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THE INTEGRAL À LA HENSTOCK
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Abstract. Henstock provided a unified approach to many integrals in use. The
author put on record what he knows about the theory and its development. Finally,
he gives a personal view on the future of the theory.

1 A Unified Approach
Calculus is a gateway to advanced mathematics. The key concepts in calculus are

derivative and anti-derivative. The integral is defined as an anti-derivative. It is often
called the Newton integral. Hence the chain rule in differentiation becomes integration
by substitution in integration, and the derivative of the product of two functions becomes
integration by parts in integration. To integrate a function, we differentiate another function
so that its derivative is the given function. This other function is called the primitive of
the given function. Then the Newton integral of a given function is its primitive. If we
integrate then differentiate or differentiate then integrate, we get back to the same function.
This property is known as the fundamental theorem of calculus. The integral is regarded
as a mapping of a function into another function, namely the primitive.

Another approach to integration is taking the generalized limit of Riemann sums. What
we have defined is called the Riemann integral. We often define the Riemann integral on a
finite interval [a, b]. Unfortunately, there are functions that are Newton integrable on [a, b]
but not Riemann integrable there. There are also functions that are Riemann integrable
and not Newton integrable on [a, b]. When we talk about the Riemann integral, we often
think of it as a mapping of a function into an integral value. The fundamental theorem of
calculus does not hold for the Riemann integral without imposing further conditions. The
condition imposed is usually continuity. That is, if we integrate a continuous function into
its indefinite integral then when we differentiate we obtain the original continuous function.

The next step after the Riemann integral is to introduce the improper Riemann integral.
We need the improper integral for applications. The improper Riemann integral includes
the Riemann integral, and intersects with the Newton integral. Again the Newton integral
and the improper Riemann integral do not include each other.

A student would normally learn the Newton integral first, then the Riemann integral,
after which the improper Riemann integral. However when he moves on to his graduate
study, he abandons everything and learns a new integral called the Lebesgue integral. The
Lebesgue integral is powerful in certain ways and serves the purpose in many aspects. Still
it does not include the Newton integral. In the 60s and 70s there was a movement trying
to get rid of the Riemann integral in the undergraduate study. It did not succeed. The
Riemann integral has its place and its use that cannot be replaced by the Lebesgue integral,
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for example, in numerical integration. The attempt of Henstock, and also that of Kurzweil,
in 1957-58 was to extend the Riemann integral so that it includes the Lebesgue integral and
hence to provide a unified approach to the many integrals in use.

In early days, one pleasure of Henstock was to prove that his integral includes another
known integral. The Henstock integral is now known as the Kurzweil-Henstock integral,
since Kurzweil defined the same integral though they went different ways in developing
and applying the theory. It is common knowledge that the Kurzweil-Henstock integral
is equivalent to the Denjoy integral and the Perron integral. In fact, its general form
also includes the approximate Perron integral, the Haar integral, the Ito integral, and the
Feynman integral. For simplicity, we shall refer to the Kurzweil-Henstock integral and its
general form as the Henstock integral in this article.

It is a myth that we need the countable additivity property in order to define the
Lebesgue integral or the integral in measure theory. Henstock showed that it can be done
using only finite operations, namely the Riemann sums. The Henstock theory of integration
is now fully developed. It has yet to be included as a standard course at the undergraduate
or graduate level in the universities.

I was a student of Henstock between 1961 and 1965. I attended his first series of lectures
on the integral for an honours class, that is the fourth and final year in the degree programme
of a British university. His first book published in 1963 derived from this set of lecture notes.
In this article, I shall put on record what I know about the theory and its development. At
the end of the article, I shall also give a personal view on the future of the theory.

2 The First Idea
The first idea came from the definition of derivative. Suppose F is differentiable at a

point x, and F ′(x) = f(x) . Then for every ε > 0 there is δ > 0 such that whenever
|y − x| < δ we have

|F (y) − F (x)
y − x

− f(x)| < ε.

Here δ depends on x. So we should write δ(x) > 0. Alternatively, we write

|F (y) − F (x) − f(x)(y − x)| < ε|y − x|.
Here y may lie on the right side of x or on the left side. So we could also write it in two
inequalities:

|F (v) − F (x) − f(x)(v − x)| < ε|v − x|
when v > x, and

|F (x) − F (u) − f(x)(x − u)| < ε|x − u|
when x > u. Note that the first inequality above involves an interval [x, v] and the left
endpoint and the second inequality involves an interval [u, x] and the right endpoint. Hence
the first idea is not to consider a point function f(x) or, as in the definition of the Riemann
integral, interval functions

supt∈[u,v] f(t)(v − u) and inft∈[u,v] f(t)(v − u).
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The first idea is to consider functions of interval-point pairs, namely ([u, v], x) where x = u
or v.

To facilitate the description of such functions, Henstock invented the following notation.
Instead of writing

n∑

i=1

f(xi)(xi − xi−1),

he writes
(D)

∑
f(x)(v − u),

in which D denotes the division x0 < x1 < ... < xn , [u, v] is a typical interval in D, and
x = u or v as required.

Now suppose F ′(x) = f(x) for x ∈ [a, b] . Then for every ε > 0 there is δ(x) > 0
such that for any division D of [a, b] with ([u, v], x) being a typical interval-point pair in D
satisfying 0 ≤ v − x < δ(x) and 0 ≤ x − u < δ(x) we have

|F (b) − F (a) − (D)
∑

f(x)(v − u)|
= |(D)

∑
{F (v) − F (u) − f(x)(v − u)}|

≤ (D)
∑

|F (v) − F (u) − f(x)(v − u)|
< (D)

∑
ε|v − u| = ε(b − a).

Hence we have the following definition of the Henstock integral. The above provides a proof
that a derivative is integrable in the sense of Henstock. A function f is Henstock integrable
to A on [a, b] if for every ε > 0 there is δ(x) > 0 such that for any division D of [a, b]
with ([u, v], x) being a typical interval-point pair in D satisfying 0 ≤ v − x < δ(x) and
0 ≤ x − u < δ(x) we have

|A − (D)
∑

f(x)(v − u)| < ε.

So Henstock succeeded in defining an integral of the Riemann type. He called it the
Riemann-complete integral. As it happened, the integral so defined includes the Lebesgue
integral and many others.

In his first attempt, Henstock considered interval-point pairs with right endpoint and
left endpoint separately. More precisely, there are δ1(x) > 0 and δ2(x) > 0 such that for a
typical interval-point pair ([u, v], x) in D we have

0 ≤ x − u < δ1(x) and 0 ≤ v − x < δ2(x).

He did that in his first book [3] published in 1963. However he found out later that such
division may not exist. To overcome this, he put δ1(x) = δ2(x). This did not only address
the short-coming and also simplified the definition. Henceforth the Henstock integral is
defined as it is today. More precisely, the interval-point pairs are of the form ([u, v], x) in
which u ≤ x ≤ v , and not restricted to x = u or v with different δ functions.

3 Three Basic Concepts
The three basic concepts in the Henstock theory are: δ-fine divisions, the Saks-Henstock

lemma, and the decomposability property. The theory is developed using basically these
three concepts.
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A division is now a collection of interval-point pairs. A division D = ([u, v], x) of [a, b]
is said to be δ-fine if there is δ(x) > 0 such that

x − δ(x) < u ≤ x ≤ v < x + δ(x).

When x = a or b, the above inequality is taken to be one-sided. Henstock called such
division compatible with δ. In the literature, δ-fine is used. Finally, Henstock himself used
δ-fine. Henceforth it is called δ-fine thereafter.

The major issue here is the existence of δ-fine divisions. This follows from the Heine-
Borel covering theorem for the case when the integral is defined on [a, b]. Therefore the
integral is well defined. Henstock proceeded to prove that similar divisions exist for the
approximate Perron integral [8], the Haar integral [5] and others. Hence many integrals
now have a Riemann-type definition. For example, Xu and Lee proved it for the Ito integral
(see reference in [20]) and the Kunugi integral [8], and Muldowney did it for the Feynman
integral [16].

To develop the theory, the first important step is to prove the Saks-Henstock lemma. It
was called Henstock’s lemma at the beginning. However Henstock preferred to call it the
Saks-Henstock lemma. In one sentence, the Saks-Henstock lemma says that

|F (b) − F (a) − (D)
∑

f(x)(v − u)| < ε

in the definition can be replaced by

(D)
∑

|F (v) − F (u) − f(x)(v − u)| < ε.

In other words, the absolute value sign can be moved from outside the summation sign to
inside the summation sign. The lemma is used to prove the properties of the primitive of an
integrable function. For example, if f is integrable [a, b] then its primitive F is continuous
there. If f is absolutely integrable on [a, b], that is, both f and |f | are integrable, then its
primitive F is of bounded variation. With the Saks-Henstock lemma we are on the way to
developing richer properties of the integral.

To move on further, we need to prove theorems involving the interchange of two limit
operations. More precisely, suppose there is a sequence of integrable functions fn using δn

for n = 1, 2, 3, · · · We may assume that δ1(x) ≥ δ2(x) ≥ ... > 0 for x ∈ [a, b]. Suppose
further fn(x) −→ f(x) as n −→ ∞ for every x. Henstock always says, in his theory, there
is no need to consider pointwise convergence almost everywhere. It is enough to consider
only pointwise convergence everywhere. Under certain conditions, to prove that f is also
Henstock integrable on [a, b], we use a standard technique called the diagonal process. In the
language of Henstock, it is called decomposability. It says that it is possible to construct a
sequence of pairwise disjoint sets Xj , j = 1, 2, 3, · · · with union [a, b] such that f is Henstock
integrable using δ with δ(x) = δj(x) for x ∈ Xj. The core of the theory is now complete.

The concept of δ-fine division helps to define the integral and proves its existence. The
Saks-Henstock lemma allows us to prove some algebraic and elementary properties of the
integral. It is the decomposability, together with the above two concepts, that makes it
possible to prove the convergence theorems involving the interchange of two limit operations.



THE INTEGRAL A LA HENSTOCK 767

The three basic concepts were clearly presented in an elementary paper by Henstock [4].
The paper is probably the most read paper of Henstock. It was written at the request of a
referee of another of his papers. According to the referee, Henstock should write a simple
paper first otherwise the reader may not be able to understand his more technical paper
submitted. He obliged.

Many known integrals are now special cases of the Henstock integral. They can be
given a Riemann-type definition. Then we can go through the whole process again, and
at the end of it we obtain the necessary theorems for the given integral. Therefore it is
only natural to ask whether there is a general theory of the integral. Indeed, there is.
In the measure theory, the building blocks are measurable sets. In the Henstock theory,
the building blocks are interval-point pairs. Then we state that the collection of interval-
point pairs satisfies certain conditions including the existence of divisions, the conditions
giving rise to the Saks-Henstock lemma, and the decomposability. So we may approach the
Henstock integral axiomatically as we have done so with measure theory. For details, see
[5, 8].

4 Beyond Lanzhou Lectures
Lanzhou lectures [8] was published in 1989. Though it contains some errors, it still serves

as a useful platform for my research students. It contains equivalent definitions of the Hen-
stock integral, various convergence theorems, Riemann-type definitions of other integrals,
integral representation of an orthogonally additive functional, and some generalizations of
the Henstock integral. It also contains substantial amount of skills necessary for doing re-
search in the area. For a modern version of generalized absolutely continuous functions, see
[9]. Some years have passed. More works have been done. For a survey written in 2003,
see preprint [10]. In what follows, we give a set of random samples of further development
of Henstock’s ideas after the publication of Lanzhou lectures.

Henstock used the term interval-point pair. It came from the Riemann integral. In
the definition of the Riemann integral, intervals come first. Then we choose an arbitrary
point inside each interval. Hence interval-point pair. However in the case of the Henstock
integral, we actually have the point x first then δ(x) afterwards and finally δ-fine divisions.
Perhaps we should call point-interval pair. Zhao [13] gave an approach that we can still
consider intervals first then points later as in the Riemann theory. We define the upper sum
for a δ-fine division D = ([u, v], x) of [a, b] to be

su
H(f, D) = (D)

∑
supf(t)(v − u)

in which the sup is taken over all t ∈ [u, v] ⊂ (t − δ(t), t + δ(t)) . Similarly, we define the
lower sum sl

H(f, D) . A function f is Henstock integrable to A on [a, b] if and only if

infδ(x) supD su
H(f, D) = supδ(x) infD sl

H(f, D) = A

in which all divisions D of [a, b] are δ-fine for given δ(x) > 0.

In order to differentiate a function with respect to another function, Henstock introduced
in [3] a concept called inner variation. Roughly speaking, variation is defined over all
interval-point pairs whereas inner variation is defined over certain family of interval-point
pairs. The following theorem is due to Cabral [1]: A function is Henstock integrable on
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[a, b] with primitive F if and only if for every ε > 0 there is δ(x) > 0 for x ∈ [a, b] such that
for any δ-fine partial division D in Γε we have

(D)
∑

|F (v) − F (u)| < ε and (D)
∑

|f(x)(v − u)| < ε,

where

Γε = {([u, v], x) : |F (v) − F (u) − f(x)(v − u)| ≥ ε|v − u|}.
The condition above is known as the double Lusin condition. It is an extension of inner
variation. The idea of Γε came from Lu Jitan, independently of Henstock.

I posed the following problem to Henstock: Given the space of measurable functions,
recover or find all the Henstock integrable functions in the space. Henstock [6] solved it for
the absolute case and Ng [17] for the nonabsolute case. Both had to introduce additional
structure into the space of measurable functions. We have not seen a definition of the
Henstock integral solely in the language of measure theory.

An interesting by-product of the research in the Henstcok theory is the following result
[11]: A function f is Baire one if and only if for every ε > 0 there is δ(x) > 0 for x ∈ [a, b]
such that

|f(x) − f(y)| < ε whenever |x − y| < min{δ(x), δ(y)}.
The original intention was to define a kind of continuity so that f is Henstock integrable

if and only if f is almost everywhere continuous in the given sense. We failed. However
by using the Henstock approach we manage to produce the above interesting result outside
the integration theory.

The items above are those more closely connected to Henstock. We did not mention
numerous good works done by Kurzweil, Mawhin, Pfeffer, Thomson, Nakanishi, Bongiorno
and his group, and many others.

5 Integration without Tears
In 1964 at a conference in Leicester, England, Henstock presented a short talk titled

integration without tears. At the end of the talk, someone came out of the room and
said he finally understood what Henstock presented. It was the second time he listened
to a similar talk. It shows that the concept may be simple, but it takes time for people
to understand and to appreciate. In the talk, Henstock presented the definition of the
integral and gave two examples of functions that are integrable. The first example was the
derivative of a differentiable function and that was where the original definition came from.
The second example was the Dirichlet function, and that demonstrated the power of the
integral.

Henstock left Queen’s University of Belfast in 1964 and took up a readership at the
University of Lancaster. Readership is second to professorship in a British university. He
made an attempt to teach the integral at the year one undergraduate level. It was disastrous.
He had to abandon it. He never tried it again. Others have also taught the integral in
real analysis at the undergraduate or graduate level. Some have written textbooks on the
subject.
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In [3] and later in [5] Henstock presented the proof in closed form. More precisely, he
defined the variation and then presented the proof in terms of the variation. The approach
was not adopted by others. Most writers use the epsilon-delta approach.

The teaching difficulty of the Henstock integral is in some way intrinsic. Though the
epsilon-delta definition is supposed to be constructive, it is not so easy to construct the
corresponding δ function. It is not clear how a δ-fine division is structured. There is no
covering theorem using the interval-point pairs. The difficulty is similar to that of teaching
elementary analysis rigorously.

There is a successful approach to teaching elementary analysis using sequences and
inequalities [9]. For example, we can define continuity and uniform continuity of a function
using sequences. A function f is continuous at a point a if and only if for every xn −→ a as
n −→ ∞ we have f(xn) −→ f(a) as n −→ ∞. A function f is uniformly continuous on [a, b]
if and only if for every xn − yn −→ 0 as n −→ ∞ we have f(xn)− f(yn) −→ 0 as n −→ ∞.
If we really want to prove a function f continuous at a using epsilon-delta, given ε > 0 to
find the corresponding δ we prove first the Lipschitz condition |f(x) − f(a)| ≤ M |x − a|
for some M . Then we put δ = ε

M . We can carry on this approach all the way to results
involving uniform convergence and the Riemann integrability of a function. The sequential
approach is easier than using epsilon-delta. It is more easily accessible to the undergraduate
students.

A sequential approach to the Henstock integral is possible. It is easy to see that f is
Henstock integrable to A on [a, b] if and only if there is a sequence of positive functions
δj(x), j = 1, 2, 3, · · · , such that for every δj-fine division Dj we have

s(f, δj , Dj) = (Dj)
∑

f(x)(v − u) −→ A as j −→ ∞.

This is used as a definition, for example, in [19]. When δj(x) is a constant function for
every j, we obtain a sequential definition of the Riemann integral. It has not been tested
whether such approach to the Henstock integral is easier for students.

6 Henstock as a Supervisor
He had great insight in the integral he defined and developed. When I was under his

supervision, he met me once a fortnight for exactly one hour. I would present him with one
sheet of paper stating the results which I thought I have proved or might be able to prove.
He would start reading the results in front of me. If a result was properly stated, he could
see the proof almost immediately. Then he would move on to the next statement. When in
doubt, that is when he looked at the statement longer than usual, I would quickly pull out
another sheet of paper with a proof of the statement. He set me hard problems. I could
not solve the problems, so I wrote a paper giving a list of the problems I could not solve.
Twenty years after my graduation and between 1984 and 1989, my students and I solved
all those hard problems.

An instruction from Henstock to conduct my research was to convert all the summation
signs in the book Infinite matrices and sequence spaces by R. G. Cooke (1950) into integra-
tion signs. The idea was that to do research I should find a platform and proceed from there.
I copied this technique later when supervising my own students. In fact, Lanzhou lectures
was written with this purpose in mind, that is, providing a platform for my students.
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Another advice from Henstock was to look at the papers published before 1935. The
reason was that during that period the Lebesgue integral had not dominated the scene,
mathematicians still tried to solve problems of the nonabsolute type using nonabsolute
integrals. Some of my students did exactly that and benefited from it. See, for example,
[21].

One incident I could not forget was how I was sent to Henstock. I was supposed to work
with S. Verblunsky on Fourier series. On the first day of my arrival, I went to see Professor
Verblunsky. He said that he would take me in as his student. But, it would be better if
I could work in a new area where I would have many more years to work on. So he sent
me to a young mathematician down the corridor who had just invented a new integration
theory. The young mathematician was Henstock. I was and still am grateful to Verblunsky.
Paying forward I make sure that my students will have enough problems to work on even
after they graduated.

Before I left for home, I asked what I should look out for in the next 20 years. He
mentioned stability of differential equations and stochastic analysis. That was 1965. His
prediction was correct. Stochastic analysis remains a popular topic for research up to these
days.

7 The Last Frontier
The last frontier, as far as Henstock is concerned, is the inclusion of the Wiener integral

and the Feynman integral under the general theory of Henstock. The Wiener integral, if
we look at it abstractly, is nothing but an integral of Banach-valued functions. Schwabik
and Ye have written a book on the Henstock integral of Banach-valued functions [18]. The
other aspect of the Wiener integral involves Brownian motions. We call it the Ito integral.
We have given a Riemann-type definition to the Ito integral and proved some formulae [20].
The standard proof of the uniqueness of the Ito integral is lengthy. The proof involves
measure theory. If we use the Henstock approach, the proof is trivial.

The Feynman integral is defined on an infinite dimensional space. It was a long standing
problem to prove the existence of divisions on an infinite dimensional space. Muldowney et
al [7] finally solved the problem. Hence the last frontier has been conquered.

Perron defined his integral in order to solve differential equations. So did Kurzweil.
Denjoy defined his integral in order to solve problems in trigonometric series. Recently,
Lee Tuo Yeong [14, 15] was able to prove a series of theorems involving the convergence
of Fourier series and using the Henstock integral. There have been attempts to apply the
theory to partial differential equations and numerical integration. So far we have not seen
any break through.

Henstock says: Every good mathematical theory is both simple and elegant [2]. Indeed,
the Henstock theory of integration is simple and elegant. Unless and until it has applications
in other fields, it will not become a common language for the mathematicians.
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