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Abstract. A tube of radius r (0 < r < ∞) around totally real totally geodesic
�Hn(c/4) is called a homogeneous real hypersurface of type (B) in �Hn (c). It is known

that every type (B) hypersurface with radius r �= (1/
�|c| ) loge(2 +

√
3 ) has three dis-

tinct constant principal curvatures and in the case of r = (1/
�|c| ) loge(2+

√
3 ) the real

hypersurface M2n−1 of type (B) has two distinct constant principal curvatures. The
main purpose of this paper is to characterize this real hypersurface M .

1. Introduction

For a non-zero constant c, Mn(c) denotes a complex n-dimensional complete and simply
connected Kähler manifold of constant holomorphic sectional curvature c (with complex
structure J). That is, Mn(c) is holomorphically isometric to a complex projective space
CP n(c) when c > 0, and it is holomorphically isometric to a complex hyperbolic space
CHn(c) when c < 0.

We consider a real hypersurface M2n−1 (with unit normal local vector field N ) in the
ambient space M̃ = Mn(c) (n � 2, c �= 0). M is said to be a Hopf hypersurface if the
characteristic vector ξ(:= −JN ) of M is a principal curvature vector of M in M̃ at its
each point. It is known that tubes of sufficiently small constant radius around Kähler
submanifolds in M̃ = Mn(c) are Hopf hypersurfaces. This means that Hopf hypersurfaces
are natural examples of real hypersurfaces and that they make an abundant class in the
theory of real hypersurfaces in M̃ .

In this paper, first of all we give a characterization of Hopf hypersurfaces M in M̃ =
Mn(c) in terms of integral curves of the characteristic vector field ξ of M (Proposition 1).

We next recall the following related to the fact that there exist no totally umbilic real
hypersurfaces in M̃ (see [6, 7]). In CP n(c) (n � 3), a connected real hypersurface M has
at most two distinct principal curvatures at each point of M if and only if M is locally
congruent to a geodesic sphere G(r) of radius r (0 < r < π/

√
c ). In CHn(c) (n � 3), a

connected real hypersurface M has at most two distinct principal curvatures at each point
of M if and only if M is locally congruent to either a geodesic sphere G(r) (0 < r < ∞) in
CHn(c), a tube of radius r (0 < r < ∞) over a complex hyperplane CHn−1(c), a horosphere
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or a tube of radius r = (1/
√|c| ) loge(2 +

√
3 ) over an n-dimensional totally real totally

geodesic real hyperbolic space RHn(c/4) of constant sectional curvature c/4 in CHn(c).
Note that these real hypersurfaces in M̃ have two distinct constant principal curvatures.
Moreover, each tube of radius r �= (1/

√|c| ) loge(2 +
√

3 ) over RHn(c/4) has three distinct
constant principal curvatures. In this context, it is interesting to characterize just the real
hypersurface, which is a tube over RHn(c/4) with radius r = (1/

√|c| ) loge(2+
√

3 ), in the
ambient space CHn(c) (see Theorem).

2. Hopf hypersurfaces in M̃ = Mn(c), c �= 0

Let M2n−1 be a real hypersurface of M̃ = Mn(c) (n � 2, c �= 0) and N a unit local
normal vector field on M . The Riemannian connections ∇̃ of M̃ and ∇ of M are related
by the following formulas of Gauss ans Weingarten:

∇̃XY = ∇XY + 〈AX,Y 〉N ,(2.1)

∇̃XN = −AX(2.2)

for any vector fields X and Y on M , where 〈 , 〉 is the Riemannian metric of M induced
from the standard metric of the ambient space M̃ and A is the shape operator of M in
M̃ . An eigenvector X of the shape operator A is called a principal curvature vector and an
eigenvalue λ of A is called a principal curvature.

It is known that M has an almost contact metric structure induced from the complex
structure of the ambient space M̃ , namely we have a quartet (φ, ξ, η, 〈 , 〉) defined by

〈φX,Y 〉 = 〈JX, Y 〉, ξ = −JN and η(X) = 〈ξ,X〉 = 〈JX,N〉
which satisfy

φ2X = −X + η(X)ξ, 〈ξ, ξ〉 = 1, φξ = 0.(2.3)

It follows from (2.1), (2.2) and ∇̃J = 0 that

(∇Xφ)Y = η(Y )AX − 〈AX,Y 〉ξ,(2.4)

∇Xξ = φAX.(2.5)

Let R denote the curvature tensor of M . We have the equations of Gauss and Codazzi
given by

〈R(X, Y )Z, W 〉 =(c/4){〈Y, Z〉〈X,W 〉 − 〈X, Z〉〈Y, W 〉 + 〈φY, Z〉〈φX,W 〉
− 〈φX,Z〉〈φY, W 〉 − 2〈φX, Y 〉〈φZ,W 〉}
+ 〈AY, Z〉〈AX,W 〉 − 〈AX,Z〉〈AY, W 〉,

(2.6)

(∇XA)Y − (∇Y A)X = (c/4){η(X)φY − η(Y )φX − 2〈φX, Y 〉ξ}.(2.7)

The following lemma clarifies a fundamental property which is a useful tool in the theory
of real hypersurfaces in M̃ = Mn(c) (n � 2, c �= 0).

Lemma A. For a Hopf hypersurface M2n−1 (n � 2) with principal curvature α corre-
sponding to the characteristic vector field ξ in the ambient space M̃ = Mn(c), c �= 0, we
have the following:

(1) α is locally constant on M ;
(2) If X is a tangent vector of M perpendicular to ξ with AX = λX, then (2λ−α)AφX =

(αλ + (c/2))φX. In particular, we get AφX = αλ+(c/2)
2λ−α φX in the case of c > 0.



THE HOMOGENEOUS REAL HYPERSURFACE OF TYPE (B) 679

Remark 1. When c < 0, in Lemma A(2) there exists a case that both of equations 2λ−α = 0
and αλ + (c/2) = 0 hold. In fact, for example we take a horoshere in CHn(c). It is known
that this real hypersurface has two distinct constant principal curvatures λ =

√|c| /2, α =√|c| or λ = −√|c| /2, α = −√|c| . Hence, when c < 0, we must consider two cases of
2λ − α = 0 and 2λ − α �= 0.

The following gives a geometric meaning of Hopf hypersurfaces in M̃ .

Proposition 1. Let M be a real hypersurface (with unit normal local vector field N ) in
M̃ = Mn(c) (n � 2, c �= 0). Then the following two conditions are equivalent.

(1) M is a Hopf hypersurface in M̃ .
(2) At each point p ∈ M there exists such a totally geodesic complex curve M1(c) in M̃

through p with TpM1(c) = {ξp,Np(= Jξp)}R that the normal section Np = M ∩M1(c)
given by M1(c) is the integral curve through the point p of the characteristic vector
field ξ of M .

Proof. It follows from (2.1) and (2.5) that ∇̃ξξ = φAξ + 〈Aξ, ξ〉N . This equation implies
that the condition (1) in our proposition is equivalent to saying that

∇̃ξξ = 〈Aξ, ξ〉N = 〈Aξ, ξ〉Jξ,

which is nothing but the condition (2).

We next recall the following property of the holomorphic distribution T 0M = {X ∈
TM | X ⊥ ξ} of a Hopf hypersurface M in M̃ .

Proposition 2. The holomorphic distribution T 0M = {X ∈ TM | X ⊥ ξ} of each Hopf
hypersurace M in M̃ = Mn(c) (n � 2, c �= 0) is not integrable.

Proof. Suppose that T 0M is integrable for some Hopf hypersurface M in M̃ . Then we have

〈∇XY −∇Y X, ξ〉 = 0 for ∀ X, Y ∈ T 0M.

This, together with (2.5), implies

〈(φA + Aφ)X,Y 〉 = 0 for ∀ X, Y ∈ T 0M.(2.8)

Hence, from (2.8) and the assumption that ξ is principal we see that φA + Aφ vanishes
identically on M , which is a contradiction (see page 252 in [8]).

For a real hypersurface M2n−1 in CHn(c) (n � 2) we usually set Vλ = {X ∈ TM |AX =
λX}, which is so-called the principal foliation on M2n−1 with respect to a principal curva-
ture λ. Also, V 0

λ (:= {X ∈ T 0M |AX = λX}) is said to be a restricted principal foliation
associated with a principal curvature λ of M . In the following, we consider Hopf hypersur-
faces in CHn(c) (n � 2). In order to prove our Theorem, we recall the following classification
theorem of Hopf hypersurfaces with constant principal curvatures in CHn(c), which is due
to Berndt ([2]).

Theorem A. Let M be a Hopf hypersurface all of whose principal curvatures are constant
in CHn(c) (n � 2). Then M is locally congruent to one of the following:

(A0) a horosphere in CHn(c),
(A1,0) a geodesic sphere of radius r (0 < r < ∞),
(A1,1) a tube of radius r around totally geodesic CHn−1(c), where 0 < r < ∞,
(A2) a tube of radius r around totally geodesic CHk (1 � k � n−2), where 0 < r < ∞,
(B) a tube of radius r around totally real totally geodesic RHn(c/4), where 0 < r < ∞.
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These real hypersurfaces are said to be of type (A0), (A1), (A2) and (B). Here, type (A1)
means either type (A1,0) or type (A1,1). Summing up real hypersurfaces of type (A0), (A1)
and (A2), we call them real hypersurfaces of type (A). A real hypersurface of type (B) with
radius r = (1/

√|c| ) loge(2 +
√

3 ) has two distinct constant principal curvatures. Except
this, the numbers of distinct principal curvatures of these real hypersurfaces are 2, 2, 2, 3, 3,
respectively. The principal curvatures of these real hypersurfaces are as follows.

λ1 λ2 α

(A0)
√

|c|
2 —

√|c|
(A1,0)

√
|c|
2 coth

√
|c|r
2 —

√|c| coth(
√|c|r)

(A1,1)
√

|c|
2 tanh

√
|c|r
2 —

√|c| coth(
√|c|r)

(A2)
√

|c|
2 coth

√
|c|r
2

√
|c|
2 tanh

√
|c|r
2

√|c| coth(
√|c|r)

(B)
√

|c|
2 coth

√
|c|r
2

√
|c|
2 tanh

√
|c|r
2

√|c| tanh(
√|c|r)

The restricted principal foliation V 0
λi

associated with λi, satisfies the following (see
Lemma A).

1. V 0
λi

is invariant under the action of φ for a hypersurface of type (A).
2. φ(V 0

λ1
) = V 0

λ2
, φ(V 0

λ2
) = V 0

λ1
for a hypersurface of type (B).

All examples of Theorem A are homogeneous real hypersurfaces in CHn(c), namely they
are orbits under some subgroups of the full isometry group I(CHn(c)) of the ambient space
CHn(c). However, in general a homogeneous real hypersurface in CHn(c) is not necessarily
a Hopf hypersurface. There exist many homogeneous non-Hopf hypersurfaces as well as
many homogeneous Hopf hypersurfaces (for details, see [3]).

At the end of this section we review the notion of circles in Riemannian geometry. Let
γ = γ(s) be a regular smooth curve parametrized by its arclength s in a Riemannian
manifold M (with Riemannian connection ∇). The curve γ is a circle of curvature k on M
if γ satisfies the following ordinary differential equations: ∇γ̇ γ̇ = kYs, ∇γ̇Ys = −kγ̇, where
k(� 0) is a constant and Ys is the unit normal principal vector along the curve γ. A circle
of null curvature is nothing but a geodesic.

3. Main Theorem

In view of Proposition 2 we establish the following:

Theorem. A connected real hypersurface M in CHn(c), n � 2 is a type (B) hypersurface
with radius r = (1/

√|c| ) loge(2+
√

3 ) if and only if M satisfies the following two conditions.
(1) The holomorphic distribution T 0M = {X ∈ TM | X ⊥ ξ} of M is decomposed as the

direct sum of restricted principal foliations V 0
λi

= {X ∈ T 0M | AX = λiX}. Moreover,
every V 0

λi
is integrable and its each leaf is a totally geodesic submanifold of the real

hypersurface M .
(2) At some point p ∈ M , for some positive constant k there exist two geodesics γi = γi(s)

on M through the point p = γi(0) (i = 1, 2) satisfying the following:
(a) 〈γ̇i(0), ξp〉 = 0 (i = 1, 2),
(b) the curves γi (i = 1, 2), considered as curves in the ambient space CHn(c), are

circles of positive curvature k and 3k, respectively.

Proof. We first show that M is a type (B) hypersurface if and only if M satisfies the
condition (1). The following discussion is an improvement of that in [5]. Note that there
exists a gap in [5] (see line -5 in page 141).
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Suppose that M is of type (B). Then T 0M is decomposed as the following direct sum
of principal foliations: T 0M = V 0

λ1
⊕ V 0

λ2
, where λ1 = (

√|c| /2) coth(
√|c| r/2),

λ2 = (
√|c| /2) tanh(

√|c| r/2), φV 0
λ1

= V 0
λ2

and Aξ =
√|c| tanh(

√|c| r)ξ. For each X, Y ∈
V 0

λi
(i = 1, 2), we have

A∇XY = ∇X(AY ) − (∇XA)Y = λi∇XY − (∇XA)Y.

Since 〈φX,Y 〉 = 0 and A is symmetric, Codazzi equation (2.7) implies, for any Z ∈ TM ,
that

〈(∇XA)Y, Z〉 = 〈(∇XA)Z, Y 〉 = 〈(∇ZA)X,Y 〉
= 〈∇Z(AX) − A∇ZX, Y 〉 = 〈(λiI − A)∇ZX, Y 〉
= 〈∇ZX, (λiI − A)Y 〉 = 0.

These two equations show that A(∇XY ) = λi∇XY for any X, Y ∈ V 0
λi

, so that V 0
λi

is
integrable and each leaf Tλi is a totally geodesic submanifold of the real hypersurface M of
type (B). Then we can obtain the condition (1).

Next, suppose the condition (1). Without loss of generality we assume that c = −4.
First of all note that our real hypersurface M is a Hopf hypersurface. In fact, for each
X =

∑
i X ivi ∈ T 0M , where vi is a unit vector in the restricted principal foliation V 0

λi
of

the condition (1), we find that 〈Aξ,X〉 = 〈ξ,AX〉 =
∑

i〈ξ,X iλivi〉 = 0. In the following,
our discussion is divided into two cases (I) dim T 0M = 2 and (II) dim T 0M � 4.

Case (I). In this case the holomorphic distribution T 0M is decomposed as T 0M = V 0
λ1

⊕
V 0

λ2
with λ1 �= λ2 and dimV 0

λ1
= dimV 0

λ2
= 1 (see Proposition 2). Furthermore, all

integral curves of V 0
λ1

and V 0
λ2

are geodesics on M . We take a local field of orthonormal
frames {e1, e2, ξ} on M in such a way that ei ∈ V 0

λi
(i = 1, 2) and e2 = φe1. As M is

a Hopf hypersurface, Equation (2.5) tells us that ∇ξξ = 0. By hypothesis we also have
∇e1e1 = ∇e2e2 = 0. Equation (2.5) implies

∇e1ξ = λ1e2, ∇e2ξ = −λ2e1, ∇e1e2 = −λ1ξ, ∇e2e1 = λ2ξ.(3.1)

Codazzi equation (2.7) shows

(∇e1A)e2 − (∇e2A)e1 = 2ξ.

On the other hand, Equation (3.1) yields

(∇e1A)e2 − (∇e2A)e1 = ∇e1(Ae2) − A∇e1e2 −∇e2 (Ae1) + A∇e2e1

= (e1λ2)e2 + (λ2I − A)∇e1e2 − (e2λ1)e1 − (λ1I − A)∇e2e1

= −(e2λ1)e1 + (e1λ2)e2 + {α(λ1 + λ2) − 2λ1λ2}ξ.
It follows from these two equations that

2 = α(λ1 + λ2) − 2λ1λ2,(3.2)
e2λ1 = 0,(3.3)
e1λ2 = 0.(3.4)

We here show that ξλ1 = ξλ2 = 0. It follows from (2.7) that (∇e1A)ξ − (∇ξA)e1 = e2. On
the other hand, we also have

(∇e1A)ξ − (∇ξA)e1 = ∇e1(Aξ) − A(∇e1ξ) −∇ξ(Ae1) + A(∇ξe1)

= αλ1e2 − λ1λ2e2 − (ξλ1)e1 − (λ1I − A)(∇ξe1).

Since (λ1I−A)(∇ξe1) is orthogonal to e1, these two equations show that ξλ1 = 0. Similarly,
we also have ξλ2 = 0.
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Next, since α is locally constant, (3.2) and (3.3) give

(α − 2λ1)(e2λ2) = 0.(3.5)

Simlarly, from (3.2) and (3.4) we see that

(α − 2λ2)(e1λ1) = 0.(3.6)

It suffices to consider the following three cases in (I).
Case (Ia): α ≡ 2λ2 locally and α �= 2λ1 at some point p ∈ M . In this case, Equation

(3.2) shows (λ2)2 = 1. Without loss of generality, we may assume λ2 = 1 and hence α = 2.
For simplicity, putting λ1 = λ, we find⎧⎪⎨

⎪⎩
∇e1e1 = ∇e2e2 = ∇ξξ = 0,

∇e1e2 = −λξ, ∇e2e1 = ξ,

∇e1ξ = λe2, ∇e2ξ = −e1.

It follows from the continuity of λ that λ �= 1 on some neighborhood U of the point p.
Putting ∇ξe1 = µe2, we see from Codazzi equation (2.7) that

(∇e1A)ξ − (∇ξA)e1 = e2.

On the other hand, we obtain
(∇e1A)ξ − (∇ξA)e1 = 2(∇e1ξ) − A(∇e1ξ) −∇ξ(λe1) + A(∇ξe1)

= −(ξλ)e1 + (λ + µ)e2 − λµe2.

These two equations yield λ + µ − λµ = 1, so that µ = 1 on U . Hence we have ∇ξe1 = e2

and ∇ξe2 = −e1. Let R denote the curvature tensor of the real hypersurface M . Then, by
the definition of R we see that

〈R(e1, e2)e2, e1〉 = λ〈∇e2ξ, e1〉 + λ〈∇ξe2, e1〉 + 〈∇ξe2, e1〉
= −2λ − 1.

On the other hand, Gauss equation (2.6) yields 〈R(e1, e2)e2, e1〉 = −4 + λ. Thus λ = 1 on
U , which is a contradiction. Hence, Case (Ia) cannot occur.

Case (Ib): α ≡ 2λ1 locally and α �= 2λ2 at some point p ∈ M . This case cannot occur by
the same discussion as in Case (Ia).

Case (Ic): α �= 2λ1 and α �= 2λ2 at some point p ∈ M . In this case, equations (3.3),
(3.4), (3.5) and (3.6) yield

e1λ1 = e1λ2 = e2λ1 = e2λ2 = 0

on some neighborhood U of the point p. Then we can see that all principal curvatures
α, λ1, λ2 are constant on our connected real hypersurface M . Hence, Theorem A tells us
that M is of either type (A) or type (B). However, each type (A) hypersurface M does not
satisfy φV 0

λ1
= V 0

λ2
. Therefore we find that M is of type (B).

Case (II). By assumption for any X, Y ∈ V 0
λi

we have A∇XY = λi∇XY , so that
(∇XA)Y = (Xλi)Y . We divide our discussion into two cases.

Case (IIa): dimV 0
λi

� 2. In this case we see that

(∇XA)Y − (∇Y A)X = (Xλi)Y − (Y λi)X for ∀X, Y ∈ V 0
λi

.

On the other hand, Codazzi equation (2.7) yields

(∇XA)Y − (∇Y A)X = 2〈φX, Y 〉ξ for ∀X, Y ∈ V 0
λi

.

Choosing X, Y as arbitrary two independent vectors in V 0
λi

, we know from these two equa-
tions that Xλi = Y λi = 〈φX,Y 〉 = (∇XA)Y = 0. This means that

(∇XA)Y = 〈φX,Y 〉 = 0 for ∀X, Y ∈ V 0
λi

.(3.7)
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Therefore, for each unit vector X ∈ V 0
λi

and each Z ∈ TM , from (2.7), (3.7) and the
symmetry of the shape operator A we obtain

0 = 〈(∇XA)X,Z〉 = 〈(∇XA)Z,X〉
= 〈(∇ZA)X,X〉 = 〈∇Z(AX) − A∇ZX, X〉
= 〈(Zλi)X + (λiI − A)∇ZX, X〉 = Zλi,

(3.8)

so that λi is constant.
Case (IIb): dimV 0

λi
= 1. As α is constant by Lemma A, we only need to consider the

case that 2λi − α �= 0 on some neighborhood of an arbitrary fixed point p.

Let e be a unit vector in V 0
λi

so that Ae = λie. Then Lemma A implies Aφe =
αλi − 2
2λi − α

φe.

Hence, φe ∈ V 0
λj

for some j with λj =
αλi − 2
2λi − α

(�= λi). This equation is equivalent to

(2λj − α)λi = αλj − 2.(3.9)

When 2λj −α �= 0, we have λi =
αλj − 2
2λj − α

. So, when dimV 0
λj

� 2, we see that λi is constant

(see the discussion in Case (IIa)).
Next, we consider the case of 2λj − α = 0. Hence Equation (3.9) yields αλj − 2 = 0.

Solving these equations, we get λj = 1, α = 2 or λj = −1, α = −2. In the following, it
suffices to study the case of λj = 1 and α = 2. For simplicity, we set λ = λi. So we see
that Ae = λe (λ �= 1), Aφe = φe, Aξ = 2ξ and ∇ee = 0. We shall verify some equalities in
order to show that the case 2λj − α = 0 does not occur. Codazzi equation (2.7) gives

(∇ξA)φe − (∇φeA)ξ = e.

On the other hand, from (2.5) we find that

(∇ξA)φe − (∇φeA)ξ = ∇ξ(Aφe) − A∇ξ(φe) −∇φe(Aξ) + A∇φeξ

= ∇ξ(φe) − A∇ξ(φe) − 2∇φeξ + A∇φeξ

= (I − A)∇ξ(φe) − 2φAφe + AφAφe

= (I − A)∇ξ(φe) + (2 − λ)e.

Taking the inner products of these equations with the vector e, we obtain

1 = 〈∇ξ(φe), (1 − λ)e〉 + 2 − λ.

Since λ �= 1, this means that

〈∇ξ(φe), e〉 = −1.(3.10)

Again, by using Codazzi equation (2.7), we see that

(∇eA)φe − (∇φeA)e = 2ξ.

On the other hand, from (2.4) we get

(∇eA)φe − (∇φeA)e = ∇e(Aφe) − A∇e(φe) −∇φe(Ae) + A∇φee

= ∇e(φe) − A∇e(φe) − (φeλ)e − λ∇φee + A∇φee

= (∇eφ)e + φ∇ee − A{(∇eφ)e + φ∇ee}
− (φeλ)e + (A − λI)∇φee

= −λξ + λAξ − (φeλ)e + (A − λI)∇φee

= λξ − (φeλ)e + (A − λI)∇φee.
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These equations, combined with the fact that λ �= 1 and 〈∇φee, e〉 = 0, show that ∇φee =
〈∇φee, ξ〉ξ, so that

∇φee = −〈e,∇φeξ〉ξ
= −〈e, φAφe〉ξ (from (2.5))

= −〈e, φ2e〉ξ = ξ.

Then we have

∇φee = ξ.(3.11)

It follows from (2.3), (2.4) and (3.11) that

∇φe(φe) = 0.(3.12)

We here recall the following

∇e(φe) = −λξ.(3.13)

Indeed,
∇e(φe) = (∇eφ)e + φ∇ee

= η(e)Ae − 〈Ae, e〉ξ
= −λξ.

Using these equalities (2.5), (3.10), (3.11), (3.12) and (3.13), we compute 〈R(e, φe)φe, e〉,
where R is the curvature tensor of the real hypersurface M of CHn(−4).

R(e, φe)φe = ∇e∇φe(φe) −∇φe∇e(φe) −∇[e,φe](φe)

= ∇φe(λξ) −∇−λξ−ξ(φe)

= (φeλ)ξ + λφAφe + (λ + 1)∇ξ(φe)

= (φeλ)ξ − λe + (λ + 1)∇ξ(φe).

Hence,
〈R(e, φe)φe, e〉 = −λ + (λ + 1)〈∇ξ(φe), e〉

= −2λ − 1.

On the other hand, Gauss equation (2.6) yields

〈R(e, φe)φe, e〉 = −4 + 〈Aφe, φe〉〈Ae, e〉
= −4 + λ.

Thus we have λ = 1, which is a contradiction. Therefore our case (IIb) reduces to the case
of dimVλi = dim Vλj = 1.

We set T = {ξ, e, φe}R with Ae = λe and Aφe =
αλ − 2
2λ − α

φe. For simplicity we put

µ =
αλ − 2
2λ − α

. Note that λ �= µ. We shall now prove that T is integrable and its each leaf is a

totally geodesic submanifold of the real hypersurface M in CHn(−4). We first remark that
∇ee = ∇φe(φe) = 0, since both {e}R and {φe}R satisfy the condition (1) in our Theorem.
Also, we see easily that ∇ξξ, ∇eξ, ∇φeξ ∈ T and ∇e(φe) ∈ T. Next, we prove ∇ξe ∈ T.
For this purpose, we observe that

(∇ξA)e − (∇eA)ξ = ∇ξ(Ae) − A∇ξe −∇e(Aξ) + A∇eξ

= (ξλ)e + (λI − A)∇ξe − αλφe + λµφe.

On the other hand, Codazzi equation (2.7) gives

(∇ξA)e − (∇eA)ξ = −φe.
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Hence we find that
(λI − A)∇ξe = −{λ(µ − α) + 1}φe.

This, together with the fact that ∇ξe is perpendicular to Vλ, yields that ∇ξe ∈ {φe}R ⊂ T.
Similarly, we have ∇ξ(φe) ∈ T. We next verify ∇φee ∈ T. It follows from Ae = λe and
Aφe = µφe that

(∇eA)φe − (∇φeA)e = (eµ)φe + (µI − A)∇e(φe) − (φeλ)e − (λI − A)∇φee.

Here, from (2.4) and ∇ee = 0 we have

(µI − A)∇e(φe) = −λ(µ − α)ξ.

Moreover, Codazzi equation (2.7) shows

(∇eA)φe − (∇φeA)e = 2ξ.

These three equations tell us that

2ξ = (eµ)φe − λ(µ − α)ξ − (φeλ)e − (λI − A)∇φee,

which implies ∇φee ∈ {ξ, φe}R ⊂ T. Consequently, T is an integrable distribution and its
each leaf (, say) T is a totally geodesic submanifold of M .

We here set L = {e, φe, ξ, N}R. Then by similar computation we find that ∇̃XY ∈ L
for all X, Y ∈ L, which implies that the distribution L is integrable and its each leaf (,
say) L is a complex 2-dimensional totally geodesic Kähler submanifold of the ambient space
CHn(c). Note that each leaf L is nothing but totally geodesic CH2(−4) in CHn(−4). Then
we can see that every leaf T of the distribution T is a real hypersurface of totally geodesic
CH2(−4) in CHn(−4). So the discussion in Case (I) implies that λ is constant locally on
T , so that (∇eA)e = 0 along T . This, combined with the computation in (3.8), yields that
Zλ = 0 on M for any Z ∈ TM .

Hence we can see that every real hypersurface M (of CHn(−4)) satisfying the condition
(1) is of type (A) or type (B). However, there exists no type (A) hypersurface (say, ) M
satisfying the condition (1). In fac, this real hypersurface M satisfies neither dimV 0

λi
= 1

nor dimV 0
λi

� 2. Note that φ(V 0
λi

) ⊥ V 0
λi

if dimV 0
λi

� 2. Therefore we conclude that M is
of type (B).

Next, we suppose that M is of type (B) with principal curvatures λ1 = (
√|c| /2)·

coth(
√|c| r/2), λ2 = (

√|c| /2) tanh(
√|c| r/2) and α =

√|c| tanh(
√|c| r) in CHn(c). Then

by the above argument we know that every leaf Tλ1 (resp. Tλ2) of the restricted principal
foliation V 0

λ1
(resp. V 0

λ2
) is totally geodesic in the real hypersurface M . Moreover, this leaf

is a non-totally geodesic but totally umbilic hypersurface of constant sectional curvature k1

(resp. k2) with
√

k1 − (c/4) = λ1 (resp.
√

k2 − (c/4) = λ2) in a real n-dimensional totally
real totally geodesic submanifold RHn(c/4) in the ambient space CHn(c). Hence we find
that every geodesic γ = γ(s) on the real hypersurface M with γ̇(0) ∈ V 0

λ1
(resp. γ̇(0) ∈ V 0

λ2
)

is a circle of positive curvature λ1 (resp. λ2) in CHn(c).
On the other hand, needless to say λ1 > λ2(> 0) holds. Then by solving the equation

λ1 = 3λ2, we see that r = (1/
√|c| ) loge(2 +

√
3 ). In this case, λ1 = α =

√
3|c| /2 and

λ2 =
√|c| /(2

√
3 ).

At the end of the proof we recall the following fact. We take a geodesic γ = γ(s) on Mn

which is a hypersurface isometrically immersed into a Riemannian manifold M̃n+1. Suppose
that the curve γ is a circle of positive curvature (, say) k in the ambient manifold M̃n+1.
Then, we find easily that the shape operator A of Mn in M̃n+1 satisfies Aγ̇(s) = kγ̇(s) for
each s or Aγ̇(s) = −kγ̇(s) for each s (see (2.1) and (2.2)).
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Hence by the above three facts we can conclude that r = (1/
√|c| ) loge(2 +

√
3 ) if and

only if a type (B) hypersurface M satisfies the condition (2). Thus we obtain the desirable
conclusion.
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