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Abstract. If (X; ∗) and (X; ◦) are binary systems then (X; ∗) =⇒ (X; ◦) if (x∗y)◦z =
(x ∗ z) ∗ (y ∗ z) where (X; ◦) is the doubling algebra of the source algebra (X; ∗).
Obviously there are many mutual influences on the types of (X; ∗) and (X; ◦). In
this paper we investigate several of these mutual influences, including when (X; ∗) is
a group, B-algebra, a cancellative semigroup with identity.

Given a set X , let V (X) denote the collection of all binary algebras (or equivalently,
groupoids) on X , i.e., V (X) = {(X ; ∗) | ∗ : binary operation on X}. An algebra (X ; ∗) is
said to be a source algebra of an algebra (X ; ◦) if (x ∗ y) ◦ z = (x ∗ z) ∗ (y ∗ z), for any
x, y, z ∈ X , and denoted by (X ; ∗) =⇒ (X ; ◦). In this case, we say (X ; ◦) the doubling
algebra of (X ; ∗).

Example 1. Every quandle (X ; �, �−1) (see [2]) is a doubling algebra as well as a source
algebra, i.e., (x � y) � z = (x � z) � (y � z), for any x, y, z ∈ X .

Example 2. Every positive implicative BCK-algebra is a doubling algebra of itself.

Example 3. Every right distributive semigroup (see [1]) is a doubling algebra of itself.

We illustrate a construction of many doubling algebras from any abelian group.

Theorem 4. Let (X ; +) be an abelian group and let {an} be a sequence defined by
a1 = 1, an+1 = an(an +1), n ∈ N. Define binary operation “∗n” on X by x∗n y := x+any,
for any x, y ∈ X , n ∈ N. Then the algebra (X ; ∗n+1) is a doubling algebra of the algebra
(X ; ∗n).

Proof. Straightforward.

Let I(X ; ∗) be the set of all idempotent elements of an algebra (X ; ∗).
Proposition 5. If (X ; ∗) =⇒ (X ; ◦), then I(X ; ∗) ⊆ I(X ; ◦).
Proof. Straightforward.
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An algebra (X ; ∗) is said to be of type (a, b) if a ∗ x = b for any x ∈ X .

Example 6. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 0 0
3 0 0 2 3

Then the semigroup (X ; ∗) is both of type (0, 0) and of type (2, 0).

Proposition 7. If (X ; ∗) =⇒ (X ; ◦) and (X ; ∗) is of type (a, b), then b ◦ x = b ∗ b for
all x ∈ X .

Proof. We have b ◦ x = (a ∗ y) ◦ x = (a ∗ x) ∗ (y ∗ x) = b ∗ (y ∗ x), and y = a yields
b ◦ x = b ∗ (a ∗ x) = b ∗ b for all x ∈ X .

Corollary 8. If (X ; ∗) =⇒ (X ; ◦) and (X ; ∗) is of type (a, b), then (X ; ◦) is of type
(b, c) where c = b ∗ b.

An algebra (X ; ∗) is said to be of type [a, b] if x ∗ a = b for any x ∈ X . In Example 6,
(X ; ∗) is both of type [0, 0] and of type [1, 0].

Proposition 9. Let (X ; ∗) =⇒ (X ; ◦) and X ∗ X = X . If (X ; ∗) is of type [a, b] then
x ◦ a = b ∗ b for all x ∈ X .

Proof. Let x = u ∗ v. Then x ◦ a = (u ∗ v) ◦ a = (u ∗ a) ∗ (v ∗ a) = b ∗ b for all x ∈ X .

Corollary 10. Let (X ; ∗) =⇒ (X ; ◦) and X ∗ X = X . If (X ; ∗) is of type [a, b] then
(X ; ◦) is of type [a, c] where c = b ∗ b.

Proposition 11. If (X ; ∗) =⇒ (X ; ◦) and x ∗ x = x for all x ∈ X , then x ◦ y = x ∗ y for
all x, y ∈ X , i.e., (X ; ∗) and (X ; ◦) are identical.

Proof. Since (X ; ∗) =⇒ (X ; ◦) , we have x ◦ y = (x ∗ x) ◦ y = (x ∗ y) ∗ (x ∗ y) = x ∗ y as
well.

Theorem 12. If a cancellative semigroup (X ; ∗) with identity e is a source algebra of
any algebra (X ; ◦), then it is commutative.

Proof. Since (X ; ∗) =⇒ (X ; ◦), we have

(x ∗ y) ◦ z = (x ∗ z) ∗ (y ∗ z)(1)

for any x, y, z ∈ X . If we put x := e and y := e in (1) respectively, then

y ◦ z = z ∗ (y ∗ z),(2)

and

x ◦ z = (x ∗ z) ∗ z.(3)
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Hence, by applying (3) and (2),

(x ∗ z) ∗ z = x ◦ z [by (3)]
= z ∗ (x ∗ z) [by (2)]
= (z ∗ x) ∗ z. [associativity]

Since (X ; ∗) is cancellative, we obtain x ∗ z = z ∗ x, for any x, z ∈ X , proving the theorem.

Remark. If (X ; ◦) is a group in Theorem 12, then it is a trivial group, i.e., X = {e}.
J. Neggers and H. S. Kim ([4]) defined the notion of B-algebra. An algebra (X ; ∗, 0) is

said to be a B-algebra if (I) x ∗ x = 0; (II) x ∗ 0 = x; (III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for
any x, y, z ∈ X . (see [3, 4, 5, 6, 7] for details)

Proposition 13. The doubling algebra (X ; ◦) of a B-algebra (X ; ∗, 0) is a left zero
semigroup.

Proof. If (X ; ∗) =⇒ (X ; ◦), then

(x ∗ y) ◦ z = (x ∗ z) ∗ (y ∗ z)(4)

for any x, y, z ∈ X . If we let y := 0 in (4), then

x ◦ z = (x ∗ 0) ◦ z

= (x ∗ z) ∗ (0 ∗ z)
= x ∗ ((0 ∗ z) ∗ (0 ∗ z))
= x ∗ 0
= x,

for any x, z ∈ X . This means that (X ; ◦) is a left zero semigroup.

Proposition 14. If a group (X ; ∗) is a source algebra of an algebra (X ; ◦), then

(i) (X ; ∗) is abelian;

(ii) the doubling algebra (X ; ◦) should be defined by x ◦ y := x ∗ y2, for any x, y ∈ X .

Proof. Since (X ; ∗) =⇒ (X ; ◦), we have

(x ∗ y) ◦ z = (x ∗ z) ∗ (y ∗ z)(5)

for any x, y, z ∈ X . If we let y := e in (5), where e is the identity of the group (X ; ∗), then
we have

x ◦ z = (x ∗ e) ◦ z
= (x ∗ z) ∗ (e ∗ z)
= (x ∗ z) ∗ z
= x ∗ z2 · · · · · · · · · (6)
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Moreover, if x := e in (5), then

y ◦ z = (e ∗ y) ◦ z
= (e ∗ z) ∗ (y ∗ z)
= z ∗ (y ∗ z) · · · · · · · · · (7)

If we let y := x in (7), then

(8) x ◦ z = z ∗ (x ∗ z)

Combining (6) with (8) we obtain (x ∗ z) ∗ z = z ∗ (x ∗ z). Since (X ; ∗) is a group, we
conclude that x ∗ z = z ∗ x, for any x, z ∈ X . Also, x ◦ y = y ∗ (x ∗ y) = x ∗ y2 in that case.

In view of Proposition 14 the operation x◦y = x∗y2 defines the doubled operation. Given
this situation, if we write additively x∗y = x+y, then x◦y = x+2y = x+a2y, a2 = 2, whence
“redoubling” provides for (x∗y)◦z = (x∗z)∗(y∗z) = (x+a2z)+a2(y+a2z) = (x+a2y)+a3z,
where a3 = a2(a2 + 1), whence y = 0 implies x ◦ z = x + a3z. Accordingly, we may
redouble to obtain a “factorial-like-sequence”, a1 = 1, a2 = 2, and an+1 = an(an + 1).
For example, in Z/(23), the successive doublings yield x + y =⇒ x + 2y =⇒ x + 6y =⇒
x + 42y = x + 19y =⇒ x + 380y = x + 12y =⇒ x + 18y =⇒ x + 20y =⇒ x + 6y =⇒ · · · .
Thus, x +6y is of period 5 with respect to redoubling in this setting, while x + y cannot be
returned to by redoubling.
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