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HENSTOCK ON RANDOM VARIATION

Pat Muldowney

Received September 29, 2007

Abstract. The theory of integration (including measure) is the basis for the study of
probability and random variation. Thus Henstock’s Riemann-type integration theory
has relevance to our understanding of random variation. Henstock addressed this issue
in many of his published works, in which he gave interpretations of probability, of the
statistical analysis of data, and of random processes. His analysis of Feynman’s non-
absolute integrals in quantum mechanics brings this subject properly into the domain
of random variation.

1 Introduction In a personal report [3] in 1984, Henstock described his research interests
as follows:

My research is in the pure mathematical fields of

1. summability of series and integrals,

2. integration theory,

and especially in problems that link the two. In 1. an essential tool is often the Banach-
Steinhaus theorem of functional analysis, with Sargent’s modification. For example, if∫ b

a fdg exists for every Baire- or Borel-measurable function, to prove that g is of bounded
variation on [a, b]. Putting a summability factor into the definition of the integral leads to a
generalization of Burkill’s Cesaro-Perron integrals and the Marcinkiewicz-Zygmund integral.
These are of Perron type, defined by inequalities of the type

∫ x+h

x

{F (t) − F (x)} dtN(x, h; t) ≥
∫ x+h

x

f(x)(t − x)dtN(x, h; t),

with similar inequalities for [x−h, x], and the problem is to find the necessary conditions on
N . Out of this came the variational integral which then led to the Riemann-complete or gen-
eralized Riemann integral, the so-called Kurzweil-Henstock integral. This integral includes
the Riemann, Riemann-Stieltjes, Lebesgue, Radon, Denjoy special, and Perron integrals,
using Riemann’s original sums but a different limit. Set-valued functions, the integrals of
which have applications in economics. Wiener-type integration has applications to various
stochastic processes such as white noise. Feynman-type integration has applications in quan-
tum theory. An integral that includes the Paley-Wiener-Zygmund integral has applications
for stochastic integration, as does an integral equivalent to the Itô integral. The most gen-
eral form of the generalized Riemann integral can be used to define all these integrals except
those defined by the functions N .

The theory of integration with which Henstock is associated arose from his study of the
problem of summability described above, but did not completely resolve this problem to his
satisfaction. So in a sense, his successful mathematical accomplishments are a by-product
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of a different project which he felt was incomplete. Such things happen in a life of high
achievement.

Another ancillary problem which he addressed at various times in the course of his
life was the mathematical analysis of random variation. He first encountered this subject
in a very practical way when, in November 1943, he was withdrawn temporarily from his
mathematical studies at St. John’s College, Cambridge, and assigned to the British Ministry
of Supply to do statistical work.

His experience as a civil servant generated in him a visceral dislike of working for the
government. But he retained a life-long interest in the analysis of random data. So he
took a course of study in stochastic theory from M.S. Bartlett in 1947, and in 1958 he was
appointed Fellow of the Royal Statistical Society.

Henstock’s approach to the theory of integration builds on the nineteenth century theory
of Riemann, and is conceptually different from and independent of the early twentieth
century integration theory of Lebesgue. So one can imagine that the mathematical theory
of probability founded on the work of Kolmogorov (as described in, for instance, [15],
Foundations of the Theory of Probability, 1933) could conceivably have been based on a
Riemann-type integration rather than the Lebesgue approach used by Kolmogorov and his
successors in probability theory.

Henstock’s writings give a strong sense of how such an alternative development of prob-
ability theory should be accomplished. His 1963 book (Theory of Integration [5]) includes
a chapter on probability. In it, Henstock reviews three different interpretations, including
Kolmogorov’s, of the probability concept. Placing emphasis on the role of actual statistical
data he discusses the classification or partitioning of numerical data into disjoint real inter-
vals {I}, which is often the first practical step in the numerical analysis of such data. He
provides two ways to define the probability that a numerical measurement x takes a value
in a set X . Accordingly, Prob(X) can be taken to be

Prob(X) =
∫ ∞

−∞
1X(x)dP =

∫
X

dP, or(1)

Prob(X) = V (P ; X) .(2)

If we take (2) (the P -variation of the set X , see [19] page 26) as the definition of probability,
then every set X has a mathematical probability. If we take (1) (the Henstock integral of P
in the set X) as the definition, then, as in the Kolmogorov theory, only certain sets X have
a probability measure (and, for those sets, (2) gives the same value). In that case, if the
function P is a probability measure in the sense of Kolmogorov, then Henstock’s approach
gives exactly the same measurable sets as Kolmogorov’s.

Is it the case, then, that by means of (1), Henstock provides us with a view of probability
which is different from that of of Kolmogorov, but not different to any significant extent?
No; the purpose of this article is to examine those aspects of Henstock’s work which provide
substantial new insights into the theory of probability and random variation.

Both (1) and (2) involve Riemann sums which require only that a probability function
P (I) exists for the real intervals I into which statistical data is classified or partitioned.
Henstock’s approach has no a priori requirement that probabilities P (X) be defined on
all measurable sets X . These are obtained as a consequence of (1). And if we take the
approach of (2), probabilities are defined for all sets X .

In his presentation of the subject in [5] it appears that he would have liked to be able to
deduce the probability function P (I) from the relative frequency with which the measured
data take values in the interval I. But he proves that this is problematic, and proceeds with
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probability functions P (I) which are given a priori for intervals I, just as Kolmogorov’s
probability function P (X) is a priori, or axiomatic, for measurable sets X .

Again showing a strong bias towards statistical analysis of data, Henstock devotes the
rest of this chapter on probability (in [5]) to a study of significance testing.

His 1988 book [6] (Lectures on the Theory of Integration) was intended by Henstock to
replace and bring up to date his out-of-print 1963 book [5]. The 1988 book also included a
chapter on probability, which repeats the earlier study of the probability concept, and has,
in addition, a discussion of the correlation of joint random variables.

2 Countable Additivity Between 1963 and 1988 Henstock produced substantial further
investigations of subjects which come within the scope of probability. In addition, he spelt
out clearly some implications of his Riemann-style approach to integration for alternative
formulations of the theory of probability. At the September 1973 Symposium of the Greek
Mathematical Society [4], Henstock expanded on his 1963 interpretation of probability:

It has been assumed by the majority of mathematical analysts that the so-called Lebesgue
limit theorems follow because Lebesgue measure is countably additive. ... [But] it is no
longer necessary, when defining measure ... to give a proof of the countable additivity of
the measure nor to have elaborate constructions in the production of such a measure. To
see why this is not merely of academic interest to mathematical analysts, but has wider
implications, we look at the probability theory of statistics. Note that probabilists claim
that probability theory is older than measure theory. [Consider] Kolmogorov’s axioms for
statistics. The statistician takes a space T of all possible statistical events in a particular
system, divides T into a finite number, say, T1, . . . , Tn, of mutually exclusive subsets, and
then takes a sample (i.e. a finite set) in which each member is a realization of one of the
statistical events. If the sample contains q members, of which qj are realizations of events
in Tj, then qj

q is the relative frequency in the sample, of the subset Tj for j = 1, 2, . . . , n.
These relative frequencies lie between 0 and 1, . . . , and they are finitely additive. This
last means that the relative frequency in any union of some of the Tj is the sum of the
relative frequencies of the separate subsets Tj of the union. Experimentally it is found that
if repeated independent random samples are taken, the relative frequencies tend to become
stabilized. But in order to say mathematically what many terms in the previous sentence
mean, we would be involved in a thorough discussion of the mathematical basis of statistics.
Here it is enough to say that the Kolmogorov functions p of sets, the probabilities, that
obey the same rules, are clearly the natural mathematical models to be used in statistics.
Paragraphs like this form part of every course of statistics that mentions probability.

To ensure that these set functions p are Lebesgue or Radon measures, Kolmogorov also
assumed that they are countably additive. Here, if U1, U2, . . . is a sequence of mutually
exclusive subsets of T , with union U ⊆ T , then

p(U) =
∞∑

j=1

p(Uj).(3)

In practical cases p is originally defined only over a family of subsets I of T , from which,
by taking finite unions, intersections, and set differences, we obtain a ring of sets and can
then construct the Borel sets. For example, if T is an N -dimensional Euclidean space, p is
often originally defined over geometrically simple objects such as N -dimensional rectangles.
In order to construct the Lebesgue-Radon integral of even a continuous function by using
measure theory, it is vital to define p at least over every open set G of T , using (3) with
U = G. Further if 1G(x) is the characteristic or indicator function of G (the function which
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is 1 when x is in G and 0 otherwise) in Lebesgue-Radon theory we have

p(G) =
∫

T

1G(·)dp.(4)

Conversely from (4) and the theorems on the reversal of order of integration and limit, we
can prove (3), at least when U = G and the Uj are members of the pre-ring. Because of this
it has been assumed that that Kolmogorov’s extra axiom (3) is necessary, as well as being
sufficient, for p to be a probability function.

But the object of this paper is to show that such a view is erroneous. The generalized
Riemann integral . . . [is] more powerful than those of Lebesgue and Radon; [it does] not
need the countable additivity (3), and yet the limit theorems still hold.

There is a strand among experts in random variation for whom Kolmogorov’s Axiom
((3), above) is problematic. For instance, each of us acquires naturally some intuitive sense
of the meaning of probability as a real-world phenomenon. But what intuitive meaning can
we give to the mathematical abstraction (3) which would help us to accept it as an axiom?

However the finite additivity of the relative frequencies of actual data suggests strongly
that a probability function should be finitely additive. But this presents no problem for
either of the definitions (1) or (2), whose construction depends on only finite Riemann sums
involving P (I).

Historically, the probability function P is the concept which enables us to make math-
ematical sense of the subjects of measurement, approximation or estimation, all of which
can be grouped under the heading of random variation. Fundamental to this is the concept
of a random variable which, in the Kolmogorov theory, is a P -measurable function X map-
ping a sample space Ω to a space of values X = {X (ω) : ω ∈ Ω}, corresponding to some
measurement or estimate of a real or physical quantity. So writing x = X (ω), the expected
value of X is ∫

Ω

X (ω)dP or
∫
R

xdFX ,(5)

where FX is the probability distribution function defined by

FX(I) = P (X−1(I))(6)

for real intervals I, and hence for Borel sets in R.
Sometimes we have to deal with some mathematical function of the actual measured

or estimated values X = {X (ω)}. For instance, if we want to estimate the variance or
variability, we need the values X2 = {(X (ω))2}. So for suitable functions f we can treat
the set f(X) = {f (x)}, or more precisely, the function f(X ), as a random variable with
expected value ∫

Ω

f(X (ω))dP or
∫
R

f(x)dFX .(7)

If either of the integrals of (7) (or indeed (5)) exists as a Lebesgue integral then the other
one also exists as a Lebesgue integral. And if the latter integral,

∫
R f(x)dFX , exists as a

Lebesgue integral it also exists as a generalized Riemann integral:∫
R

f(x)P (X−1(I)), or
∫
R

f(x)FX(I).(8)

The latter notation denotes generalized Riemann or Henstock integration, and, for a non-
negative finitely additive distribution function FX(I) of standard probability theory, it exists
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whenever the corresponding Lebesgue integral
∫
R

f(x)dFX does, and the two are equal.
Thus it is a relatively simple matter to re-interpret the Kolmogorov theory of probability
in generalized Riemann terms by means of (7) or (8). All we have to do is to translate each
statement of the standard Kolmogorov theory from Kolmogorov terms into Riemann terms
by means of (6) and (8).

But for certain certain kinds of distribution function F which are outside the usual
scope of probability theory, the

∫
R f(x)F (I) of (7) may exist as a generalized Riemann

integral, whilst the corresponding
∫
R

f(x)dF fails to exist as a Lebesgue integral. So for
such F the probability measure of a set or outcome A may exist in the generalized Riemann
sense but not in the Lebesgue sense. We will encounter such a function in Section 7 below.
Therefore it is possible that probability theory can be extended outside of its usual scope if
we approach the subject in generalized Riemann terms. As we shall see later in this article,
this insight underlies the main body of Henstock’s studies of random variation from the
1960’s to the 1990’s.

3 Sample Space From the Kolmogorov point of view it is natural to take∫
Ω

X (ω)dP(9)

as the conceptual starting point. While the sample space Ω is assumed to have a given,
fixed probability function P , we often have to deal with several, perhaps infinitely many,
random variables X ,Y, . . . , each with its own distribution function

FX(I) = P (X−1(I)), FY (I) = P (Y−1(I)), . . . .

The variables X (ω),Y(ω), . . . are a mathematical representation of real world occur-
rences or measurements which can generally be represented as real numbers. As discussed
in the Introduction above, it is the usual practice in statistical analysis of data to classify
(or group, or partition) such values X (ω) into the intervals {I} of real numbers in which
they can potentially occur. (If we are analyzing joint occurrences of X ,Y, . . . , we look at
the real intervals I × J × · · · in which random values (X (ω),Y(ω), . . . ) can occur jointly.
See Section 7 below.)

So a mathematical representation or abstraction of this practice should be easy to un-
derstand, since only real intervals are involved. But it is not so easy to understand a process
of grouping these potential values, not just into intervals I of (8), but into the measurable
sets of (5).

For instance, it is easy enough to envisage the likelihood that tomorrow’s mean temper-
ature will be between, say, ten and twenty degrees celsius. But what if we try to envisage
the temperature taking a value in some Cantor subset contained in the interval 10 to 20
degrees?

In the Kolmogorov programme this is mathematically necessary. Not only that, but if
we are dealing with many random variables X ,Y, . . . , we must repeat this intuitive effort in
each of the ranges of the X ,Y, . . . . And it gets even worse when we are trying to understand
joint variation of these random variables.

However, if we encounter this analytical hurdle only in the form of abstract measurable
subsets of an abstract sample space Ω—a merely technical device to construct (9)—we put
the least possible strain on our intuitive capacity. By doing this, we need only ever consider
the abstract measurable subsets of the mathematical abstraction Ω for which there need
be no physical interpretation or meaning. Thus we can avoid the corresponding, intuition-
challenging, measurable subsets of the real-world ranges in R of the actual measurements
X ,Y, . . . .



662 PAT MULDOWNEY

In contrast, the only demand made on our intuition in a Riemann approach based on
(8) is to envisage, not measurable sets, but only the real intervals I, J, . . . into which the
values of each of the random variable or measurement X ,Y, . . . are classified in the usual
manner of elementary statistical calculation. So our imagination is not required to stretch
beyond intervals such as 10 - 20 degrees and the like, as described above.

Thus, in the Kolmogorov approach, the concept Ω serves as a mathematical safety
valve removing unnecessary burdens from our intuition of the real-world events that we are
analyzing. But beyond that, what is the role of Ω? It is called the sample space. The actual
events in the real world that we are concerned with are generators of actual, real-world,
numerical values. Think of an event as being a measurement, in which the result or value of
the measurement is a real number. We are led to the belief that such events may be random,
because we sense from experience that if the measurement were repeated, a different result
or value might be obtained, so we cannot predict exactly which of several possible results
may be obtained by the measurement. Therefore we are dealing with a variable.

Again from experience, we sense that there may be a certain likelihood that a measure-
ment will give one particular value rather than some other value. Likewise, we may sense a
likelihood that the measurement will give a value belonging to some interval range of real
numbers.

Thus it is reasonable to regard a random variable as simply a list or set of the possible
values X of a measurement, in conjunction with the likelihood of occurrence of the possible
values. We have already discussed the standard Kolmogorov interpretation of a random
variable as a function X . So we have two interpretations, and we will try to keep both of
them in mind.

How does Ω help us to understand random variation? One of the ways in which the
concept of the sample space Ω is explained to us is by describing it as representing the
possible states of the world, all possible eventualities in the world—or at least in that part
of the world with which we are directly concerned. Whatever happens in the sample space
can be thought of as the “cause” of a random variable (or actual measurement) taking one
particular value rather than another. The sample space is, in some mathematical sense, the
generator of randomness in the measurement or random variable, the reason why a random
variable can take many different values rather than just one single, deterministic value.

We can think of the sample space as encompassing a mathematical roulette wheel in
which a mathematical mechanism sets a mathematical ball in motion and determines one
particular outcome rather than another. Furthermore if the possible events in Ω (the subsets
of Ω, the sections of the imaginary celestial roulette wheel colored red, black, green and so
on—corresponding to the potential “states of the world”) each has an associated probability,
then these probabilities determine the likelihoods that our random variable or measurement
takes particular values corresponding to these colors or “states of the world”.

If we are analyzing several, perhaps infinitely many, random variables X ,Y, . . . , we
may be concerned with their joint variation. For instance, at a particular time of day we
may measure jointly—as a single, joint occurrence represented by a pair of values—the
temperature and the atmospheric pressure, with a view to investigating whether these two
random variables are related in some way; or whether, perhaps, one of them exhibits some
dependence on the other. Or what effect the joint values have on some quantity f(X ,Y, . . . )
which depends on each of them, or on all of them jointly.

In general terms, a particular “eventuality” ω of the set of all possible eventualities Ω
results in, or “determines”, the particular set of joint outcomes {X (ω),Y(ω), . . . }. The
latter can be thought of as a ’tuple of measured values (x, y, . . . ), which can in turn be
thought of as an element in R × R · · · . Thus, a single joint occurrence of the random
variables X ,Y, . . . corresponds to a single element (x, y, . . . ) of R×R× · · · , and the set of
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all such possible joint occurrences corresponds to X × Y × · · · ⊆ R × R × · · · along with
some appropriate likelihood function F for the joint possibilities. We will return to this
topic in Section 7 below.

4 Random Variable So we have an intuitive notion of a random variable X as a set
of potential values or results X , along with some measure of the degree of potentiality or
likelihood, call it FX , of a particular value (real or complex) actually occurring. What the
Kolmogorov theory does is to put this intuitive notion onto a solid mathematical footing.

This is accomplished by defining a random variable to be, not just a set of potential-
values-plus-likelihoods, but a function X from the abstract sample space Ω into the set of
potential values. (The values X (ω) are generally taken to belong to R. A random variable
may also be a composite function f(X ) on Ω, and in this case the random values are usually
allowed to be real or complex numbers.)

In this standard view, the likelihoods FX are determined, not just by the function X ,
but also by the pre-existing and a priori probability function P , independent of X but
inherited by X through the equation

FX(I) = P (X−1(I)).

So a different function X ′ could have the same range of values in R as X does; while
mathematically, as a function different from X it would be a different random variable.
This is somewhat counter-intuitive. Furthermore, this X ′ might even generate the same
likelihoods in R as X does, with FX(I) = FX′(I) for each I in the range of values, yet still
be a “different” random variable from X .

To illustrate, suppose our real-world measurement is to observe the outcome n (1 ≤
n ≤ 6) of a single throw of a die. Suppose the abstract, mathematical sample space Ω
corresponds to a “great roulette wheel in the sky”, which, for illustrative purposes, has six
colors—red, green, black, white, pink and yellow; determining the real-world outcomes of 1
to 6, respectively, whenever the die is thrown. In Kolmogorov terms, the random variable is
the mapping X which makes dice-throw 1 correspond to red, 2 to green, and so on. Consider
the probability function P on Ω. First, suppose P is uniform, with P (red) = 1

6 , and so
on. This corresponds to a fair or balanced die. Now suppose that Ω has a different set of
probabilities P ′ defined on it: P ′ with P ′(red) = 1

2 , and

P ′(green) = · · · = P ′(yellow) =
1
10

.

We have here two different experiments, measurements, or random variables in the intuitive
sense; the first being with a balanced die and the second with an unbalanced one. But
formally speaking, and in traditional Kolmogorov terms, we have the same sample space Ω
in both cases, the same range of values or outcomes n = 1, . . . , 6 generated by the random
variation, and hence the same random variable (in the sense of mapping from Ω into R).
Two intuitively different random variables are mathematically (in the Kolmogorov sense)
the same.

Now suppose Ω and P are as we have just described. But suppose we define a different
mapping X ′ which sends yellow to 1, pink to 2, and so on. Technically, this is a different
mapping from X , but it describes exactly the same experiment—a single throw of a fair or
balanced die. So the formally different (in the Kolmogorov sense) X and X ′ are intuitively
the same random variable.

Though these difficulties might be avoided if a little care was taken with definitions,
many presentations of the standard Kolmogorov theory are open to such anomalies. But
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they do not arise at all in the more intuitive “set-of-values-with-likelihoods” conception
of random variable. Nonetheless we can, without too much risk, regard these difficulties
as a quibble, and not likely to cause us serious trouble; at least not enough to seriously
undermine the Kolmogorov approach. So it is reasonably safe to take either approach; or,
indeed, to keep both approaches in mind whenever we study random variables.

Suppose we have a random variable X , considered either as a mapping-from-a-sample-
space-endowed-with-probability-P , as prescribed by Kolmogorov; or as (X, FX), a set-of-
values-X-with-likelihoods-FX in the intuitive manner. Now suppose we are interested in
the variance of X , so we form the new random variable Y = X 2. What likelihoods attach
themselves to the various possible values of Y? Conveniently, in this case if X takes a value
in an interval I, then Y takes its value in the interval J , where J = {y : y = x2, x ∈ I};
and then the likelihood of Y(ω) being in J is the same as the likelihood of X being in I,
FY (J) = FX(I). (But two distinct intervals in the range of X can map to a single interval
in the range of Y.)

So here we are forming a new random variable Y = f(X ), with its range—its set of possi-
ble values—generated, not by measuring something in the real world, but by the mathemat-
ical operation of squaring the measured value. The next step is to consider the probability
distribution function FY of the random variable Y.

5 Distribution Function and Expectation If we follow the Kolmogorov approach
for Y = f(X ), we start with a probability measure P defined on subsets of Ω and obtain
likelihood distributions FX , FY by

FX(A) := P (X−1(A)), FY (B) := P (X−1(f−1(B)))

for relevant sets A, B of the values taken by X , Y respectively.
The sets A and B can be real intervals I, J respectively, which are what we require in the

Riemann approach. The sets X and Y are all the possible values of the two measurements
X and Y, and FX(I), FY (J) are the a priori probabilities that the first measurement takes
a value in I and the second measurement takes a value in J .

To illustrate, here are examples of familiar random variables. Take I to be the real
interval [u, v] and, without loss of generality, v − u < 1:

• Dice throwing, unbiassed:

X = {1, 2, 3, 4, 5, 6};
FX(I) =

{
0 if I ∩ X = ∅;
1
6 if x ∈ X and x − 1 < u ≤ x ≤ v < x + 1.

• Binomial distribution, probability of x successes in n independent trials where the
probability of success in a single trial is p :

X = {1, 2, . . . , n};
FX(I) =

{
0 if I ∩ X = ∅;

n!
x!(n−x)!p

x(1 − p)n−x if x ∈ X and I ∩ X �= ∅.

• Standard normal distribution (mean 0, variance 1):

X = R;
FX(I) = 1√

2π

∫
I
exp

(− 1
2y2

)
dy.
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Taking the alternative or intuitive approach to the notion of random variable, our fun-
damental random variable X is a set (not a function!) of potential measurement values,
combined with an associated likelihood function FX defined on real intervals I. But that
is sufficient for us to get the analysis of the random variation off the ground, provided we
adopt the generalized Riemann approach of Henstock. For instance, the expected value of
the random variable (X, FX) is

∫
R

xFX(I) where the integral, if it exists, is generalized
Riemann. In this approach, it is the existence of

∫
R xFX(I) that gives X the mathematical

status of random variable, whereas in the Lebesgue approach X is a random variable if it
is a measurable function.

In the examples of familiar random variables given above, it is not necessary to specify
the X of X = (X, FX), since X is implied in the specification of FX(I). But intuitively,
the set X of possible outcomes or measurement values is what we first envisage, followed
by consideration of the related probabilities FX(I). So it is helpful to retain X explicitly
in our notation X = (X, FX). Also, if we wished to calculate the variance of, for instance,
the dice-throwing random variable, in place of the values X = {1, . . . , 6} we would have to
calculate the mean value of values f(X) = {(x − 3.5)2 : x ∈ X}, so we are dealing with a
random variable (f(X), FX).

This is an example of a dependent random variable f(X ). What mathematical meaning
can we give to this, following the Riemann approach? First we have the set Y = f(X)
of function values f(x) where each x ∈ X is a value of the random variable X . Then,
denoting f(X ) = f((X,FX)) by Y = (Y, FY ), the Henstock approach of (1) and (7) gives
the associated likelihood function FY (J), for intervals J , by

FY (J) =
∫
R

1f−1(J)(x)FX (I) =
∫

f−1(J)

FX(I),(10)

whenever this generalized Riemann integral exists. Thus the expected value of the random
variable (Y, FY ) = (f(X), FX) is∫

R

yFY (J) =
∫
R

f(x)FX(I)

where each of these integrals exists if and only if each of the others exists.
To illustrate, consider a standard normal random variable X as defined above. Then

the variance of X is the mean of X 2:∫
R

x2FX(I), easily shown to be equal to
1√
2π

∫ ∞

∞
y2 exp

(
−1

2
y2

)
dy.

Should we consider a random variable corresponding to the measurements f(X) to be, on
the one hand, a function f(X ) defined on some sample space; or, on the other hand, a
set-of-values-with-likelihoods (f(X), FX)? We will use the latter approach, as it fits better
with our Riemann approach to random variation. But either approach is perfectly feasible,
and it is often helpful to keep both in mind.

In the Kolmogorov approach, X or f(X ) are considered to be random variables only
if they are measurable functions on Ω. Likewise, in the Henstock approach, (X, FX) or
(f(X), FX) are considered to be random variables only if the expected values

∫
R

xFX(I),∫
R

f(x)FX(I) exist as generalized Riemann integrals.

6 Henstock compared with Kolmogorov What meaning should we assign to Ω if we
are adopting a Riemann approach to random variation, but, instead of the intuitive set-
of-values-with-likelihoods concept of random variable, we prefer to adopt the Kolmogorov
measurable-function-defined-on-sample-space approach?
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If the random variable is X = (X, FX) or f(X ) = (f(X), FX), then—as in the famil-
iar examples given in Section 5 above—the sample space Ω can be taken to be R, with
each of the elementary events ω identified with one of the potential measurements x of R.
Considered as a mapping from Ω = R, the random variable X is the identity mapping to
R.

If we have several (perhaps infinitely many) random variables X ,Y, · · · to be consid-
ered jointly, then a random variable has the form of a real- or complex-valued function
f(X ,Y, · · · ), and the appropriate sample space is the Cartesian product RB, where the
cardinality of B corresponds to the number of random variables X ,Y, · · · . Thus, if we are
dealing with a finite number n of random variables (including n = 1), the sample space can
be taken to be Rn. (We return to this issue in Section 7. Note that we are using RB to
denote

∏
B R—the set of all functions from B to R; even though BR is the usual notation

for this, not RB.)
The likelihoods are then determined by a given, or a priori, probability distribution

function F (just as probabilities are determined by an a priori function P in the Kolmogorov
theory). In Section 7 we investigate the distribution function of joint likelihoods for a
random variable f(X ,Y, . . . ). Since B can be taken to be set containing a single element
(giving RB = R), the domain RB can be taken as a universal sample space for every
random variable.

In practice what we have just described is the approach that is used in the Kolmogorov
theory whenever Ω and P actually have to be specified in reality (as opposed to abstract
exposition of the theory), with P (X−1(A)) taken to be FX(A) for various sets A. This is
clear from the examples of Section 5 above, from which we can make a connection between
abstract exposition and practical calculation.

In place of sample space R (or RB) we might choose the sample space in an ad hoc way.
For instance, in throwing dice we might take Ω to be the finite set {1, . . . , 6}, with X the
identity mapping, and FX (or P ) specified in the obvious way. But, as illustrated in the the
first two of the examples of Section 5 above, it is no great burden to embed such a sample
space in R or RB, with FX (or P ) adapted accordingly. Also, in the study of Brownian
motion, it is found useful to employ as sample space, instead of RB, the set of continuous
functions defined on a real interval ]τ ′, τ ] = B. A construction of this sample space by
Riemann methods is described in [23]. This construction corresponds to the well-known
continuous modification of RB for Brownian motion.

In fact it is quite feasible to adopt as universal sample space, for all random variables
and processes, the real interval ]0, 1[. This is because R (and even RB) can be mapped in a
suitable way to ]0, 1[. But we then lose the natural identification of elements of the sample
space R (or RB) with the actual values assumed by a random variable X (or by X ,Y, . . . )
jointly.

Our discussion has the ambition of teasing out the implications of Henstock’s comments
on probability and statistical analysis. Though he did ground-breaking work on a number
of important problems, it would be fair to say that Henstock did not himself undertake a
comprehensive study of random variation as such. But, as is clear from the quotations given
earlier, he did point out some of the major implications of generalized Riemann integration
for the theory of probability. Merely by noticing that the right-hand integral of (7) above
can be understood as a Henstock integral, we can argue that the existing formulation of the
whole Kolmogorov theory of probability—concepts, theorems, proofs, the whole works—
can, by a simple act of translation, be re-interpreted in generalized Riemann rather than
Lebesgue terms. But this would forego the many benefits and insights which we could
reasonably expect to gain by formulating the theory in the new Riemann rather than the
existing Lebesgue terms. Just as the pure theory of integration is found to have a quite
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different flavor in each of the two versions, Riemann and Lebesgue.
The project of reformulating the theory of probability in Riemann terms is still a work

in progress, and is the subject of a forthcoming book by the present writer.
From the discussion above, one particular advantage of the Riemann approach can be

immediately detected. In the classical theory we identify, within the abstract sample space
Ω, a class of P -measurable subsets. Subsets outside of this class are assumed not to have a
probability value. But this is counter-intuitive. If there is such a thing as likelihood, and if
various eventualities (such as non-measurable subsets of Ω) are conceivable, then on what
grounds should we suppose that one eventuality possesses a likelihood value, while another
does not? Can we make such a counter-intuitive distinction merely on the basis of some
abstract mathematical condition, such as whether or not the subset or eventuality belongs
to some special sigma-algebra of subsets?

In the Riemann framework, with Ω = RB, we can easily avoid this challenge to our
intuitive understanding. Because the variation V (FX ; A) of FX in A, is defined for every
subset A of R or RB, with V (FX ; A) =

∫
A FX(I) = P (A) whenever A is FX -integrable,

we can define the likelihood, or probability, of any set or eventuality A to be V (FX ; A).
(Variation corresponds to outer measure, so we could use the same ploy in the standard
theory of probability, provided we replace the abstract sample space Ω by a concrete sample
space such as R or RB.)

7 Stochastic Process The framework for probability described above has been received
from Henstock in a somewhat fragmentary way. But within this implied framework, he
made a deep and sustained investigation of some difficult problems of random variation. The
most significant of these is [8], in which problems of Brownian motion (involving Wiener
integration) and quantum mechanics (Feynman integration) are examined as stochastic
processes by means of generalized Riemann concepts. Curiously, in a dense and closely
argued paper of twenty eight pages, the word “probability” appears just three times in
a single introductory paragraph, and otherwise not at all. Henstock treats these subjects
primarily as problems of infinite-dimensional integration. But in a way this is not something
to be wondered at, since the actual source of the mathematical conquest of random variation
is the theories of measure and integration.

Henstock used ideas from Jessen [14] to extend the generalized Riemann integral from
finite-dimensional to infinite-dimensional spaces.

The probabilistic context for this development is as follows. Suppose we are analyzing
the joint variation of random variables Xt, t ∈ B. In Henstock’s original conception, the set
B is a labelling or indexing set without structure. But it is useful to assume further that
B has an order relation and a metric; and in practice B will be one of the following: a real
number singleton {t}; or a finite set N of real numbers; or a real interval ]τ ′, τ ].

Each Xt can be thought of as (Xt, Ft) with Xt ⊆ R = R{t}, and Ft := FXt defined on
the intervals It of R{t}. For N = {t1, . . . , tn} ⊂ B, with t1 < · · · < tn, the joint variables
XN := (Xt1 , . . . ,Xtn) have a joint distribution function FN = FXN = FXt1 ,... ,Xtn

defined
on the intervals

I(N) := It1 × · · · × Itn ⊂ RN = R{t1} × · · · × R{tn} = R × · · · × R = Rn,

where FN (I(N)) is the probability that each Xtj takes a value xtj ∈ Itj for tj ∈ N . Recall
that the set of random variables XN := (Xt1 , . . . ,Xtn) are independent if, for each interval
I(N) ⊂ RN ,

FN (I(N)) =
∏

tj∈N

Ftj (Itj ).
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Our problem is to analyze the joint variation of the random variables

XB = (Xt)t∈B

where B is an infinite set such as ]τ ′, τ ]. This problem arises when we are dealing with real-
or complex-valued random variables f(XB) whose expected or mean value is defined by an
integral of the form

∫
RB

f(XB)FB(I).

To give some meaning to this for infinite B, we must establish the following: how the
distribution function FB is to be understood; what the intervals I of RB are; and what is
meant by the generalized Riemann integral in RB.

The set of intervals of RB is denoted by I(RB), and individual intervals I of RB are

I = I[N ] := Proj−1
N (I(N)) = I(N) ×

∏
{R{t} : t ∈ B \ N}, N ∈ F(B)

where F(B) is the family of finite subsets N of B, and ProjN is the mapping which, for
each N ∈ F(B), projects RB into RN : ProjN (xB) = xN , with

xB = (xt)t∈B ∈ RB, xN = (xt1 , . . . , xtn) ∈ Rn, N = {t1, . . . , tn} ∈ F(B).

So while rectangular or brick-like intervals I(N) = I1 × · · · × In are used to partition finite-
dimensional spaces RN = R×· · ·×R = Rn, cylindrical intervals I[N ] are used to partition
the space RB for Riemann-type integration,

RB = I1[N1] ∪ · · · ∪ Ip[Np].

The distribution function FB = FXB of the joint variables XB = (Xt)t∈B is defined as

FB(I[N ]) := FXN (I(N)) = FN (I(N)) for I[N ] ⊂ RB, N ∈ F(B).(11)

If the random variables {Xt : t ∈ N} are independent for each N ∈ F(B), then the random
variables XB = {Xt : t ∈ B} are independent.

If f is a real- or complex-valued function defined on {xt : t ∈ B} = XB in RB, with
distribution function FXB (I[N ]), then f(XB) is a random variable if the expected value
exists, defined as:

E(f(XB)) =
∫
RB

f(xB)FXB (I[N ]),(12)

a generalized Riemann integral whose Riemann sum estimates have the form

∑
f(xB)FXB (I[N ]) =

p∑
q=1

f(xq
B)FXB (Iq[N q]).(13)

where RB is partitioned by the intervals

{I1[N1], . . . , Ip[Np]}.

Each xq
B belongs to the closure of Iq[N q]; and the intervals Iq[N q] are made to depend on the

representative values xq
B in a way which is familiar in generalized Riemann integration. The
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dimensions N of the cylindrical intervals I = I[N ] should be thought of as expanding sets,
sets increasing without limit (other than remaining finite subsets of B), in these Riemann
sums. The evaluation point xB of f in each term of the Riemann sum can conveniently
be taken as a vertex of I[N ]. In other words, xN can be a vertex of I(N) in each term.
Different finite sets N can appear in the various intervals I[N ] of any such partition. This
part of the theory can be found in [7, 8, 13, 19, 22].) The best definition of the integral (12)
is given in [13], pages 797-8.

If B is a finite set, or a singleton, this theory of functions of stochastic processes reduces
to the basic theory of random variables described earlier. For instance, if B consists of just
two elements we can without loss of generality take N to be B. Then we are dealing with
the joint variation of two random variables X1 = (X1, FX1 (I1)) and X2 = (X2, FX2 (I2));
with the joint variable XB = (X1,X2) taking values in X1 × X2 ⊆ R × R; and with joint
distribution function FXB (I1 × I2), so that the probability of XB = (X1,X2) having a
joint occurrence (x1, x2) in I1 × I2 is FXB (I1 × I2). The random variables X1 and X2 are
independent if FXB (I1 × I2) = FX1 (I1)FX2 (I2) for all I1 and I2.

When analyzing joint variation of, for instance, a pair of variables X1, X2 with potential
values {x1}, {x2} respectively, the kind of thing we have to deal with are random variables
f(X1,X2) such as X1 + X2, X1X2 or exp(

√−1X1X2) taking values {x1 + x2}, {x1x2}, or
{exp(

√−1x1x2)} respectively. So in this case we have random variables f(XB) = f(X1,X2),
whose expected value is given by (12) with Riemann sum estimates (13), taking N = B.

It is easy to deduce from (12) that the expected value of the random variable f(XB) =
X1 + X2 whose values are x1 + x2 ∈ X1 + X2 is the sum of the expected values of X1 and
X2. Similarly, if X1 and X2 are independent then, using Fubini’s Theorem, (12) implies
that the expected value of the product random variable f(XB) = X1X2—whose values are
{x1x2}—is the product of the expected values of X1 and X2.

In general, whether or not the function f(XB) (—or, if we prefer, the set of real or
complex values f(XB) = {f (xB)} with distribution function FXB ) is to be regarded as a
random variable depends on whether the integral

∫
RB f(x)FB(I) exists, where x = xB ∈

RB, I = I[N ] ⊂ RB, and F
B
(I) = FXB (I[N ]) is the joint probability distribution function

for the process XB.

This in turn depends on FXB , which we must examine more closely. To determine
whether the expectation or integral (12) exists we must examine the convergence properties
of the actual distribution function in question. Anyone who studies basic probability theory
will be familiar with various distribution functions in one dimension or in a finite number
of dimensions. Some of these have been mentioned in Section 5 above. For instance, the
one-dimensional distribution function FX(I) for a random variable X following a normal
distribution with expected value µ and variance σ2 is

FX(I) =
1

σ
√

2π

∫
I

exp
(
− (y − µ)2

2σ2

)
dy.(14)

The discussion we are engaged in is about developing a Riemann-type theory of such dis-
tribution functions, but in unlimited number of dimensions.

The first comprehensive explanation of this problem by Henstock is in [8]. The particular
distribution function he deals with is as follows. For RB with B infinite, a distribution
function FB(I[N ]) = FXB (I[N ]) is defined on the cylindrical intervals I(RB) of RB. For
each N = {t1 < · · · < tn} ∈ F(B), the distribution function FN (I(N)) = FXN (I(N)) is
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defined on the finite-dimensional intervals I(N) =
∏n

j=1 Ij of RN ; with

FXN (I(N)) =
∫

It1×It2×···×Itn

n∏
j=1

⎛
⎝exp c

2
(yj−yj−1)2

tj−tj−1

2π
−c (tj − tj−1)

⎞
⎠ dy1dy2 · · · dyn.(15)

In accordance with (11), the distribution function defined on the cylindrical intervals I[N ]
of RB is

FXB (I[N ]) = FXN (I(N)) for I[N ] ∈ I(RB).(16)

The function FXN of (15) is, of course, an example of a finite joint distribution function
of the kind we discussed earlier. When c = −1, as in the one-dimensional (14), (15) is
the probability that the displacement, in one particular direction, of a particle undergoing
Brownian motion will, at times tj , be contained (jointly) within the real intervals Ij for
j = 1, . . . , n. Thus, if the particle has displacement yj−1 at time tj−1, the displacement
yj at time tj is the value of a normally distributed random variable with mean yj−1 and
variance tj − tj−1, corresponding to (14).

To get a basic idea of the way the infinite-dimensional distribution function (16) behaves,
take c = −1, take B to be the finite set {τ1, . . . , τn} and N identically equal to B (without
loss of generality), so replacing the variable times tj by fixed τj (1 ≤ j ≤ n). This is a
reversion to (15). Then, with f(XB) = f(xB) identically 1, we can interpret the integral
(12) of the expression (16) in RB = RN = Rn as simply giving us the probability that,
for j = 1 to n, the particle displacement yj takes an arbitrary value in R. So the integral
value is 1. This can easily be verified by actual integration, using Fubini’s Theorem in Rn

to perform successive integrations from yj = −∞ to +∞, j = 1 to n. (The integration
involved uses only elementary methods of calculus. See [19] pages 53 and 85.)

Reverting to infinite B, when c =
√−1 the expression (16) corresponds in some way to

the likelihood that a quantum mechanical particle which is unconstrained by any external
forces will satisfy the displacement condition described above for Brownian motion. This is
the phenomenon analyzed by Richard Feynman in his PhD thesis and in [2]. It is the basis
of quantum physics, and notoriously gives rise to problems of convergence—the so-called
renormalization problem.

Our discussion of (16) from this point onwards will be mainly concerned with the case
c =

√−1.

8 Feynman Integration Henstock undertook this particular investigation, culminating
in [8] in 1973, following a discussion with a physics researcher, R. Johnson, in Queen’s
University Belfast in 1962. This discussion appears to have had a quite profound effect on
Henstock’s subsequent research—but indirectly, since he did not place a special or exclu-
sive focus on Feynman integration, or on any other specific problems of random variation.
Instead, he focussed on the broader integration issues that these problems give rise to. For
instance, even a superficial examination of (16), with c =

√−1, shows challenging problems.
Because then, if we take the absolute value, we get a factor

n∏
j=1

(tj − tj−1)
1
2

which diverges very “strongly” as the set N “expands” and the number of terms in this
finite product increases without limit, with each of the tj − tj−1 tending to zero.
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One of the ways in which Henstock responded to this challenge to the theory of inte-
gration was to rework his Riemann-type integration theory into its fundamental or most
abstract form in order to extract the best possible results.

Remember, his mathematical journey had begun with difficult problems of summability
or convergence of series and integrals; in particular, the use of convergence factors which
could change divergent sums to convergent ones. It was conceivable that the summability
problems in (16) would also be amenable to the Riemannian theory of integration which he
had developed in the course of this quest. This, in effect, is the question that the physicist
R. Johnson put to him in Belfast in 1962.

By 1968, along with a parallel investigation of summability [7], Henstock had developed
an abstract version of the Riemann-complete (gauge or generalized Riemann) integral in
terms of what he called division spaces. This theory is also included in [7], along with a
very brief introduction to his theory of integration in infinitely many dimensions.

As well as providing a general theory within which practically every system of mathe-
matical integration (Riemann, Lebesgue, Radon, Burkill, Perron, Denjoy) could be located,
this general theory of integration exposed the essential, irreducible elements of integration
in order to get at the best possible theorems. To put it plainly, if convergence of sums of
the very “badly behaved” (16), with c =

√−1, is to be capable of being proved, only the
most delicate of arguments is likely to prevail. In [8], Henstock teased out a convergence re-
sult which he hoped might succeed with (16), where the Lebesgue Dominated Convergence
Theorem fails. But he also demonstrated in [8] the limitations of this first attempt.

9 Feynman Convergence Theorems A suitable convergence theorem was evolved in
stages over the following two decades, reaching its best form in [11]. But by this time
Henstock’s attention was on other problems, and he was was less concerned with the physics
problems which had inspired him to go down this particular route in the first place.

In the meantime, he occasionally paid some attention to the Feynman problem using
whatever means that he could devise. One approach was to express the integral in RB of
(16)—essentially an infinite-dimensional integral—as the limit if finite-dimensional integrals
when the number of dimensions increases without limit.

To get an idea of this approach, in (16) think of t1, . . . , tn as fixed numbers, so (16) is
an expression in a fixed domain Rn. Then, even when c =

√−1, (16) is integrable in Rn

without much difficulty—see Muldowney [19], Proposition 68.
The approach which predominated in these later studies by Henstock is one which, when

c = −1, is called Wiener’s Formula, in which the expected value of some random variable
dependent on a Brownian motion is the limit as n → ∞ of integrals in Rn. When c = −1,
(16) is the well-known probability distribution function for Brownian motion, and the result
holds trivially with a function f(XB) which is not random but constant. And even when
c =

√−1 it is also true in the same sense, provided the integrals are generalized Riemann.
(The latter result is the result mentioned above—Proposition 68, page 84 of [19].) The
general problem is to prove it when we are calculating the expected value, with respect to
the distribution function (16), of some random variable.

In a way, there is something strange about this kind of argument. Consider a function
of three variables, integrated in three dimensions, and compare this with the same function
integrated with respect to only two of the variables in only two dimensions. In the first case
we are dealing with something three-dimensional or solid; in the second, two-dimensional or
flat. Yet we talk about “approaching” an infinite-dimensional integral via finite-dimensional
integrals of increasing dimension. In what sense can a series of lower-dimensional objects
“approach” some higher-dimensional one? How can a square “approach” a cube?
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But when we integrate a constant function with respect to (16) with any fixed n, we get
the same result as if we integrate the constant function, or other uncomplicated functions,
with respect to (16) in an infinite number of dimensions. (See [19] for details of such
evaluations.) Therefore the argument from a finite number of dimensions to infinitely many
dimensions works out all right in these simple cases.

Having got this far with this line of argument, we could consider step functions, then
continuous functions, and so on, in a manner which is familiar in analysis. But in order to
see this argument through to the end we would need an appropriate integral convergence
theorem, which until [11] was not available.

Before his discovery of this result, Henstock made use of the concept of backwards
martingales [9]: “A sequence (pn) of random variables is a martingale if pn−1) is almost
surely the conditional expectation of pn given p1, . . . , pn−1 (n = 2, 3, . . . ), and often pn tends
almost surely to a pointwise limit as n → ∞. The sequence is a backwards martingale if
[. . . ] pn is the conditional expectation of pj (j < n), for n = 2, 3, . . . , and here pn often
tends almost surely to a constant as n → ∞.”

On the strength of this idea (previously studied by Jessen [14]), and replacing random
sequences by random processes, we are not too far away from the situation described in the
previous paragraph and Henstock obtained Jessen- and Wiener-type results even for the
extreme case c =

√−1 which arises in Feynman integration.
One drawback under which this work was done by him was the misapprehension that

when c =
√−1, (16) is not of generalized bounded variation (or VBG*). Henstock explained

his change of mind on this problem at a lecture he gave at the XV Summer Symposium in
Real Analysis in Smolenice, Czechoslovakia, 1991. There is an outline of his thinking in [12].
Essentially, the issue here is whether we can find some special subsets Ak of RB so that
when we take appropriate Riemann sums of the absolute value of (16), and when we remove
every term which is not “tagged” in a particular Ak (that is, has xq

B ∈ Ak), the resulting
sums are always bounded by some constant αk. Even a cursory examination of (16) with
c =

√−1 will persuade the reader that such sets Ak, if they exist, would have to be very
special, very “small”. But we require that they be large enough that their countable union
is RB. The problem is discussed at some length in [19]. The fact that the VBG* property
holds for (16) means that the kind of divergences arising from the products of (tj − tj−1)−

1
2 ,

with each tj − tj−1 tending to zero, may after all be manageable. And this property, along
with Henstock’s advanced limit theorems for integrals from [11], is what makes it possible
to bring the Feynman theory of quantum mechanics into the theories of integration and
random variation, in a sense which is compatible with our ordinary understanding of these
subjects. A fuller account of this can be found in [20].

M.M. Rao [24] commented on these developments as follows: “It is of interest to present
an outline of the non-absolute Feynman integral since Henstock [8] has already extended the
(Perron) P -partition method to this case, and a further elaboration is given by Muldowney
[19]. This gives an ultimate reason for studying Henstock’s method of the generalized Rie-
mann integral which is simpler (and also more general) than many of the existing procedures
based on extensions of Lebesgue’s integral.”

Before moving on from [8], a final thought. An elusive issue that appears in many
accounts of the subject, is to find some equivalent of Lebesgue measure for RB: some
interpretation of

∏{dxt : t ∈ B} in RB corresponding to dx1dx2 · · · dxn in Rn. We can
attribute the conquest of this outpost to Henstock, in some generalized Riemann sense. In
this sense, if Ij is the interval [uj , vj [, denote the length vj − uj by |Ij |, so the volume
element

∏n
j=1 |Ij | = |I(N)| corresponds to dxN = dx1 · · ·dxn, or Lebesgue measure.

A result outlined by Henstock in [8], and explained in greater detail in Muldowney [22],
showed that we can have integrals in RB with |I(N)| or dx1 · · ·dxn as integrator instead of
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the distribution function (16). This is because (16) can be replaced by

n∏
j=1

(
2π

−c
(tj − tj−1)

)− 1
2

exp
c

2
(xj − xj−1)2

tj − tj−1
|Ij |,

in which the factor
∏n

j=1 |Ij | corresponds to the integrator
∏

j dxj . So, given a random
variable f(XB) in the sample space RB, the expected value

∫
RB

f(xB)F (I[N ])

of f(XB) can also be expressed as
∫
RB

f(xB)F (xB , N)|I(N)|, or
∫
RB

f(xB)F (xB , N)dxN(17)

(the latter notation is closer to the more common one), with

F (xB , N) =
n∏

j=1

(
2π

−c
(tj − tj−1)

)− 1
2

exp
c

2
(xj − xj−1)2

tj − tj−1
.

The expression (17) is not using “Lebesgue measure in RB”, but each Riemann sum ap-
proximation to (17) has the form

∑
f(xB)F (xB , N)|I(N)|

where |I(N)| is the pre-measure for Lebesgue measure in RN .

10 Stochastic Calculus In 1974 E.J. McShane [18] published a theory of stochastic
calculus which puts the stochastic integrals of Itô on a Riemann-type footing. What is
the idea behind this? We start with a process {Xt} (usually Brownian motion) whose
increments in the time interval s to s + ∆t can be denoted by ∆Xs = Xs+∆s − Xs. These
increments are associated with a probability measure in the underlying sample space Ω
whose pre-measure is given by (16) with c = −1. We are often concerned with a related
process whose increments have the form

∆Ys = h1(Xs)∆Xs + h2(Xs)∆s.(18)

The problem then is, how to define the process {Yt} itself. If we know, in some sense,
what the “increments” ∆Ys are, for each s, how do we determine what each of the random
variables Yt is? Following the Riemann-type argument of this article, as pioneered by
Henstock, we would, at this point, seek out the probability distribution function FYt(I)
where the intervals I are the cylindrical intervals I[N ] of RB. (This is how the problem is
approached in [21].) But what is the standard approach, as developed by Itô and others?

Formally,

Yt − Y0 =
∑
∆s

(h1(Xs)∆Xs + h2(Xs)∆s) or
∫ t

0

h1(Xs)dXs +
∫ t

0

h2(Xs)ds.

(Y0 can often be taken to be 0, deterministically, so the left hand term is Yt.) Mathematical
meaning was given by Itô to certain expressions of the form

∫ t

0
h1(Xs)dXs, by means of
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the theory of stochastic integrals. This theory makes it possible to investigate forms of
probability measures for {Yt} in Ω that are derived from the probabilities (16) but which
relate to the values assumed by {Yt}. E.J. McShane [18] provided a Riemann version of
the theory of stochastic integration, which has been substantially developed by P.Y. Lee,
T.S. Chew and others. See [1, 17].

Another contributor was T.W. Lee who, under Henstock’s supervision, wrote a Ph.D.
thesis entitled Integration Theorems for Product Division Spaces, 1970. This was a study
of the concepts, described above, that Henstock was developing in the areas of Wiener
and Feynman integration, and which he outlined in his 1967 book Linear Analysis [7]
prior to the more detailed study of [8]. T.W. Lee brought these ideas together with ideas
from R.H. Cameron, in what he called the G-integral and G*-integral. In 1976 T.W. Lee
published a paper [16] in which he relates stochastic integrals of the McShane type with
the G-integrals, producing a double integral involving both. In 1990, Henstock published a
further study [10] of these problems, in which he elaborates a version of Fubini’s Theorem
for the T.W. Lee scenario.

What is at issue in stochastic calculus is how to determine the “law” of a process or
motion XB described by equations such as (18). This means finding out the probabilities
which govern the values taken by the process XB = {Xt : t ∈ B}; thereby enabling us to
determine, for instance, the expected value of a random variable f(XB). The Itô calculus
uses stochastic integrals to provide us with a way of deducing such a “law”, or set of
probabilities, from the law of the underlying process XB = {Xt}. When XB is Brownian
motion, this underlying law FXB (I) is given by (16) with c = −1. The Itô calculus then
enables us to deduce from this the probabilities of a related process such as YB = expXB

defined by Yt = exp Xt or yt = exp xt for xt ∈ Xt, t ∈ B.
But when we step back a little, and view this subject from the Riemann standpoint

whose development by Henstock has been the subject of this article, we find a route to the
law of YB which is simpler and more direct than the route provided by the Itô calculus.
The Henstock method hinges on direct examination of the underlying law or pre-measure
FXB (I) of XB. The method is illustrated in [21] where the important case of derivative
price processes (or Black-Scholes theory) is elaborated using the Riemannian or Henstock
method. The key to this is that only pre-measures like (16), and not measures, are needed
to carry out the analysis by Riemann methods.

11 Conclusion This article has described how Henstock laid the foundations for a devel-
opment of a theory of probability and random variation on Riemann rather than Lebesgue
lines, providing an alternative to the Kolmogorov approach. We have indicated how the
Henstock approach enables us to bring Feynman’s theory of quantum mechanics within the
scope of random variation, where the Lebesgue approach failed. The theory of stochastic
processes can be treated as part of the theory of joint variation of two or more random vari-
ables. And we have pointed out how stochastic calculus can be simplified (in comparison
with the Itô calculus) by adopting Henstock’s approach, and without using Itô’s Lemma or
any other result of the standard stochastic calculus.

Though he is widely acclaimed for his achievements in other branches of mathematics,
the innovations of Henstock in the theory of random variation are equally profound.

References

[1] Chew Tuan Seng, Huang Zhiyuan, Wang Cai Shi, The non-uniform Riemann approach to
anticipating stochastic integrals, Stochastic Analysis and Applications 22(2), 429-442, 2005.

[2] R. Feynman, Space-time approach to non-relativistic quantum mechanics, Reviews of Modern
Physics 20, 367-387, 1948.



HENSTOCK ON RANDOM VARIATION 675

[3] Henstock Archive, University of Ulster.

[4] R. Henstock, Additivity and the Lebesgue limit theorems, 223-241, Proceedings of the
C. Caratheodory International Symposium, Greek Mathematical Society, Athens, 1974.

[5] R. Henstock, Theory of Integration, Butterworths, London, 1963.

[6] R. Henstock, Lectures on the Theory of Integration, World Scientific, Singapore 1988.

[7] R. Henstock, Linear Analysis, Butterworths, London, 1967.

[8] R. Henstock, Integration in product spaces, including Wiener and Feynman integration, Pro-
ceedings of the London Mathematical Society, 1973.

[9] R. Henstock, Division spaces, vector-valued functions and backwards martingales, Mathemat-
ical Proceedings of the Royal Irish Academy 80A(2), 217-233, 1980.

[10] R. Henstock, Stochastic and other functional integrals, Real Analysis Exchange 16, 1990-91,
460-470.

[11] R. Henstock, The General Theory of Integration, Clarendon Press, Oxford, 1991.

[12] R. Henstock, The integral over product spaces and Wiener formula, Real Analysis Exchange
17(1), 1991-92.

[13] R. Henstock, P. Muldowney, V.A. Skvortsov, Partitioning infinite-dimensional spaces for gen-
eralized Riemann integration, Bulletin of the London Mathematical Society 38, 795-803, 2006.

[14] B. Jessen, The theory of integration in a space of an infinite number of dimensions, Acta
Mathematica 63, 249-323, 1934.

[15] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitreichnung, Ergebnisse der Mathe-
matik, 1933 (Foundations of the Theory of Probability, Chelsea Publishing Company, New
York, 1950).

[16] T.W. Lee, On the generalized Riemann integral and stochastic integral, Journal of the Aus-
tralian Mathematial Society 21(A), 1976, 64-71.

[17] Lee Peng Yee, Xu Jiagu, Stochastic integrals of Itô and Henstock, Real Analysis Exchange
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