC(t)] is characterized by infinitesimal moments:

APC

1 (x, t) =
[

α − C(t) +
ρ̃′(t)

ρ̃(t)
− β log

( x

ρ̃(t)

)

]

x APC

2 (x, t) = σ2 x2

(35)
[

AQC

1 (x, t) =
[

α − C(t) +
ω̃′(t)

ω̃(t)
− β log

( x

ω̃(t)

)

]

x AQC

2 (x, t) = σ2 x2

]

.

In the following proposition, we present an analogous result to Proposition 2.

Proposition 4 The FET problem for the process PC(t) [QC(t)] through the interval (SPC

1 (t), SPC

2 (t))

[(SQC

1 (t), SQC

2 (t))] with

SPC

i (t) = ρ̃(t)Si [SQC

i (t) = ω̃(t)Si]

for i = 1, 2, is equivalent to the FET problem for the process XC(t) through the boundaries
S1 and S2.

Proof. It is similar to Proposition 2.

4.2 Specific cycle drugs To analyse the effect of a specific cycle drugs we note that the
perturbation (32) corresponds to the following parametric perturbation in the populations
P (t) and Q(t):

µp → µ̃p(t) := µp − C(t)e−βt

µq → µ̃q(t) := µq − C(t)e−βt,(36)

indeed we can write ρ̃(t) in the following form:

ρ̃(t) =
µ̃q + αe−βt

η − µ̃p + µ̃q

.

The previous observation allows to introduce in the model the effect of the phase-specific
drugs, i.e. able to act on cells in a fixed phase of the cell cycle. So cells in phase G0 are
left out from the action of the drug. Mathematically, this one corresponds to a parametric
perturbation in the only parameter µp. So the resulting processes PC(t) and QC(t) are
characterized by infinitesimal moments (35) where

ρ̃(t) =
µq + αe−βt

η − µp + C(t)e−βt + µq

and
ω̃(t) = 1 − ρ̃(t).
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5 Numerical results To provide a numerical analysis of the results shown in the pre-
vious sections, we shall choose the parameters α and β as in [1] so to extend the results
obtained in it to the populations P (t) and Q(t). To this aim we choose α = 6.46 years−1 and
β = 0.314 years−1 corresponding to a parathyroid tumor with mean age of 19.6 years−1.
Moreover we take µp = 0.2 years−1, µq = 0.2 years−1, η = 1 years−1 and σ = 1 years−1

and P (0) = ρ(0) x(0) almost surely, with x0 = 1.074 · 108 corresponding to a total tumor
weight equal to 0.1 g, i.e. the smallest weight of tumor likely to be detectable (see [9]). We
introduce in the population P (t) the two boundaries

SP
1 = 1 and SP

2 = 5 · 108.

By using the numerical algorithm proposed in [2], we can evaluate numerically the pdf’s γ−

and γ+ of the r.v.’s T− and T + representing the first exit times of P (t) through SP
1 and

SP
2 respectively. In Figures 3 and 4 approximations of γ− and γ+ (curve on the left) and

the corresponding probabilities (curve on the right) are plotted. We can observe that the
probability to reach the boundary S1 before crossing S2 is near to zero in the absence of
therapy. In the following we want to analyse numerically the FET problem for P (t) in the
presence of a therapy of constant intensity C0.
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Figure 3: FET pdf through the boundary SP
1 = 1 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t).

In the case of a non-specific cycle drugs, by choosing C(t) = C0 = 1 years−1, which
corresponds to a therapy able to reduce nearly of the 15 per cent the growth rate of the
total tumor cells, we obtain the approximation of γ− and γ+, with the corresponding
probabilities plotted in Figure 5 and 6 respectively. Finally, in the case of specific cycle
drugs, choosing C0 = 1 years−1 we obtain γ− and γ+ (with the corresponding probabilities)
as in Figures 7 and 8. By comparing Figures 6 and 8, we can observe that non-specific
cycle drugs are more effective when we consider a wide interval of administration of the
drug. This result is in agreement with clinical results since the proliferating population
tends to become small as we can see in Figure 2.
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Figure 4: FET pdf through the boundary SP
2 = 5 · 108 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t).
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Figure 5: FET pdf through the boundary SP
1 = 1 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t) in the presence of a non-specific cycle drugs
with fixed intensity C0 = 1 years−1.

Concluding remarks The aim of this paper has been to provide some quantitative infor-
mation on the role of proliferation and quiescence in tumor growth where the whole tumor
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Figure 6: FET pdf through the boundary SP
2 = 5 · 108 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t) in the presence of a non-specific cycle drugs
with fixed intensity C0 = 1 years−1.
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Figure 7: FET pdf through the boundary SP
1 = 1 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t) in the presence of a specific cycle drugs with
fixed intensity C0 = 1 years−1.
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Figure 8: FET pdf through the boundary SP
2 = 5 · 108 (curve on the left) and the corresponding

probability (curve on the right) for the process P (t) in the presence of a specific cycle drugs with
fixed intensity C0 = 1 years−1.

population is modeled by means of a generalized Gompertz law. The proposed model al-
lows to include the effect of a non-specific cycle drug and specific cycle drug applied on the
total tumor cell population. The followed analysis on the proposed model highlights that,
in agreement with clinical results, non-specific cycle drugs are more effective if applied on
a wide interval. Our study opens the way to future endeavors focusing on a systematic
computational analysis of the role of various types of therapies applied on the proliferating
and quiescent populations.
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