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CONVERGENCES ON THE HENSTOCK-KURZWEIL INTEGRAL

Shizu Nakanishi
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I first met Professor Ralph Henstock at ”Symposium in Real Analysis” held in Erice in
1995. Since then we had friendly and encouraging communications about our research, for
which I am very grateful to him. I would like to express my deep respect to Prof. Henstock
by introducing a part of my work that he highly valued and by explaining its relation to
the Henstock-Kurzweil integral.

We concern with convergences on the Henstock-Kurzweil integral which was developed by
J. Kurzweil and R. Henstock. On the real line, the Henstock-Kurweil integral is equivalent
to the special Denjoy integral. We know the controlled convergence as a convergence on
the Henstock-Kurzweil integral (see [5] for example). On the other hand, following K.
Kunugi’s idea for integration of singular functions and using the notion of ranked space
introduced by Kunugi, we defined a convergence called the r-convergence for the special
Denjoy integral, and showed that, under the r-convergence, the family of special Denjoy
integrable functions is obtained as a completion of the family of step functions [6, 9, 11].
We discuss the controlled convergence from the viewpoint of the r-convergence [8, 10, 12].

We begin by giving the definition of ranked space introduced by K. Kunugi as a method
for functional analysis in [2], 1954.

　 1. Ranked space ([2, 4, 7]). Let E be a non-empty set such that with each x ∈ E
there is associated a non-empty family V(x) consisting of subsets of E, written V (x), etc.,
and called preneighborhoods of x, such that

(A) if V (x) ∈ V(x), then x ∈ V (x).
Sometimes, we call preneighborhood of some point preneighborhood simply. The space
E endowed with such a family of preneighborhoods is called a ranked space if with n =
0, 1, 2, · · · , there is associated a family Vn of preneighorhoods so that

(a) corresponding to x ∈ E, V (x) ∈ V(x), and n ∈ {0, 1, 2, · · · }, there are an m ∈
{0, 1, 2, · · · } and a U(x) ∈ V(x) such that m ≥ n, U(x) ⊂ V (x) and U(x) ∈ Vm.

A preneighborhood V (x) ∈ Vn is called a preneighborhood of rank n. The ranked space
E is written as (E,V(x), {Vn}∞n=0) or simply (E,V(x),Vn) as a preneighborhood space
endowed with the structure Vn(n = 0, 1, 2, · · · ) of ranked space. A preneighborhood of x of
rank n is denoted by V (x, n), U(x, n), etc.

A sequence of preneighborhoods {Vi(xi, ni) : i = 0, 1, 2, · · · } is called a fundamental
sequence if

(1.1) V0(x0, n0) ⊃ V1(x1, n1) ⊃ · · · ,
(1.2) n0 ≤ n1 ≤ · · · , and
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(1.3) for each n ∈ {0, 1, 2, · · · }, there is an i such that i ≥ n, xi = xi+1 and ni < ni+1.
For a fundamental sequence {Vi(xi, ni) : i = 0, 1, 2, · · · }, {xi}∞i=0 is called the sequence
of centers. If, for every i, xi = x, then the fundamental sequence is called a fundamental
sequence of center x. A sequence of points {zi}∞i=1 is called an r-Cauchy sequence if there is
a fundamental sequence of preneighborhoods {Vj}∞j=0 such that for every Vj there is an i0(j)
such that zi ∈ Vj for every i ≥ i0(j). In this case, {Vj}∞j=0 is called a defining fundamental
sequence of the r-Cauchy sequence {zi}∞i=1. A sequence of points {xi}∞i=1 is said to be r-
convergent to x and is written r-limi→∞ xi = x if there is a fundamental sequence {Vj}∞j=0

of center x such that for every Vj there is an i0(j) such that xi ∈ Vj for every i ≥ i0(j).
For sequences of monotone decreasing sets {Ai} and {Bi}, {Ai} > {Bi} means that every

Ai contains some Bi′ . {Ai} ∼ {Bi} means that {Ai} > {Bi} and {Bi} > {Ai}. Funda-
mental sequences {Ui(xi, mi)}, {Vi(yi, ni)}, etc. are denoted by u, v, etc. For fundamental
sequences u = {Ui} and v = {Vi}, u > v means {Ui} > {Vi}, and u ∼ v means {Ui} ∼ {Vi}.
Fundamental sequences u and v are said to be in the relation ρ if there is a fundamental
sequence w in E such that w > u and w > v. µ denotes the Lebesgue measure on one
dimensional Euclidean space.

　 2. Kunugi’s idea for integration of singular function. We show the ranked
space approach to non-absolute integration by K. Kunugi published in [3], 1956, in a slightly
different form from the original definition.

Let E be the class of real valued step functions on [a, b], that is, functions f having a
constant value in each of a finite number of open sub-intervals ai−1 < x < ai(i = 1, 2, · · · , n)
with a0 = a < a1 < · · · < an = b, and as to the endpoints of these sub-intervals, we can
assign values of the functions there arbitrarily. The integral of step function on a closed
set, an open set, etc. is defined in the Lebesgue sense.

Associating with a closed set F ⊂ [a, b], we consider the following two semi-norms defined
on E :

‖f‖F
1 =

∫
F

|f |dx ; ‖f‖F
2 = |

∫
CF

fdx|,

where CF = [a, b] − F .
Corresponding to a closed set F ⊂ [a, b] and ε > 0, we define a preneighborhood of f ∈ E ,

written V (f ; F, ε), as follows:

V (f ; F, ε) = {g ∈ E : ‖f − g‖F
1 < ε, ‖f − g‖F

2 < ε},
whence we have

V(f) = {V (f ; F, ε) : F is a closed set in [a, b] and ε > 0}.

For n ∈ {0, 1, 2, · · · }, V (f ; F, ε) is called a preneighborhood of rank n if and only if ε = 1/2n

and µ([a, b] − F ) < 1/2n, whence we have

Vn = {V (f ; F, ε) ∈ V(f) : ε = 1/2n and µ([a, b] − F ) < 1/2n}.

Kunugi showed that the space E endowed with V(f)(f ∈ E) and Vn(n = 0, 1, 2, · · · )
becomes a ranked space, and pointed out the following fact.

For any fundamental sequence u = {Vi(fi; Fi, ni)}∞i=0(= {Vi(fi; Fi, 1/2ni)}∞i=0) in the
ranked space E , the following hold.

[C, 1] fi(x) converges to a finite valued function almost everywhere x in [a, b] as i → ∞.
[C, 2]

∫ b

a
fidx converges to a finite limit as i → ∞.
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Denote the limit function and the limit number by J(u) and I(u) respectively. Then
[C, 3] J(u) is Lebesgue integrable on each Fi(i = 0, 1, 2, · · · ). ∫

Fi
J(u)dx converges to a

finite limit as i → ∞, and limi→∞
∫

Fi
J(u)dx = limi→∞

∫ b

a
fidx = I(u).

Consider the relation ρ on the family F of fundamental sequences in the ranked space
E . Then, ρ is an equivalence relation on F . Denote by F∗ the quotient with respect to ρ of
F : F/ρ, and elements of F∗ by u∗, v∗, etc. Kunugi pointed out that:

[C, 4] For u∗ ∈ F∗; if we identify two functions which are different only on a set of
measure zero, the limit function J(u) is uniquely determined independently of the choice
of representative u of u∗. The limit number I(u) is also determined independently of the
choice of representative u of u∗.

Denoting the limit function and the limit number associated with u∗ by J(u∗) and I(u∗),
respectively, Kunugi treated the limit number I(u∗) as the integral of the limit function
J(u∗).

However, the mapping J : u∗ → J(u∗)(u∗ ∈ F∗) is not always one-to-one. It may arise
that J(u∗) = J(v∗) even if u∗ 
= v∗(u∗, v∗ ∈ F∗), and therefore that I(u∗) 
= I(v∗) for
the same function J(u∗) = J(v∗). In order to avoid this fact, K. Kunugi defined, adding
a few conditions to the formation above, a new integral called E. R. integral, in the same
paper. After that, Amemiya and Ando pointed out in [1], 1965, that the E.R. integrability
coincides with the A-integrability and the E.R. integral is equal to the A-integral.

　 3. Completion of ranked space. Let E be a ranked space (E,V(x), {Vn}∞n=0). A
ranked space E is said to be complete if ∩Ui 
= ∅ for every fundamental sequence u = {Ui}
in the ranked space E. A set A ⊂ E is said to be dense in E if V (x)∩A 
= ∅ for every x ∈ E
and every V (x) ∈ V(x). Let A ⊂ E and suppose that with each x ∈ A there is associated
a family V(x;A) of subsets of A and with each n = 0, 1, 2, · · · there is associated a family
Vn(A), so that

V(x;A) = {V (x) ∩ A : V (x) ∈ V(x)}; Vn(A) = {V (x, n) ∩ A : V (x, n) ∈ Vn}.

Then, the set A endowed with V(x;A) and Vn(A) becomes a ranked space. The ranked space
(A,V(x;A), {Vn(A)}∞n=0) is called a ranked subspace of the ranked space (E,V(x), {Vn}∞n=0)
if for every fundamental sequence of preneighborhoods {Ui(xi, mi)} in the ranked space A,
there is a fundamental sequence {Vi(xi, ni)} in the ranked space E in such a way that there
is an i0 such that mi = ni and Vi ∩ A = Ui for every i ≥ i0.

A ranked space E∗ is called a completion of an incomplete ranked space E if it satisfies
the following three conditions.

(1) The ranked space E∗ is complete.
(2) The ranked space E is a ranked subspace of the ranked space E∗.
(3) The set E is dense in the ranked space E∗ as a subset of E∗.

In particular, the completion E∗ is called an r-completion if every r-Cauchy sequence in the
ranked space E∗ is r-convergent in the ranked space E∗.

　 4. The special Denjoy integral ([6, 9, 11]). Denote the class of all special Denjoy
integrable functions on [a, b] by D∗. On the class E of all real valued step functions on [a, b],
corresponding to a closed set F in [a, b], define two semi-norms ‖f‖F

1 and ‖f‖F
2 associated

with F as follows:

‖f‖F
1 =

∫
F

|f |dx ; ‖f‖F
2 = sup

{Ij}
(

s∑
j=1

|
∫

Ij∩CF

fdx|),



734 S. NAKANISHI

where {Ij} runs through all finite sequences Ij(j = 1, 2, · · · , s) of non-overlapping intervals
in [a, b] with Ij ∩ F 
= ∅ for every j.

Let f ∈ E . Corresponding to a non-empty closed set F ⊂ [a, b] and an ε > 0 such that
[α] 　 µ([a, b] − F ) < ε, and
[β] 　 ‖f‖F

2 < ε,
we define a preneighborhood V (f ; F, ε) of f by

V (f ; F, ε) = {g ∈ E : ‖f − g‖F
1 < ε, ‖f − g‖F

2 < ε}.

We say that a preneighborhood V (f ; F, ε) is of rank n if and only if ε = 1/3n. So, we have

V(f) = {V (f ; F, ε) : non-empty closed setＦ ⊂ [a, b] and ε > 0

such that µ([a, b] − F ) < ε and ‖f‖F
2 < ε},

Vn = {V (f ; F, ε) ∈ V(f) : ε = 1/3n} for n = 0, 1, 2, · · · .

Then, they satisfy the conditions (A) and (a) to be a ranked space. In the ranked space E
so defined, denote a preneighborhood of rank n by V (f ; F, n), etc. We have µ(F −G) = 0 if
V (f ; F, ε) ⊃ V (g; G, η). In order to investigate the special Denjoy integral, for a sequence of
preneighborhoods {Vi(fi; Fi, ni)} in E to be a fundamental sequence we assign, in addition
to the conditions (1.1), (1.2) and (1.3) indicated in Section 1, the following condition:

[δ] 　 Fi ↑ [a, b], that is, F0 ⊂ F1 ⊂ · · · and ∪Fi = [a, b].
Denote the ranked space E treated in this way by ED∗ , and the family of all fundamental
sequences in ED∗ by F .

Proposition 1. For a fundamental sequence u = {Vi(fi; Fi, ni)} in ED∗ , we have the
properties [C, 1], [C, 2] and [C, 3] indicated in Section 2.

Now we consider the relation ρ (indicated in Section 1) on the F . Then ρ is an equivalence
relation on F . Denote by F∗ the quotient with respect to ρ of F : F/ρ. Then, as in Section
2, [C, 4] holds for the F∗. Denote the limit function and the limit number associated with
u∗ ∈ F∗ by J(u∗) and I(u∗) respectively, similarly to the case of Section 2. We have

Proposition 2.　 (1) {J(u∗) : u∗ ∈ F∗} = D∗.
(2) The mapping J : u∗ → J(u∗) is a one-to-one mapping from F∗ onto D∗.
(3) I(u∗) is equal to the special Denjoy integral of J(u∗).

Putting

ÊD∗ = E ∪ {u∗ ∈ F∗ : ∩∞
i=0Vi = ∅ for some u ∈ u∗, u = {Vi}},

we define the ranked space ÊD∗ by use of the general method of completion for the ranked
space. Then

Theorem 1 ([11, Proposition 37]). The ranked space ÊD∗ is an r-completion of the
ranked space ED∗ .
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Now, as in the case of the ranked space ED∗ , associated with a closed set F in [a, b], for
a function f ∈ D∗ which is Lebesgue integrable on F , we define two semi-norms ‖f‖F

1 and
‖f‖F

2 on D∗, using the special Denjoy integral.
Let f ∈ D∗. Corresponding to a non-empty closed set F ⊂ [a, b] and an ε > 0 satisfying,

in addition to the conditions [α] and [β] indicated to define the ranked space ED∗ , the
condition

[γ] 　 f is Lebesgue integrable on F ,
we define a preneighborhood of f by

V̂ (f ; F, ε) = {g ∈ D∗ : ‖f − g‖F
1 < ε, ‖f − g‖F

2 < ε}.
Using such preneighborhoods, we define the ranked space D∗ similarly to the ranked

space ED∗ .
Then, we have

Theorem 2 ([11, Theorem 9]). Define a mapping κ : ÊD∗ → D∗ as follows:
　　 κ(f) = f on E , and
　　 κ(u∗) = J(u∗) for u∗ ∈ F∗ such that ∩∞

i=0Vi＝∅ for some u = {Vi} ∈ u∗.
Then, κ is a one-to-one mapping, and for every fundamental sequence {Ui} in the ranked
space ÊD∗ there exists a fundamental sequence v in the ranked space D∗ such that v ∼
{κ(Ui)}, and the same statement holds for the inverse mapping κ−1.

In particular, we have
(4. 1) The set E is dense in the ranked space D∗ as a subset of D∗. The ranked space

ED∗ is a ranked subspace of the ranked space D∗.
(4. 2) Every r-Cauchy sequence fi(i = 1, 2, · · · ) in the ranked space D∗ is r-convergent

to a function f ∈ D∗ in the ranked space D∗.

　 5. Controlled convergence and r-convergence ([12, §5]). We consider the con-
trolled convergence on D∗ in connection with the r-convergence on D∗ (see [5, p.39, Def-
inition 7.4] for the definition of controlled convergence).

Proposition 3 ([10, Propositions 4, 6]). Let fn ∈ D∗(n = 1, 2, · · · ) such that fn(x) is
convergent to f(x) almost everywhere x in [a, b] as n → ∞. Then, the following hold.

(1) If {fn}∞n=1 is r-convergent to f ∈ D∗, then {fn}∞n=1 is controlled convergent to f .
(2) If {fn}∞n=1 is controlled convergent to f (as a result f ∈ D∗) and fn is Lebesgue

integrable on [a, b] for each n = 1, 2, · · · , then {fn}∞n=1 is r-convergent to f .

We know that a sequence {fn}∞n=1 in the ranked space D∗ is r-convergent if and only if
it is r-Cauchy, by (4. 2). Hence, by Proposition 3, as far as the sequence {fn}∞n=1 such that

1) fn ∈ E for each n, and
2) fn(x) is convergent to f(x) almost everywhere x in [a, b] as n → ∞,

is concerned, the notions of controlled convergent sequence and r-Cauchy sequence in the
ranked space D∗ coincide. On the other hand, by (4. 1) and [11, Lemmas 47, 51], a se-
quence of simple functions is an r-Cauchy sequence in the ranked space D∗ if and only if
it is an r-Cauchy sequence in the ranked space ED∗ . Therefore, when we denote by C the
family of all r-Cauchy sequences {fn} in the ranked space ED∗ such that fn(x) is convergent
almost everywhere x in [a, b], we have

Proposition 4. The family C coincides with the family of all controlled convergent
sequences consisting of elements of E .
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For {fn}, {gn} ∈ C, we say that they are in the relation ρ∗ if they have a common
defining fundamental sequence in ED∗ . Then, the relation ρ∗ is an equivalence relation on
C. Denote the equivalence classes of C with respect to ρ∗ by Cξ(ξ ∈ Ξ). Then, by [11,
Proposition 30] if {fn}, {gn} ∈ Cξ for the same ξ, limn→∞ fn(x) = limn→∞ gn(x) almost
everywhere and limn→∞

∫ b

a fndx = limn→∞
∫ b

a gndx. Therefore, corresponding to each Cξ,
the limit function and the limit number are uniquely determined. Denote them by J(Cξ)
and I(Cξ), respectively.

For {fn} ∈ Cξ whose defining fundamental sequence is u, take a u∗ ∈ F∗ = F/ρ (indi-
cated in Section 4) such that u ∈ u∗. Then, such a u∗ is uniquely determined independently
of the choice of defining fundamental sequence u of {fn}. Further, if {fn}, {gn} ∈ Cξ, {fn}
and {gn} have a common defining fundamental sequence. Therefore, corresponding to each
Cξ, there is one and only one u∗ ∈ F∗ such that for every {fn} ∈ Cξ we can take a defining
fundamental sequence u of {fn} with u ∈ u∗. We denote the u∗ by τ(Cξ). In this case we
see that τ(Cξ1 ) 
= τ(Cξ2 ) if ξ1 
= ξ2. Furthermore, τ is a mapping from {Cξ : ξ ∈ Ξ} onto
F∗. Because, let u∗ ∈ F∗. Take a u ∈ u∗ and the sequence of centers of u, say {fn}. Then,
the {fn} belongs to C by [C, 1] of Proposition 1 above and u is a defining fundamental
sequence of {fn}. Therefore, {fn} ∈ C, so {fn} ∈ Cξ for some ξ, and so u∗ = τ(Cξ). Thus

1) τ(Cξ) is a one-to-one mapping from {Cξ : ξ ∈ Ξ} onto F∗ = F/ρ.
Furthermore, by [11, Propsition 30] again,

2) J(Cξ) = J(τ(Cξ)) and I(Cξ) = I(τ(Cξ)).
As a result, by Proposition 2, (2) and (3), we obtain

Proposition 5. (1) J(Cξ) is a one-to-one mapping from {Cξ : ξ ∈ Ξ} onto D∗.
(2) For every ξ ∈ Ξ, I(Cξ) coincides with the special Denjoy integral of J(Cξ).

These facts lead to the following results.
(5. 1) The family of all controlled convergent sequences consisting of elements of E is

classified to be non-overlapping.
(5. 2) Under the classification of (5. 1), for each class the limit function limn→∞ fn(x)

and the limit number limn→∞
∫ b

a
fndx are uniquely determined independently of the choice

of the sequence {fn} belonging to the class. To different classes, there correspond different
limit functions.

(5. 3) The class of all those limit functions obtained in (5. 2) coincides with D∗. The
limit number obtained in (5. 2) is equal to the special Denjoy integral of the corresponding
limit function.

In particular, we know that:

Theorem 3. The Henstock-Kurzwei integral is obtained as a continuous extension of
the integral on E onto D∗ with respect to the controlled convergence.

Appendix

Letter from A. Denjoy to K. Kunugi on January 12, 1961

Cher Professeur Kunugui
Je vous remercie de votre travail sur l’intégrale. Mais cette notion si simple me parâit

subir bien des efforts pour ne guère ajouter à sa limpidité. En voici les principes, selon mes
jugements.

1. Un espace V , où il n’est besoin de supposer ni l’existence d’une topologie, ni aucune
hypothèse pour caractériser une distance, -- simplement la définition d’une mesure
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sur (F ) pour les ensembles F d’une certaine classe. Cette mesure est borérienne
(si F1, F2, . . . sont mesurables, id. de F1 + F2 + · · · et mes(

∑
Fi) =

∑
mes(Fi) ;

etc...).
2. Une fonction f définie aux points de V (aux points où f ne serait pas définie, on

fait f = 0). On suppose f mesurable: donc, 0 < α < f < β et −β < f < −α < 0
déterminent dans V les ensembles qui doivent être mesurables, quels que soient α et
β.

Cela dit, l’intégrale I(H, f) =
∫

H
fdm est définie par les conditions suivantes;

1.　 I(H, f) est linéaire en f .
2.　 I(H, f) est complètement additive par rapport aux ensembles H1, H2, . . . , où f a

un signe constant, la même pour tous les Hi.
3.　 si A < f < B en H ,

Ames(H) < I(H, f) < Bmes(H)

Et c’est fini. Les ensembles H de V n’ont besoin d’aucune condition topologique.
Vous avez donné le nom de ”rangés” aux espaces d’une nouvelle espèce. J’ai appelé

”rangés” (Enumération transfinie) les ensembles ordonnés (simplement) où chaque élément
possède un rang propre, Leur caractère est que leurs sections commençantes sont toutes
dissemblables.

En vous adressant, mon cher collèque, mes meilleurs voeux pour l’année débutante,
je vous exprime mes vives félicitations pour les magnifiques activités di l’école Japonaise
contemporaine, et où vos travaux brillent d’un éclat particulier.

Veuillez croire, cher collègue, à mes sentiments de très haute et très cordiale considération.
A. Denjoy　　　　
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