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Abstract. In recent years, particle swarm optimization (PSO) proposed by Kennedy
et al. has been widely used as a general approximate solution method for optimization
problems. The authors proposed a revised PSO (rPSO) method incorporating the
homomorphous mapping and the multiple stretching technique in order to cope with
shortcomings of PSO and showed its efficiency for nonlinear programming problems.
In this paper, we construct an interactive fuzzy satisficing method for multiobjec-
tive nonlinear programming problems based on the rPSO. In order to obtain better
solutions in consideration of the property of multiobjective programming problems,
we incorporate the direction to nondominated solutions into the rPSO. Furthermore,
the efficiency of the proposed method (MOrPSO) is shown through applications to
numerical examples.

1 Introduction A nonlinear programming problem is called a convex programming prob-
lem when its objective function and its constraint region are convex. For such convex pro-
gramming problems, there have been proposed many efficient solution methods such as
the successive quadratic programming method, the generalized reduced gradient method
and so forth. Unfortunately, there have not been proposed any decisive solution method
for nonconvex programming problems. As practical solution methods, meta-heuristic op-
timization methods such as the simulated annealing method, the genetic algorithm and so
on, have been proposed. In recent years, however, more speedy and more accurate opti-
mization methods have been desired because actual problems become more large-size and
more complex.

As a new optimization method, the particle swarm optimization (PSO) method was
proposed by Kennedy et al. [2]. PSO is a search method simulating the social behavior
that individuals (particles) like bird or fish constitute a population (swarm) and each par-
ticle in the swarm search better points using the knowledge owned by it as well as that
owned by the swarm. Since the original PSO has shortcomings such as the concentration
of particles to local solutions and the inapplicability to constrained problems, the authors
proposed a revised PSO (rPSO) by incorporating the homomorphous mapping and the
multiple stretching technique in order to overcome these shortcomings [5].

In recent years, with the diversification of social requirements, the demand for the pro-
grams with multiple objective functions, has been increasing rather than a single-objective
function (e.g. maximizing the total profit and minimizing the amount of pollution in a
production planning). Since there does not always exist a complete optimal solution which
optimizes all objectives simultaneously for multiobjective programming problems, a solu-
tion that any improvement of one objective function can be achieved only at the expense
of at least one of other objective functions is considered as a reasonable solution, which is
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called a Pareto optimal solution or a nondominated solution. For such multiobjective opti-
mization problems, fuzzy programming approaches (e.g. Zimmermann [12], Rommelfanger
[7]), considering the imprecise nature of the decision maker’s judgments in multiobjective
optimization problems, seem to be very applicable and promising. In the application of the
fuzzy set theory into multiobjective linear programming problems started by Zimmermann
[12], it has been implicitly assumed that the fuzzy decision or the minimum-operator of
Bellman and Zadeh [1] is suitable to represent the decision maker’s preference for fuzzy
goals of objective functions. In general, however, the fuzzy decision is not always the best
representation of the decision maker’s preference for fuzzy goals. Thereby, Sakawa et al.
have proposed interactive fuzzy satisficing methods for various multiobjective programming
problems to derive a satisficing solution for the decision maker along with checking the local
preference of the decision maker through interactions [8, 9]. In particular, they [10] con-
sidered an interactive fuzzy satisficing method for multiobjective nonlinear programming
problems. In [10], they adopted a genetic algorithm called RGENOCOPV and showed the
feasibility of the proposed method, but there are drawbacks about calculation time and
precision of solutions.

In this research, focusing on multiobjective nonlinear programming problems, we at-
tempt to derive a satisficing solution through the interactive fuzzy satisficing method with
short calculation time and high precision. As the solution method used in the interactive
fuzzy satisficing method, we adopt rPSO [5] which is promising for nonlinear programming
problems and we propose an extension of rPSO to multiobjective programming problems,
MOrPSO.

2 Multiobjective nonlinear programming problems In this research, we consider
multiobjective nonlinear programming problems formulated as:

minimize fl(x), l = 1, 2, . . . , k
subject to gi(x) ≤ 0, i = 1, 2, . . . , m

lj ≤ xj ≤ uj , j = 1, 2, . . . , n
x = (x1, x2, . . . , xn)T ∈ Rn

⎫⎪⎪⎬
⎪⎪⎭

(1)

where fl(·), gi(·) are linear or nonlinear functions, lj and uj are the lower limit and the
upper limit of each decision variable xj . In addition, we denote the feasible region of (1) by
X .

3 An interactive fuzzy satisficing method In order to consider the imprecise nature
of the decision maker’s judgments for each objective function in (1), if we introduce the
fuzzy goals such as “fl(x) should be substantially less than or equal to a certain value”, (1)
can be rewritten as:

maximize
x∈X

(µ1(f1(x)), . . . , µk(fk(x)))(2)

where µl(·) is the membership function to quantify the fuzzy goal for the l th objective
function in (1). To be more specific, if the decision maker feels that fl(x) should be less
than or equal to at least f0

l and fl(x)) ≤ f1
l (≤ f0

l ) is satisfactory, the shape of a typical
membership function is shown in Fig. 1.

Since (2) is regarded as a fuzzy multiobjective decision making problem, there rarely
exist a complete optimal solution that simultaneously optimizes all membership functions.
As a reasonable solution concept for the fuzzy multiobjective decision making problem,
Sakawa et al. defined M-Pareto optimality on the basis of membership function values
by directly extending the Pareto optimality in the ordinary multiobjective programming
problem [8].
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Figure 1: An example of membership functions.

Introducing an aggregation function µD(x) for k membership functions in (2), the prob-
lem can be rewritten as:

maximize
x∈X

µD(x)(3)

where the aggregation function µD(·) represents the degree of satisfaction or preference
of the decision maker for the whole of k fuzzy goals. Following conventional fuzzy ap-
proaches, as aggregation functions, the minimum operator and the product operator are
often adopted. However, it should be emphasized here that such approaches are preferable
only when the decision maker feels that the minimum operator or the product operator is
appropriate. In other words, in general decision situations, the decision maker does not
always use the minimum operator or the product operator when combining the fuzzy goals.
Probably the most crucial problem in (3) is the identification of an appropriate aggrega-
tion function which well represents the decision maker’s fuzzy preferences. If µD(·) can be
explicitly identified, then (3) reduces to a standard mathematical programming problem.
Unfortunately, however, this rarely happens. Thereby, as an alternative, an interaction with
the decision maker is necessary for finding the satisficing solution of (2).

In the interactive fuzzy satisficing method, in order to generate a candidate for the
satisficing solution which is M-Pareto optimal, the decision maker is asked to specify the
aspiration levels of achievement for all membership functions, called the reference member-
ship levels [8]. For the decision maker’s reference membership levels µ̄l, l = 1, 2, . . . , k, the
corresponding M-Pareto optimal solution, which is nearest to the requirements in the mini-
max sense or better than that if the reference membership levels are attainable, is obtained
by solving the following augmented minimax problem (4).

minimize
x∈X

max
l=1,...,k

{(µ̄l − µl(fl(x))) + ρ
k∑

i=1

(µ̄i − µi(fi(x)))(4)

where ρ is a sufficiently small positive real number.
We can now construct the interactive algorithm in order to derive the satisficing solu-

tion for the decision maker from the M-Pareto optimal solution set. The procedure of an
interactive fuzzy satisficing method is summarized as follows.

Step 1: Under given constraints, the minimal value and the maximal one of each objective
function are calculated by solving following problems.

minimize
x∈X

fl(x), l = 1, 2, . . . , k(5)

maximize
x∈X

fl(x), l = 1, 2, . . . , k(6)
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Step 2: In consideration of the minimal value and the maximal one of each objective
function, the decision maker subjectively specifies membership functions µl(fl(x)),
l = 1, 2, . . . , k to quantify fuzzy goals for objective functions. Next, the decision
maker sets initial reference membership levels µ̄l, l = 1, 2, . . . , k.

Step 3: We solve the augmented minimax problem corresponding to current reference
membership levels (4).

Step 4: If the decision maker is satisfied with the solution obtained in step 3, the interactive
procedure is finished. Otherwise, the decision maker updates reference membership
levels µ̄l, l = 1, 2, . . . , k based on current membership function values and objective
function values, and return to step 3.

4 Particle swarm optimization Particle swarm optimization (PSO) [2] is based on the
social behavior that a population of individuals adapts to its environment by returning to
promising regions that were previously discovered [3]. This adaptation to the environment
is a stochastic process that depends on both the memory of each individual, called particle,
and the knowledge gained by the population, called swarm.

In the numerical implementation of this simplified social model, each particle has four
attributes: the search point in the search space, the search direction vector and the best
search point in its track and the best search point of the swarm. The process can be outlined
as follows.

Step 1: Generate the initial swarm involving N particles at random.

Step 2: Calculate the next search direction vector of each particle, based on its attributes.

Step 3: Calculate the next search point of each particle from the current search point
and its next search direction vector.

Step 4: If the termination condition is satisfied, stop. Otherwise, go to Step 2.

To be more specific, the next search direction vector of the i-th particle at time t, vt+1
i , is

calculated by the following scheme introduced by Shi and Eberhart [11].

vt+1
i := ωtvt

i + c1R
t
1(p

t
i − xt

i) + c2R
t
2(p

t
g − xt

i)(7)

In (7), Rt
1 and Rt

2 are random numbers between 0 and 1, pt
i is the best search point of

the i-th particle in its track and pt
g is the best search point of the swarm. There are three

problem-dependent parameters, the inertia of the particle ωt, and two trust parameters c1,
c2.

Then, the next search point of the i-th particle at time t, xt+1
i , is calculated from (8).

xt+1
i := xt

i + vt+1
i(8)

where xt
i is the current search point of the i-th particle at time t. The i-th particle calculates

the next search direction vector vt+1
i by (7) in consideration of the current search direction

vector vt
i, the direction vector from the current search point xt

i to the best search point in
its track pt

i and the direction vector from the current search point xt
i to the best search

point of the swarm pt
g, moves from the current search point xt

i to the next search point
xt+1

i calculated by (8). The parameter ωt controls the amount of move to search globally
in early stage and to search locally by decreasing ωt gradually.

The movement of a particle in PSO is shown in Fig. 2. Comparing the evaluation value
of a particle after move, f(xt+1

i ), with that of the best search point in its track, f(pt
i), if
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Figure 2: Movement of a particle in PSO.

f(xt+1
i ) is better than f(pt

i), then the best search point in its track is updated as pt
i := xt+1

i .
Furthermore, if f(pt+1

i ) is better than f(pt
g), then the best search point of the swarm is

updated as pt+1
g := pt+1

i .
Such a simple PSO [2, 11] includes two problems. One is that particles concentrate on the

best search point of the swarm and they cannot easily escape from the point (local solution)
since the search direction vector vt+1

i calculated by (7) always includes the direction vector
to the best search point of the swarm. Another is that a particle after move is not always
feasible for problems with constraints.

5 Improvement of particle swarm optimization In this study, to prevent the con-
centration and stop of particles at local optimal solutions in the simple PSO, we introduce
the modification of move schemes of a particle, the secession and the multiple stretching
technique. In addition, in order to treat constraints, we divide the swarm into two sub-
swarms. In one subswarm, since the move of a particle to the infeasible region are not
accepted, if a particle becomes infeasible after move, it is repaired to be feasible. In the
other subswarm, the move of a particle to the infeasible region are accepted.

5.1 Move of a particle Let us consider the move from the current search point xt
i of

the i-th particle.
First, if the previous search point xt−1

i is the best search point of the particle in its
track pt

i, the next search point xt+1
i moves near the best search point of the swarm pt

g with
high possibility. Thereby, as shown in Fig. 3, we change (7) to determine the next search
direction vector vt+1

i as

vt+1
i := c1R

t
1(p

t
i − xt

i) + c2R
t
2(p

t
k − xt

i)(9)

where pt
k is the best search point of the k-th particle. By the change of the search direction

vector determination scheme, we can relax concentration of particles to pt
g.

Next, in case that the current search point xt
i is the best search point of the particle

in its track pt
i, the direction from the previous search point to the current search point is

desirable. Thus, as in Fig.4, we change (7) to determine the next search direction vector
vt+1

i as

vt+1
i := ωtvt

i(10)

Otherwise, we use (7) to determine the next search direction vector vt+1
i .
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Figure 3: The new search direction vector when the best search point of a particle in its
track is renewed at the previous search point.
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Figure 4: The new search direction vector when the best search point of a particle in its
track is renewed at the current search point.
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5.2 Division of the swarm into two subswarms In application of PSO to optimiza-
tion problems with constraints, a particle after move is not always feasible if we use the
move schemes mentioned above. To deal with such a situation, we divide the swarm into
two subswarms. In one subswarm, since the move of a particle to the infeasible region are
not accepted, if a particle becomes infeasible after move, it is repaired to be feasible. To
be more specific, with respect to infeasible particles which violate constraints after move,
we repair its search point to be feasible by the bisection method on the direction from the
search point before move, xt

i, to that after move, xt+1
i . In the other subswarm, the move

of a particle to the infeasible region are accepted.

5.3 Secession Since particles tend to concentrate on the best search point of the swarm
as the search goes forward in PSO, as shown in Fig. 5, the global search becomes difficult.
Thus, we introduce the following secession of a particle (Fig. 6).

(1) [Secession I] A particle moves at random to a point in the feasible region.

(2) [Secession II] A particle moves at random to a point on the boundary of the feasible
region.

(3) [Secession III] A particle moves at random to a point in a direction of some coordinate
axis.

5.4 Multiple stretching technique Stretching technique is suggested to prevent the
stop at a local optimal solution of particles in PSO by Parsopoulos et al. [6]. It enables
particles to escape from the current local optimal solution and not to approach the same local
optimal solution again by changing original evaluation function f(x) to other evaluation
function H(x) defined as:

G(x) = f(x) + γ1‖x − x̄‖
(
sign

(
f(x) − f(x̄)

)
+ 1

)
(11)

H(x) = G(x) + γ2

sign
(
f(x) − f(x̄)

)
+ 1

tanh
(
µ
(
G(x) − G(x̄)

))(12)
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Figure 6: The secession.

where x̄ is the current local optimal solution, and γ1, γ2, µ are parameters. In addition,
sign(·) is defined as follows.

sign(x) =

⎧⎨
⎩

1, x > 0
0, x = 0
−1, x < 0

(13)

In G(x), the second term is the penalty depending on the distance between a search point
x and the current local optimal solution x̄. The term is equal to 0 for x whose objective
function value f(x) is better than f(x̄), while it takes a value depending on the distance
between x and x̄ for x whose f(x) is worse than f(x̄). Next, H(x) is defined using G(x)
expressed in (11). The value of H(x) for a search point x is equal to the objective function
value f(x) of x if f(x) of x is better than that of x̄, while it takes a very large value if
f(x) of x is worse than that of x̄. Using H(x) as the new evaluation function, particles can
escape from the current local optimal solution and search a new region which may include
better solutions than the current local optimal solution.

Although the stretching technique [6] enables particles to escape from the current local
optimal solution, they may stop at the same local optimal solution again when we apply the
stretching technique to the next local optimal solution. Thus, we use the multiple stretching
technique corresponding to plural local optimal solutions. To be concrete, we consider the
following functions for Q local optimal solutions x̄q, q = 1, 2, . . . , Q.

Gq(x) = f(x) + γ1‖x − x̄q‖
(
sign

(
f(x) − f(x̄min)

)
+ 1

)
(14)

Hq(x) = Gq(x) + γ2

sign
(
f(x) − f(x̄min)

)
+ 1

tanh
(
µ
(
Gq(x) − Gq(x̄q)

))(15)

S(x) =
Q∑

q=1

Hq(x)/Q(16)

Here, x̄min is the best among Q local optimal solutions. The value of S(x) for a search
point x is equal to the objective function value f(x) of x if f(x) is better than that of x̄min,
while it takes a very large value if the distance between x and the nearest local optimal
solution is less than a certain value. Otherwise, it takes a value depending on the distance.
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Figure 7: Application of rPSO to the augemented minimax problem.
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Figure 8: Application of the proposed PSO to the augemented minimax problem.

5.5 Incorporation of the direction to nondominated particles in the swarm
The shape of the objective function of the augmented minimax problem (4), solved in the
interactive fuzzy satisficing method for multiobjective nonlinear programming problems,
often becomes complex. Therefore, there does not always exist the optimal solution in the
search direction of the swarm, as shown in Fig. 7.

Thus, considering the fact that the optimal solution to (4) is one of M-Pareto optimal
solutions to (2), we introduce the direction to a nondominated particle (an approximate
M-Pareto optimal solution) to carry out search with respect to both M-Pareto optimality
and the optimality of the objective function of (4), as shown in Fig. 8.

In order to incorporate the new search direction, we revise (7) to determine the next
search direction vector as:

vt+1
i = ωtvt

i + c3R
t
3(x

t
K − xt

i)(17)

where xt
K is the search point of a certain nondominated particle K in the current swarm,

c3 is a parameter and Rt
3 is the uniform random number in the interval [0, 1].

Moreover, when the current search point is the best search point of a particle, it is
considered that the current search point and the current search direction vector are promis-
ing since the best point of a particle is just updated. Therefore, the next search direction
vector vt+1

i is calculated by the translation equation (10) like Morihara [5]. By the swarm
involving particles which move in the manner mentioned above, the search with respect to
M-Pareto optimality is carried out.

In rPSO [5], the next search point is decided by a vector to the k-th particle instead
of the best search point of the swarm in order to restrain the concentration of particles
on the best search point of the swarm when the best search point of a particle is updated
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just before that. Unfortunately, it does not seem suitable in order to solve the augmented
minimax problem since the direction to the k-th particle does not seem good if the k-th
particle is dominated.

Thus, we determine the next search direction vector vt+1
i by the following equation (18)

using the direction to the current search point of a nondominated particle K in its track
instead of the best search point of the k-th particle.

vt+1
i = c1R

t
1(p

t
i − xt

i) + c2R
t
2(x

t
K − xt

i)(18)

This modification leads to move to the direction to the nondominated solution as well as
the restraint of the concentration on local optimal solutions.

5.6 Algorithm of the proposed PSO method The algorithm of the proposed PSO
method based on rPSO for multiobjective nonlinear programming problems (MOrPSO) is
summarized as follows.

Step 1: Find one feasible solution by rPSO in consideration of the degree of violation of
constraints, and set it a basic point solution of the homomorphous mapping r. Set
t := 0, and go to step 2.

Step 2: Generate the initial search point x0
i of each particle which is feasible or satisfies all

constraints, using the homomorphous mapping [4]. To be more concrete, generate N
points in a hypercube [−1, 1]n randomly, and map them into the feasible region using
the homomorphous mapping. Let these points obtained by the mapping be initial
search points x0

i , i = 1, 2, . . . , N and let p0
i := x0

i , i = 1, 2, . . . , N . Then, find the
best search point among p0

i , i = 1, 2, . . . , N , and use it as the best search point of the
initial swarm p0

g. Go to step 3.

Step 3: Determine the parameter value ωt. If the conditions of using the information of
nondominated particles are satisfied, calculate the next search direction vector vt+1

i

and the next search point xt+1
i of each particle using the move scheme depending

on its situation based on (17) and (18). Otherwise, calculate vt+1
i and xt+1

i of each
particle using the usual move scheme depending on its situation based on (7), (9) and
(10). Go to step 4.

Step 4: For particles of the subswarm limited to the feasible region, if there exist infeasible
ones, they are repaired to be feasible by the bisection method. Go to step 5.

Step 5: Check whether all conditions for the execution of the multiple stretching technique
are satisfied or not. If satisfied, go to step 6. Otherwise, go to step 7.

Step 6: Calculate S(xt+1
i ), i = 1, 2, . . . , N where S(·) is the evaluation function in the

multiple stretching technique are satisfied and use them as objective function values
instead of f(xt+1

i ). Go to step 7.

Step 7: Calculate f(xt+1
i ), i = 1, 2, . . . , N and use them as objective function values as

usual. Go to step 8.

Step 8: For each particle, if xt+1
i is not dominated by any current nondominated particles

in the external archive, add xt+1
i to the external archive. Then, remove solutions

dominated by xt+1
i from the external archive. Moreover, if xt+1

i is better than pt
i in

the sense of the objective function f(·) or S(·), update the best search point of the
particle in its track as pt+1

i := xt+1
i . Otherwise, let pt+1

i := pt
i and go to step 9.
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Step 9: Find the best pt+1
best among pt+1

i , i = 1, 2, . . . , N . If pt+1
best is better than pt

g in the
sense of the objective function f(·) or S(·), update the best search point of the particle
in its track as pt+1

g := pt+1
best. Otherwise, let pt+1

g := pt
g and go to step 10.

Step 10: For each particle, apply the secession operation. Let t := t+1 and go to step 11.

Step 11: If t > Tmax (the maximal search time), the search procedure is terminated.
Otherwise, go to step 3.

Here, the termination condition means that the search time counter t reached to given
maximal search time Tmax. An application condition of multiple stretching technique means
that the best solution of the swarm has not been updated during a given period.

6 Numerical example In order to show the efficiency of the proposed PSO (MOrPSO),
we consider the following multiobjective nonlinear programming problem.

minimize
f1(x) = 7x2

1 − x2
2 + x1x2 − 14x1 − 16x2 + 8(x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + x2
10 + 45

minimize
f2(x) = (x1 − 5)2 + 5(x2 − 12)2 + 0.5x4

3 + 3(x4 − 11)2

+0.2x5
5 + 7x2

6 + 0.1x4
7 − 4x6x7 − 10x6 − 8x7

+x2
8 + 3(x9 − 5)2 + (x10 − 5)2

minimize
f3(x) = x3

1 + (x2 − 5)2 + 3(x3 − 9)2 − 12x3 + 2x3
4

+4x2
5 + (x6 − 5)2 + 6x2

7 + 7(x7 − 2)x2
8

−x9x10 + 4x3
9 + 5x1 − 8x1x7

subject to
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4

−2x5x6x8 + 120 ≥ 0
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 − 6x5x6 ≥ 0
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x5x8 + 30 ≥ 0
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0
4x1 + 5x2 − 3x7 + 9x8 ≤ 105
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 17x10 ≤ 12
−5.0 ≤ xj ≤ 10.0, j = 1, . . . , 10

We apply the original rPSO [5], RGENOCOP V [10] and the proposed PSO (MOrPSO)
to minimax problems solved in the interactive fuzzy satisficing method for the above prob-
lem. The results obtained by these three methods are shown in Table 1. In these ex-
periments, we set the swarm (population) size N = 70, the maximal search generation
number Tmax = 5000, the number of trials is 10. In addition, we use the following
membership functions: µf1(x) = (1500 − f1(x))/1420, µf2(x) = (3500 − f2(x))/3300,
µf3(x) = (3100 − f3(x))/3050.

From Table 1, in the application of rPSO [5], we can get better solutions in the sense of
best, average and worst than those obtained by RGENOCOP V [10]. This indicates that
rPSO is better than RGENOCOP V about the accuracy of solutions. However, as for the
difference between best and worst, that for rPSO is larger than that for RGENOCOP V,
i.e., rPSO is worse than RGENOCOP V with respect to the precision of solutions.
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Table 1: Results of the application of three methods to augmented minimax problems.

Interaction 1st 2nd Time
(µ̄1, µ̄2, µ̄3) (1.0, 1.0, 1.0) (0.8, 1.0, 1.0) (sec)

Best 0.1430 0.0823
MOrPSO (proposed) Average 0.1452 0.0838 9.03

Worst 0.1488 0.0859
Best 0.1434 0.0826

rPSO [5] Average 0.1466 0.0854 8.55
Worst 0.1674 0.1102
Best 0.1825 0.1406

RGENOCOP V [10] Average 0.1880 0.1568 42.90
Worst 0.1952 0.1811

Table 2: Results of application of two methods to augmented minimax problems.

Interaction 1st 2nd Time
(µ̄1, µ̄2, ) (1.0, 1.0) (0.8, 1.0) (sec)

Best 0.3861 0.2222
MOrPSO (proposed) Average 0.4843 0.2795 125.83

Worst 0.6288 0.3869
Best 0.4460 0.2569

rPSO [5] Average 0.5160 0.3006 124.93
Worst 0.6335 0.4170

On the other hand, the results obtained by the proposed MOrPSO are better than those
by rPSO in the sense of best, average, worst, the difference between best and worst.

In addition, we applied rPSO and MOrPSO to another problem which has 2 objective
functions, 100 decision variables and 55 constraints. Table 2 shows results for the problem.
As the results for the previous problem, MOrPSO can obtain better solutions than those
by rPSO.

Therefore, MOrPSO proposed in this paper is the best solution method among these
methods with respect to both the accuracy of solutions and the precision of solutions.

7 Conclusion In this paper, we focused on multiobjective nonlinear programming prob-
lems and proposed a new PSO technique which is efficient for in applying the interactive
fuzzy satisficing method. In particular, considering the features of augmented minimax
problems solved in the interactive fuzzy satisficing method, we incorporated the new search
direction vector determination scheme based on the information of nondominated particles
into rPSO. Finally, we showed the efficiency of the proposed MOrPSO by applying it to
numerical examples.
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