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HENSTOCK INTEGRAL IN HARMONIC ANALYSIS

Valentin A.Skvortsov∗

Received December 13, 2007

Abstract. The feasibility of Henstock approach to integration theory is demonstrated
by application of Henstock-type integrals with respect to different derivation bases to
the problem of recovering the coefficients of orthogonal series by generalized Fourier
formulae.

1 Introduction. The name of Henstock will always be associated first of all with a very
simple definition of a generalized Riemann integral on an interval of the real line which
covers the Lebesgue integral and is widely known nowadays as the gauge integral or the
Henstock-Kurzweil integral. It is really amazing that such a small change introduced into
classical Riemann definition yields an integral much more powerful than the integrals that
can be produced by a very elaborate Lebesgue construction. No wonder that this definition
has been included in many textbooks on integration theory and is used in some university
courses. For example, in Math. Department at Moscow University students are taught
Henstock integral within the first year undergraduate analysis course, prior to the course
in the Lebesgue integration.

But having written his first papers on Riemann-type integration (see [4], [5]), Henstock
realized very soon that his methods had a far greater scope than it was shown in those
publications. So he introduced in [6] (see also [7] and [8]) the concept of division spaces
which seems to be one of his most profound contribution to the theory of integral. Since
then, it became clear that the generalized Riemann integral can be defined in a very general
setting, and had such a wide generality that almost every integral known in analysis could
be included in the division space theory. So very important feature of Henstock’s theory is
its unifying quality: it gives a unified approach to many problems which have been dealt
with earlier by different methods, using different type of non-absolute integrals. Now many
of them can be solved by using different types of Henstock integrals, just by choosing an
appropriate basis of integration (or division space in Henstock terminology).

In this note we are going to demonstrate this by examples of application of the Hen-
stock construction to the so-called coefficients problem in the theory of series with respect
to different orthogonal systems. This problem became popular in the classical harmonic
analysis in the beginning of XX century since it had been discovered that some everywhere
convergent trigonometric series could fail to be Fourier-Lebesgue series of their sums. For
example series

∞∑
n=2

sinnx
lnn

converges everywhere and hence his coefficients are defined uniquely by its sum (see [26]).
But the sum is not Lebesgue integrable. So the coefficients can not be recovered by the
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classical Fourier formulae. This kind of examples can be given for many other known
orthogonal systems. To integrate such series one needs nonabsolutely convergent integrals.
If the sum of the series is integrable in one or another known general sense, the question
is whether the coefficients can be computed by Fourier formulae in which the integral is
understood in the same particular sense. The complete solution of the problem of recovering
the coefficients of an orthogonal series, with respect to a certain system, is found if a general
process of integration is developed so that everywhere convergence of such a series implies
that it is the Fourier series of its sum in the sense of the defined integral. Convergence
everywhere can be replaced here by convergence outside so-called set of uniqueness. (By
the way one of the early papers by Henstock [3] is related to the sets of uniqueness for
trigonometric series, but it was before he had started developing his integration theory.)

The first solution to the coefficients problem in the trigonometric case is due to Denjoy.
He introduced in [2] a very complicated construction of a second order integral called the
totalization T2s which recaptures a function from its second Riemann symmetric derivative.
Later some other authors defined Perron-type integrals to solve this problem (see [24] for
details). An integral solving the coefficients problem for Haar and Walsh series was intro-
duced in [17] in a descriptive form. Then a constructive definition of Denjoy type, based
on transfinite induction, was given in [18] and later, independently, in [10]. The coefficients
problem for Vilenkin system was examined in [19]. So the problem for each system was
treated separately.

An advantage of application of the Henstock theory is that it provides a unifying ap-
proach to the coefficients problem for many orthogonal systems, including the multidimen-
sional case. The point is that for many systems one can find a regular method of summation
of series based on some kind of a generalized derivative. The derivative prompts the choice
of an appropriate derivation basis. And in this way the coefficient problem can be reduced to
the problem of recovering the primitive from a given derivative by a Henstock-type integral
defined with respect to the chosen basis. We consider below several examples of applying
this method.

2 Preliminaries. We remind the principal elements of the Henstock construction. We
present them here, following [11] and [23], in terms of derivation basis theory instead of the
one of division spaces, although Henstock prefered to use the last terminology. But in those
simple cases we are dealing with here it is really a matter of language.

A derivation basis (or simply a basis) B in a measure space (X,M, µ) is a filter base on
the product space I ×X , where I is a family of measurable subsets of X having positive
measure µ and called generalized intervals or B-intervals. That is, B is a nonempty collection
of subsets of I × X so that each β ∈ B is a set of pairs (I, x), where I ∈ I, x ∈ X , and
B has the filter base property: ∅ /∈ B and for every β1, β2 ∈ B there exists β ∈ B such that
β ⊂ β1∩β2. So each basis is a directed set with the order given by “reversed” inclusion. We
shall refer to the elements β of B as basis sets. If x ∈ I for all the pairs (I, x) constituting
each β ∈ B we say that the basis is a Henstock basis. Otherwise it is called a McShane basis
and we do not consider such bases here. For a set E ⊂ X and β ∈ B we write

β(E) := {(I, x) ∈ β : I ⊂ E} and β[E] := {(I, x) ∈ β : x ∈ E}.
Certain additional hypotheses guarantee some nice properties of a basis. For example,

it is useful to suppose that the basis B ignores no point, i.e., β[{x}] �= ∅ for any point x ∈ X
and for any β ∈ B.

If X is a metric or a topological space it is usually supposed that B is a Vitali basis by
which we mean that for any x and for any neighborhood U(x) of x there exists βx ∈ B such
that I ⊂ U(x) for each pair (I, x) ∈ βx.
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A β-partition is a finite collection π of elements of β, where the distinct elements (I ′, x′)
and (I ′′, x′′) in π have I ′ and I ′′ disjoint (or at least non-overlapping, i.e., µ(I ′ ∩ I ′′) = 0).
Let L ∈ I. If π ⊂ β(L) then π is called β-partition in L, if

⋃
(I,x)∈π I = L then π is called

β-partition of L.
We say that a basis B has the partitioning property if the following conditions hold:

(i) for each finite collection I0, I1, ..., In of B-intervals with I1, ...In ⊂ I0 the difference
I0 \

⋃n
i=1 Ii can be expressed as a finite union of pairwise non-overlapping B-intervals; (ii)

for each B-interval I and for any β ∈ B there exists a β-partition of I.

Definition 2.1. Let B be a basis having the partitioning property and L ∈ I. A function
f on L is said to be HB-integrable on L, with HB-integral A, if for every ε > 0, there exists
β ∈ B such that for any β-partition π of L we have:∣∣∣∣∣∣

∑
(I,x)∈π

f(x)µ(I) −A

∣∣∣∣∣∣ < ε.

We denote the integral value A by (HB)
∫
L f.

The following extension of the previous definition is useful in many cases.

Definition 2.2. A function f defined almost everywhere on L ∈ I is HB-integrable on L,
with HB-integral A, if the function

f1(x) :=
{
f(x) if it is defined,
0 otherwise

is HB-integrable on L and its HB-integral is equal A.

Let F be an additive set function on I and E an arbitrary subset of X . For a fixed
β ∈ B, we set

V ar(E,F, β) := sup
π⊂β[E]

∑
|F (I)|.

We put also
VF (E) = V (E,F,B) := inf

β∈B
Var(E ,F , β).

The extended real-valued set function VF (·) is called variational measure generated by F ,
with respect to the basis B. It is an outer measure and, in the case of a metric space X , a
metric outer measure (in the last case it should be assumed that the basis is a Vitali basis).

Given a set function F : I → R we define the upper and the lower B-derivative at a
point x, with respect to the basis B and measure µ, as

DBF (x) := inf
β∈B

sup
(I,x)∈β

F (I)
µ(I)

and DBF (x) := sup
β∈B

inf
(I,x)∈β

F (I)
µ(I)

,(2.1)

respectively. As we have assumed that B ignores no point then it is always true that
DBF (x) ≥ DBF (x). IfDBF (x) = DBF (x) we call this common value B-derivativeDBF (x).
For a complex-valued set function F = ReF + iImF we define B-derivative at a point x as
DBF (x) := DBReF (x ) + DBImF (x ).

We say that a set function F , real- or complex-valued, is B-continuous at a point x, with
respect to the basis B, if VF ({x}) = 0.

We shall need the following (see [11, Proposition 1.6.4])
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Proposition 2.1. Let an additive complex-valued function F defined on I be B-differentiable
on L ∈ I outside a set E ⊂ L such that VF (E) = 0. Then the function

f(x) :=
{
DBF (x ) if it exists,
0 if x ∈ E

is HB-integrable on L and F is its indefinite HB-integral.

The next theorem is a corollary of the above proposition.

Theorem 2.1. Let an additive function F : I → R be B-differentiable everywhere on L ∈ I
outside of a set E with µ(E) = 0, and −∞ < DBF (x) < DBF (x) < +∞ everywhere on E
except on a countable set M ⊂ E where F is B-continuous. Then the function

f(x) :=
{
DBF (x ) if it exists,
0 if x ∈ E

is HB-integrable on L and F is its indefinite HB-integral.

3 Dyadic basis in the theory of Walsh and Haar series. We consider here one of
the simplest derivation basis, namely the dyadic basis on X = [0, 1] and on [0, 1]m.

In the case of [0, 1] the family I of B-intervals is constituted by the closures of dyadic
intervals

J
(n)
j :=

[
j

2n
,
j + 1
2n

)
, 0 ≤ j ≤ 2n − 1, n = 0, 1, 2, . . . .

If X = [0, 1]m, B-intervals are defined as the closures of m-dimensional dyadic intervals

J
(n)
j := J

(n1)
j1

× . . .× J
(nm)
jm

(3.1)

where j = (j1, . . . , jm) and n = (n1, . . . , nm). We denote this family Id.
To define a dyadic basis it is enough to define basis sets β. For X = [0, 1] we put

βδ := {I ∈ Id : I ⊂ U(x, δ(x))} ,

where δ is a so-called gauge, i.e, a positive function defined on X , and U(x, δ) denotes the
neighborhood of x of radius δ. So the dyadic basis is defined as Bd := {βδ : δ : X → (0,∞)}.

In the m-dimensional case we consider two dyadic basis. The first one is defined exactly
as above with Id being the family of all closed m-dimensional dyadic intervals. The second
one is called a regular dyadic basis. To define it we use the notion of regularity. The
parameter of regularity of a dyadic interval of the form (3.1) is defined as

min
i,l

{|J (ni)
ji

|/|J (nl)
kl

|}.
Analogously the parameter of regularity of a vector a = (a1, . . . , am) is defined as

min
i,l

{ai/al}.

We write reg(J) (resp. reg(a)) for the parameter of regularity of a dyadic interval J (resp.
of a vector a).

Now basis sets of ρ-regular dyadic basis Bd,ρ we define as

βδ,ρ := {I ∈ Id : I ⊂ U(x, δ(x)), reg(I) ≥ ρ} .
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Applying Definition 2.1 to these dyadic bases we obtain HBd
-integral (the dyadic Hen-

stock integral) and HBd,ρ
-integral (the ρ-regular dyadic Henstock integral).

We show now that these integrals solve the coefficient problem for Walsh and Haar
series. We remind the definitions (see [9] and [16]).

First we define the Rademacher functions rn, n = 0, 1, . . . , on [0, 1):

rn(x) :=

{
1 if x ∈ J

(n+1)
j , k = 0, 2, . . . , 2n+1 − 2,

−1 if x ∈ J
(n+1)
j , j = 1, 3, . . . , 2n+1 − 1.

The Walsh functions are defined as products of Rademacher functions. To this end we use
the dyadic representation for n ≥ 0:

n =
∞∑
i=0

ni2i,

where ni = 0 or 1 and the sum is in fact finite, and we put

wn(x) :=
∞∏
i=0

(ri(x))ni .

In particular w0 ≡ 1.
Now we define the Haar functions on [0, 1) . Put χ0(x) ≡ 1. If n = 2k + i (k = 0, 1, . . . ,

i = 0, . . . , 2k − 1), we put

χn(x) :=

⎧⎪⎨
⎪⎩

2k/2, if x ∈ [
2i−2
2k+1 ,

2i−1
2k+1

)
,

−2k/2, if x ∈ [
2i−1
2k+1 ,

2i
2k+1

)
,

0, if x ∈ [0, 1) \ [
2i−2
2k+1 ,

2i
2k+1

)
.

An m-dimensional Walsh (resp. Haar) series is defined by

∞∑
n=0

bnwn(x) :=
∞∑

n1=0

. . .

∞∑
nm=0

bn1,... ,nm

m∏
i=1

wni(xi)(3.2)

(resp.
∞∑

n=0

anχn(x) :=
∞∑

n1=0

. . .

∞∑
nm=0

an1,... ,nm

m∏
i=1

χni(xi) )(3.3)

where an and bn are real numbers. If N = (N1, . . . , Nm), then the Nth rectangular partial
sum SN of series (3.2) (resp. (3.3)) at a point x = (x1, . . . , xm) is

SN(x) :=
N1−1∑
n1=0

. . .

Nm−1∑
nm=0

bnωn(x) (resp. SN(t) :=
N1−1∑
n1=0

. . .

Nm−1∑
nm=0

anχn(x) ).

The series (3.2) (or (3.3)) rectangularly converges to sum S(x) at a point x if

SN(x) → S(x) as min
i
{Ni} → ∞.

We consider also the regular convergence of series. Let ρ ∈ (0, 1]; then the series (3.2) (or
(3.3)) ρ-regularly converges to a sum S(x) at a point x if

SN(x) → S(x) as min
i
{Ni} → ∞ and reg(N) ≥ ρ.
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It is obvious that if the series (3.2) (or (3.3)) rectangularly converges to a sum S(x) at
a point x then for every ρ ∈ (0, 1] this series ρ-regularly converges to S(x) at x.

A starting point for an application of the dyadic derivative and the dyadic integral to
the theory of Walsh and Haar series is an observation that due to martingale properties of
the partial sums S2k of those series (here 2k stand for (2k1 , . . . , 2km)) the integral

∫
J

(k)
j

S2k

defines an additive Bd-interval function ψ(I) on the family Id of all dyadic intervals. (In
dyadic analysis the function ψ is sometimes referred to as quasi-measure (see [16, 25]).)
Since the sum S2k is constant on each J (k)

j we get

S2k(x) =
1

|J (k)
j |

∫
J

(k)
j

S2k =
ψ(J(k)

j )

|J (k)
j |

(3.4)

for any point x ∈ J
(k)
j .

Another simple observation which is essential for establishing that a given Walsh or Haar
series is the Fourier series in the sense of some general integral, is the following statement
(see [21, Proposition 4]).

Proposition 3.1. Let some integration process A be given which produces an integral ad-
ditive on Bd. Assume a series of the form (3.2) or (3.3) is given. Let the Bd-interval
function ψ be constructed for this series by (3.4). Then this series is the Fourier series of
an A-integrable function f if and only if ψ(I) = (A)

∫
I
f for any dyadic interval I.

It is seen from formula (3.4) that, at least for points with dyadic-irrational coordinates,
rectangular (respectively, ρ-regular rectangular) convergence of the series (3.2) (or (3.3)) at
a point x to a sum f(x) implies Bd-differentiability (respectively, Bd,ρ-differentiability) of the
function ψ in x with f(x) being the value of the Bd-derivative (respectively, Bd,ρ-derivative).

So in order to solve the coefficient problem it is enough to show that the function ψ
is an integral of its derivative which exists at least almost everywhere. Then in view if
Proposition 3.1 we get

Theorem 3.1. If the series (3.2) (or (3.3)) is rectangular (respectively, ρ-regular rectangular)
convergent to a sum f almost everywhere on [0, 1)m, outside a set E such that Vψ(E) = 0,
then the function f is HBd

-integrable (respectively, HBd,ρ
-integrable) and (3.2) (or (3.3))is

the Fourier series of f , in the sense of the respective integral.

To use this theorem we need some additional information related to the behavior of a
series on the exceptional set which would imply that the variational measure Vψ is equal zero
on this set. Such a nice behavior of ψ on the exceptional set can be obtained either from a
convergence condition or from some additional growth assumptions imposed on the series.
For example, it can be easily shown, in the one dimentional case, that if the coefficients of
a series 3.2 satisfy the condition limn→∞ bn = 0 (which is a consequence of the convergence
of the series at least at one dyadic-irrational point) then ψ is Bd-continuous everywhere on
[0, 1), and we apply Theorem 2.1 to get

Theorem 3.2. If the series (3.2) (in one dimension) is convergent to a sum f at each
dyadic irrational point, then f is HBd

-integrable and (3.2) is the Fourier-Walsh series of f ,
i.e.,

bn = (HBd
)
∫

[0,1)

fwn.

For more details in the multidimensional case see [12], [13], [14] and [21].
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4 Approximate symmetric basis and the coefficients problem for trigonometric
series. A Henstock-type integral solving the coefficients problem in the case of trigonomet-
ric series was introduced by D.Preiss and B.Thomson in [15]. The idea of a gauge integral
associated with a symmetric basis was mentioned in Henstock’s book [6].

In [15] (see also [24]) the approximate symmetric basis was used for the construction of
the integral.

Definition 4.1. Approximate symmetric gauge is a measurable set S ⊂ R × (0,∞) such
that for any x ∈ R the set {t : (x, t) ∈ S} is measurable and

lim
h→0+

µ
({t ∈ (0, h) : (x, t) /∈ S})

h
= 0.(4.1)

Each approximate symmetric gauge S generate a basis set

βS :=
{
([x− t, x+ t], x) : (x, t) ∈ S}

.(4.2)

So the approximate symmetric basis is

Bap, sym :=
{
βS : S approximate symmetric gauge}(4.3)

Unfortunately the approximate symmetric basis does not have the partitioning property
in the form it was formulated above in Section 2. But it has this property in a weaker form
(see [24]):

Theorem 4.1. For each basis set βS there is a set N of measure zero such that for every
interval with endpoint R \N there exists a βS-partition of this interval.

Since in the trigonometric series theory we need to integrate only periodic functions, the
following corollary of the above result is essential.

Theorem 4.2. If T > 0, then for each basis set βS and for some a ∈ R there exists a
βS-partition of the interval [a, a+ T ].

Now with this theorem the following ”periodic” definition of the approximate symmetric
Henstock integral is available.

Definition 4.2. T -periodic function f is ASH-integrable over period T and its ASH-
integral is A if for any ε > 0 there exists S such that∣∣∣∣∣∣

∑
(I,x)∈π

f(x)µ(I) −A

∣∣∣∣∣∣ < ε

for all βS-partition π of interval [a, a+T ] where a is taken from theorem 4.2. We denote A
by (ASH)

∫
(T ) f .

Now the coefficient problem for trigonometric series is solved by the following theorem.

Theorem 4.3. If a trigonometric series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)
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is convergent everywhere to a function f then f and the functions x �→ f(x) cos kx, x �→
f(x) sin kx, k = 1, 2, 3, . . . , are ASH-integrable and

a0 =
1
π
· (ASH)

∫
(2π)

f(x), ak =
1
π
· (ASH)

∫
(2π)

f(x) cos kx,

bk =
1
π
· (ASH)

∫
(2π)

f(x) sin kx.

We note that no multidimensional analogue of ASH-integral is known up to now and
the only available way to solve the coefficient problem in dimension greater then one is to
use an iterated integration (see [20]).

5 Derivation basis in zero dimensional group and the respective Henstock-type
integral. Now we show how a Henstock-type integral can be defined on compact subsets of
a locally compact zero-dimensional abelian group and can be used to recover, by generalized
Fourier formulae, the coefficients of series with respect to characters of such a group, in a
compact case, and to obtain an inversion formula for multiplicative integral transforms, in
a locally compact case.

Let G be a zero-dimensional locally compact abelian group G which satisfies the second
countability axiom. We suppose also that the group G is periodic. It is known (see [1]) that
a topology in such a group can be given by a chain of subgroups

.... ⊃ G−n ⊃ ... ⊃ G−2 ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ G2... ⊃ Gn ⊃ ...(5.1)

with G =
⋃+∞
n=−∞Gn and {0} =

⋂+∞
n=−∞Gn. The subgroups Gn are clopen sets with

respect to this topology. As G is periodic, the factor group Gn/Gn+1 is finite for each n
and this implies that Gn (and so also all its cosets) is compact. Note that the factor group
Gn/G0 is also finite for any n < 0 and so the factor group G/G0 is countable. We denote
by Kn any coset of the subgroup Gn and by Kn(g) the coset of the subgroup Gn which
contains the element g, i.e., Kn(g) := g + Gn. For each g ∈ G the sequence {Kn(g)} is
decreasing and {g} =

⋂
nKn(g).

Let Γ denotes the dual group of G, i.e., the group of characters of the group G. It is
known (see [1]) that under assumption imposed on G the group Γ is also a periodic locally
compact zero-dimensional abelian group (with respect to the point-wise multiplication of
characters) and we can represent it as a sum of increasing sequence of subgroups

.... ⊃ Γ−n ⊃ ... ⊃ Γ−2 ⊃ Γ−1 ⊃ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ ... ⊃ Γn ⊃ ...(5.2)

introducing a topology in Γ. Then Γ =
⋃+∞
i=−∞ Γi and

⋂+∞
i=−∞ Γi = {γ(0)} where (g, γ(0)) =

1 for all g ∈ G (here and below (g, γ) denote the value of a character γ at a point g). For
each n ∈ Z the group Γ−n is the annulator of Gn, i.e.,

Γ−n = G⊥
n := {γ ∈ Γ : (g, γ) = 1 for all g ∈ Gn}.

The factor groups Γ−n−1/Γ−n = G⊥
n+1/G

⊥
n and Gn/Gn+1 are isomorphic and so they

are of finite order for each n ∈ Z. This implies that the group Γ−n/Γ0 is also finite for any
n > 0 and Γ/Γ0 is countable.

We denote by µG and µΓ the Haar measures on the groups G and Γ, respectively, and
we normalize them so that µG(G0) = µΓ(Γ0) = 1.

Now we define a derivation basis BG on the measure space (G,M, µG). Take any function
ν : G→ Z and define a basis set by

βν := {(I, g) : g ∈ G, I = Kn(g), n ≥ ν(g)}.
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So our basis BG in G is the family {βν}ν where ν runs over the set of all integer-valued
functions on G. This basis has all the properties described in Section 2 for the general
derivation basis, in particular it is a Vitali basis. Note that the set IG of all BG-intervals in
our case is composed by all the cosets Kn, n ∈ Z. The partitioning property of BG follows
easily from compactness of any BG-interval and from the fact that any two BG-intervals K ′

and K ′′ are either disjoint or one of them is contained in the other one.
Definition 2.1 of the HB-integral can be rewritten for the basis BG in the following form

(see [22]):

Definition 5.1. Let L ∈ IG. A complex-valued function f on L is said to be HG-integrable
on L, with HG-integral A, if for every ε > 0, there exists a function ν : L→ Z such that for
any βν -partition π of L we have:∣∣∣∣∣∣

∑
(I,g)∈π

f(g)µG(I) −A

∣∣∣∣∣∣ < ε.

We denote the integral value A by (HG)
∫
L
f.

Remark 5.1. We note that all the above definitions depend on the structure of the se-
quence of subgroups (5.1). So if we consider for the group Γ the definitions of the BΓ-basis
and the HΓ-integral, then we should use the sequence (5.2) in our construction.

The upper and the lower BG-derivative of a set function F : IG → R at a point g can
be rewritten, in the case of the basis BG and measure µG, as

DGF (g) := lim sup
n→∞

F (Kn(g))
µG(Kn(g))

, DGF (g) := lim inf
n→∞

F (Kn(g))
µG(Kn(g))

.(5.3)

The BG-derivative at g is

DGF (g) := lim
n→∞

F (Kn(g))
µG(Kn(g))

.(5.4)

Note that in the case of our basis BG, given a point g, any βν-partition contains only
one pair (I, g) with this point g. Because of this we can reformulate the definition of B-
continuity in a simpler way, saying that a set function F is BG-continuous at a point g,
with respect to the basis BG, if limn→∞ F (Kn(g)) = 0.

As in the general case considered in Section 2, the indefinite HG-integral on L ∈ IG is
an additive BG-continuous function on the set of all BG-subintervals of L. Moreover, it is
BG-differentiable almost everywhere (see [22]) and DGF (g) = f(g) a.e. on L.

If the group G is compact and so the chain (5.1) is reduced to the one-side sequence
G = G0 ⊃ G1 ⊃ . . . ⊃ Gn ⊃ . . . , then in this case the HG-integral is defined on the whole
group G. Moreover, the group Γ of characters of the group G is discrete now (see [1]) and
it can be represented as a sum of increasing chain of finite subgroups Γ0 ⊂ Γ−1 ⊂ . . . ⊂
Γ−n ⊂ . . . where Γ0 = {γ(0)} with (g, γ(0)) = 1 for all g ∈ G. So the characters γ constitute
a countable orthogonal system on G with respect to normalized measure µG and we can
consider a series ∑

γ∈Γ

aγγ(5.5)
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with respect to this system. We define a convergence of this series at a point g as the
convergence of its partial sums

Sn(g) :=
∑

γ∈Γ−n

aγ(g, γ)(5.6)

when n tends to infinity.
We associate with the series (5.5) a function F defined on each coset Kn by

F (Kn) :=
∫
Kn

Sn(g)dµG.(5.7)

It can be proved that F is an additive function on the family of all BG-intervals. As the
sum Sn, defined by (5.6), is constant on each Kn, then (5.7) implies

Sn(g) =
F (Kn(g))
µG(Kn(g))

.(5.8)

So we have a situation similar to the one we had in Section 3. An analogue of Proposition
3.1 is

Theorem 5.1. The series (5.5) is the HG-Fourier series of some HG-integrable function
f if and only if the function F associated with this series by expression (5.7) coincides on
each BG-interval I with the indefinite integral (HG)

∫
I f .

The following two lemmas are immediate consequences of the equality (5.8).

Lemma 5.1. If the series (5.5) converges at some point g ∈ G to a value f(g) then the
associated function F (see (5.7)) is BG-differentiable at g and DGF (g) = f(g). Moreover if
the series (5.5) satisfies at a point g the conditions

−∞ < lim inf
n→∞ ReSn(g) ≤ lim sup

n→∞
ReSn(g) < +∞(5.9)

−∞ < lim inf
n→∞ ImSn(g) ≤ lim sup

n→∞
ImSn(g) < +∞(5.10)

then the associated function F satisfies the inequalities

−∞ < DGReF (g) ≤ DGReF (g) < +∞,(5.11)

−∞ < DGImF (g) ≤ DGImF (g) < +∞.(5.12)

Lemma 5.2. If the partial sums (5.6) satisfy at a point g the condition

Sn(g) = o

(
1

µG(Kn(g))

)
(5.13)

then the associated function F is BG-continuous at the point g.

Now having in mind the above results we can use theorem 2.1 to get

Theorem 5.2. Suppose that the partial sums (5.6) of the series (5.5) converge almost ev-
erywhere on G to a function f and satisfy the conditions (5.9) and (5.10) everywhere on G
except on a countable set M, where (5.13) holds. Then f is HG-integrable in the sense of
Definition 2.2 (applied to the basis BG) and (5.5) is the HG-Fourier series of f.
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The following theorem is a particular case of Theorem 5.2.

Theorem 5.3. Suppose that the partial sums (5.6) of the series (5.5) converge to a function
f everywhere on G. Then f is HG-integrable on G and the series (5.5) is the HG-Fourier
series of f .

The following theorem is a generalization of Theorem 5.3 in a locally compact case (see
Remark 5.1 for the notation).

Theorem 5.4. If the limit

lim
n→∞(HΓ)

∫
Γ−n

a(γ)(g, γ)dµΓ

exists at each g ∈ G and its value is f(g), where a(γ) is a locally HΓ-integrable function,
then f is HG-integrable on G−n for each n and

a(γ) = lim
n→∞(HG)

∫
G−n

f(g)(g, γ)dµG a.e. on Γ.(5.14)

We mention in conclusion that the Vilenkin multiplicative system (see [1]) is a particular
example of a system of characters of a zero-dimensional compact abelian group. So the
previous results of this section are applicable to that system. A suitable Henstock-type
integral in this case is so-called P -adic Henstock integral (see [21]).
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