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Abstract. The study of hypernear-rings is extremely challenging, offering curiously
beautiful results to one who is willing to look for structure where symmetry is not
so abundant. The purpose of this paper is to present certain results arising from a
study of hypernear-rings. In particular, we define the notion of hyper R-subgroup of a
hypernear-ring and we investigate some properties of hypernear-rings with respect to
the hyper R-subgroups.

1 Introduction The theory of hypergroups has been introduced by Marty [7] in 1934
during the 8th Congress of the Scandinavian Mathematicians. Since the hypergroup is a
very general hyperstructure, several researchers endowed it with more stronger or less strong
axiom. As a result we are really dealing now with a big number of hypergroups. As an
example, we can mention the canonical hypergroup introduced by Mittas [8]. Polygroups
[3] or quasi canonical hypergroups [1] are a generalization of canonical hypergroups. In the
context of canonical hypergroup some mathematicians studied multi-valued systems whose
additive structure is just a quasi canonical hypergroup. For instance, in [4], Dasic has
introduced the notion of hypernear-ring in a particular case. Gontineac [6] called this zero
symmetric hypernear-ring and studied the concept of hypernear-rings in a general case. In
[5], Davvaz introduced the notion of an Hv-near ring generalizing the notion of a hypernear-
ring. The study of hypernear-rings is extremely challenging, offering curiously beautiful
results to one who is willing to look for structure where symmetry is not so abundant. In
this paper, we consider the definition of hypernear-rings according to the definition of Dasic
[4] and Gontineac [6]. We define the notion of hyper R-subgroup of a hypernear-ring and
we investigate some properties of hypernear-rings with respect to the hyper R-subgroups.

2 Preliminaries First we shall present the fundamental definitions.

Definition 2.1. Let H be a non-empty set. A hyperoperation ∗ on H is a mapping of
H × H into the family of non-empty subsets of H .

The concept of hyperstructures constitute a generalization of the well-known algebraic
structures (groups, rings, modules, near-rings and so on). A comprehensive review of the
theory of hyperstructures appears in [2] and [9]. This paper deals with hyperstructures
mainly with hypernear-rings. We recall the following definition from [4] and [6].

Definition 2.2. A hypernear-ring is an algebraic structure (R,+, ·) which satisfies the fol-
lowing axioms:

1) (R,+) is a quasi canonical hypergroup (not necessarily commutative), i.e., in (R,+)
the following hold:

a) x + (y + z) = (x + y) + z for all x, y, z ∈ R;
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b) There is 0 ∈ R such that x + 0 = 0 + x = x for all x ∈ R;

c) For every x ∈ R there exists one and only one x′ ∈ R such that 0 ∈ x + x′, (we shall
write −x for x′ and we call it the opposite of x);

d) z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

If x ∈ R and A,B are subsets of R, then by A + B, A + x and x + B we mean

A + B =
⋃

a ∈ A
b ∈ B

a + b, A + x = A + {x} , x + B = {x} + B.

2) With respect to the multiplication, (R, ·) is a semigroup having absorbing element 0,
i.e., x · 0 = 0 for all x ∈ R. But, in general, 0x �= 0 for some x ∈ R.

3) The multiplication is distributive with respect to the hyperoperation + on the left
side, i.e., x · (y + z) = x · y + x · z for all x, y, z ∈ R.

A hypernear-ring R is called zero symmetric if 0x = x0 = 0 for all x ∈ R.
Note that for all x, y ∈ R, we have −(−x) = x, 0 = −0,−(x + y) = −y − x and

x(−y) = −xy.

Example 2.3. [4]. Let (H,+) be a hypergroup and let M0(H) be a set of all mappings
f : H −→ H such that f(0) = 0. For all f, g ∈ M0(H) we define the hyperoperation f ⊕ g
of mappings as follows:

(f ⊕ g)(x) = {h ∈ M0(H) | ∀x ∈ H, h(x) ∈ f(x) + g(x)}

where + on the right side is the hyperoperation in (H,+). If h ∈ f⊕g, h(0) ∈ f(0)+g(0) = 0,
so h(0) = 0. Furtheremore (f ⊕ g)(x) = f(x) + g(x). A multiplication is a substitution of
mappings. Then (M0(H),⊕, ·) is a zero symmetric hypernear-ring

Definition 2.4. Let R be a hypernear-ring. A non-empty subset S of R is called a
subhypernear-ring if (S,+) is a subhypergroup of (R,+) and (S, ·) is a subsemigroup of
(R, ·).
3 Hyper R-subgroups of hypergroups We first consider the notion of hyper R-
subgroup of a hypernear-ring R.

Definition 3.1. A two-sided hyper R-subgroup of a hypernear-ring R is a subset H of R
such that

1) (H,+) is a subhypergroup of (R,+), i.e.,
1i) a, b ∈ H implies a + b ⊆ H ,
1ii) a ∈ H implies −a ∈ H ,

2) RH ⊆ H ,

3) HR ⊆ H .

If H satisfies (1) and (2), then it is called a left hyper R-subgroup of R. If H satisfies
(1) and (3), then it is called a right hyper R-subgroup of R.

Definition 3.2. Let (R,+, ·) be a hypernear-ring.

(i) The subset R0 = {x ∈ R | 0x = 0} of R is called a zero-symmetric part of R.
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(ii) The subset Rc = {x ∈ R | xy = y, ∀y ∈ R} is called constant part of R.

(iii) If R = R0 (resp. R = Rc), we say that R is a zero-symmetric (resp. constant)
hypernear-ring, respectively.

Example 3.3. Consider hypernear-ring R = {0, a, b, c} with addition and multiplication
tables below:

+ 0 a b c

0 {0} {a} {b} {c}
a {a} {0, a} {b} {c}
b {b} {b} {0, a, c} {b, c}
c {c} {c} {b, c} {0, a, b}

· 0 a b c

0 0 a b c
a 0 a b c
b 0 a b c
c 0 a b c

Since R = Rc, so R is a constant hypernear-ring.

Lemma 3.4. If 0y = y for each y in a hypernear-ring R, then R is a constant hypernear-
ring.

Proof. Take x ∈ R. Then xy = x(0y) = (x0)y = 0y = y.

Lemma 3.5. Let (R,+, ·) be a constant hypernear-ring. Then R is the only right hyper
R-subgroup of R.

Proof. Let (H,+) be a subhypergroup of (R,+). If HR ⊆ H, then we have 0R ⊆ H, and
so R ⊆ H since 0R = R. Thus R is the only right hyper R-subgroup of R.

Lemma 3.6. Let (R,+, ·) be a constant hypernear-ring. If (H,+) is a subhypergroup of
(R,+) then H is a left hyper R-subgroup of R.

Proof. Let (H,+) be a subhypergroup of (R,+). Since xy = y for all x, y ∈ R, we have
RH ⊆ H, and so H is a left hyper R-subgroup of R, for all subhypergroups

Proposition 3.7. Let R be a hypernear-ring. Then R0 is a zero symmetric subhypernear-
ring of R.

Proof. Let x, y ∈ R0 and z ∈ x + y, arbitrary. Then we have 0x = 0 and 0y = 0, and so
0z ∈ 0(x+y) = 0x+0y = 0+0 = 0. Hence we obtain z ∈ R0. This implies x+y ⊆ R0. From
x(−y) = −xy, we have 0(−x) = −(x0) = −0 = 0, for all x ∈ R0. This implies that −x ∈ R0.
Also, we have 0(xy) = (0x)y = 0y = 0, that is., R0R0 ⊂ R0. This implies R0R ⊂ R0. This
completes the proof.

Now let H be a subhypernear-ring of hypernear-ring R. Define the sets by

Bt := {0x | x ∈ H} and B := {0r | r ∈ R}.

Theorem 3.8. Let H be a subhypernear-ring of hypernear-ring R. Then we have

(i) Bt is a two-sided hyper H-subgroup of H,

(ii) Bt is a left hyper B-subgroup of B.
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Proof. (i) Let x, y ∈ Bt and z ∈ x + y. Then there exists s1, s2 ∈ H such that x = 0s1, y =
0s2. Hence we have z ∈ x + y = 0s1 + 0s2 = 0(s1 + s2) ⊆ Bt since s1 + s2 ⊆ H. This
implies that x + y ⊂ Bt. Next, let x ∈ Bt. Then there exists s ∈ H such that x = 0s. Hence
we have −x = −(0s) = 0(−s). This implies that −x ∈ Bt since −s ∈ H. Let a ∈ H and
b ∈ Bt. Then there exists x ∈ H such that b = 0x and ab = a(0x) = (a0)x = 0x ∈ H.
Therefore HBt ⊂ Bt. Similarly, Let a1 ∈ H and b1 ∈ Bt. Then there exists x1 ∈ H such
that b1 = 0x1. Hence b1a1 = (0x1)a1 = 0(x1a1). Since H is a subhypernear-ring, we obtain
x1a1 ∈ H for a1 and x1 ∈ H. Therefore b1a1 ∈ Bt. This implies that BtH ⊂ H. Hence Bt

is a two-sided hyper H-subgroup of H.
(ii) Let 0r, 0s ∈ B and z ∈ 0r + 0s. Then z ∈ 0r + 0s = 0(r + s) ⊆ B. Hence we

have z ∈ B. Also, we have 0r · 0s = 0s since (0r) · (0s) = ((0r)0)s = 0s. Therefore B is a
subhypernear-ring and from (i), (Bt, +) is a subhypergroup of (B,+). It remains to show
that BBt ⊂ Bt. Let a ∈ B and b ∈ Bt. Then there exists x ∈ H and r ∈ R such that
a = 0r, b = 0x. Thus ab = (0r) · (0x) = 0(r0)x = 0(0)x = 0x ∈ Bt. Therefore we have
BBt ⊂ Bt. This completes the proof.

Definition 3.9. A subhypergroup A ⊆ R is called normal if for all x ∈ R, we have x+A−
x ⊆ A.

Proposition 3.10. Let A is a normal subhypergroup of R. Then

(i) A + x = x + A for all a ∈ R,

(ii) (A + x) + (A + y) = A + x + y for all x, y ∈ R.

Proof. (i) Suppose that y ∈ A + x. Then there exists a ∈ A such that y ∈ a + x. Hence
y ∈ A + x = 0 + a + x ⊆ (x− x) + a + x = x + (−x + a + x) ⊆ x + A, and so A+ x ⊆ x + A.
Similarly x + A ⊆ A + x.

(ii) We have (A + x) + (A + y) = A + (x + A) + y = A + (A + x) + y = A + x + y.

Theorem 3.11. Let R be a hypernear-ring and H a subhypernear-ring. Then H = (R0 ∩
H) + Bt and (R0 ∩ H) ∩ Bt = {0}.
Proof. We have (R0 ∩ H) ∩ Bt ⊂ R0 ∩ B and R0 ∩ B = {0}. Thus (R0 ∩ H) ∩ Bt = {0}.
Finally, if a ∈ H, we have 0 ∈ 0a − 0a = 0a − (00)a = 0a − 0(0a) = 0(a − 0a). So there
exists y ∈ a− 0a such that 0 = 0y. Since a ∈ H , we have a− 0a ⊆ H , and so y ∈ H . From
y ∈ a − 0a, using condition (d) in Definition 2.2, we get a ∈ y + 0a. Since a ∈ H , then
0a ∈ Bt. Since 0 = 0y, then y ∈ R0. Therefore we have a ∈ (R0 ∩ H) + Bt.

Definition 3.12. For an element x of a hypernear-ring R, the (right) annihilator of x
is Ann(x) = {r ∈ R | xr = 0}. For a non-empty subset B of a hypernear-ring R, the
annihilator of B is Ann(B) = ∩{Ann(x) | x ∈ B}.
Proposition 3.13. For any element x of a zero symmetric hypernear-ring R, Ann(x) is a
right R-subgroup of R.

Proof. Certainly 0 ∈ Ann(x). If a, b ∈ Ann(x), then x(a + b) = xa + xb = 0, so for every
c ∈ a + b, we have xc = 0 which implies that a + b ⊆ Ann(x). Also, we have x(−a) =
−xa = −0 = 0 and so −a ∈ Ann(x). On the other hand, for r ∈ R and a ∈ Ann(x), we
have x(ar) = (xa)r = 0r = 0 so ar ∈ Ann(x) which yields Ann(x)R ⊆ Ann(x).

Proposition 3.14. If e is any element of a hypernear-ring R, then eR = {er | r ∈ R} is a
right hyper R-subgroup of R.
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Proof. It is straightforward.

Definition 3.15. An element e of a hypernear-ring R is an idempotent if e2 = e.

Lemma 3.16. For a hypernear-ring R, if e ∈ Rc then e2 = e, so e is an idempotent.

Proof. Since each element of a constant hypernear-ring is a left identity, it is also an idem-
potent.

Theorem 3.17. Let e be an idempotent element of a zero symmetric hypernear-ring R.
Then

(i) Ann(e) ∩ eR = {0}.
(ii) For all r ∈ R, there exists a unique element a ∈ Ann(e) and there exists a unique

element b ∈ eR such that r ∈ A + b.

Proof. (i) Let x ∈ Ann(e) ∩ eR. Then x = er for some r ∈ R. So

0 = ex = e(er) = (ee)r = er = x,

hence Ann(e) ∩ eR = {0}.
(ii) For r ∈ R, we have

0 ∈ er − er = er − e2r = er − e(er) = e(r − er).

So there exists y ∈ r − er such that 0 = ey. ¿From y ∈ r − er, using condition (d) in
Definition 2.2, we get r ∈ y + er. Since ey = 0, then y ∈ Ann(e). We put a = y and
b = er. Then x ∈ a + b. If we take another a′ ∈ Ann(e) and b′ ∈ eR with x ∈ a′ + b′, then
x ∈ (a + b) ∩ (a′ + b′). ¿From x ∈ a′ + b′, we get b′ ∈ −a′ + x, and so b′ ∈ −a′ + (a + b) =
(−a′+a)+b. Hence there exists y ∈ −a′+a such that b′ ∈ y+b, and so y ∈ b′−b. Therefore
(−a′ + a)∩ (b′ − b) �= ∅. Since −a′ + a ⊆ Ann(e) and b′ − b ⊆ eR and eR ∩Ann(e) = ∅, we
obtain −a′ + a = b′ − b = {0}. Therefore a = a′ and b = b′.

With hypernear-rings, as with other mathematical structure, we shall be interested in
mappings that preserve some or all of the properties of the hypernear-rings. One could
summarize a lot of research effort by saying that it is an investigation of properties that are
preserved relevant to the structure.

Definition 3.18. Let R and R′ be two hypernear-rings. Then the map f : R → R′ is
called a homomorphism if for all x, y ∈ R1,

(i) f(x + y) = f(x) + f(y),

(ii) f(x · y) = f(x) · f(y),

(iii) f(0) = 0.

If f is surjective, that is, one to one and onto, then f is an isomorphism.

Definition 3.19. If f is a homomorphism from R into R′, then the kernel of f is the set
kerf = {x ∈ R | f(x) = 0}.

It is easy to see that kerf is a left hyper R-subgroup of R, but in general is not normal
in R.
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Proposition 3.20. Let f : R → R′ be a homomorphism of hypernear-rings. Then the
following statements are true.

(1) If f is onto and M is a hyper R-subgroup of R, then f(M) is a hyper R′-subgroup of
R′.

(2) If N is a hyper R′-subgroup of R′, then f−1(N) is a hyper R-subgroup of R.

(3) f(R0) ⊆ R′
0.

(4) f(Rc) ⊆ R′
c.

(5) If f is an isomorphism, then so is f−1.

Proof. The proof is so easy that it will be omitted.

Definition 3.21. A normal subhypergroup A of the hypergroup (R,+) is

(i) a left hyperidel of R if x · a ∈ A for all x ∈ R and a ∈ A.

(ii) a right ideal of R if (x + A) · y − x · y ⊆ A for all x and y ∈ R.

(iii) a hyperideal of R if (x + A) · y − x · y ∪ z · A ⊆ A for all x, y and z ∈ R.

Theorem 3.22. Let (R,+, ·) be a hypernear-ring.

(i) If K is a left hyperideal of R and L is a left hyper R-subgroup of R, then L + K is a
left hyper R-subgroup of R.

(ii) If K is a right hyperideal of R and L is a right hyper R-subgroup of R, then L + K
is a right hyper R-subgroup of R.

Proof. In each case, L + K = K + L is a subhypergroup which is normal if L is normal.
(i) If RL ⊆ L and RK ⊆ K, then r(l + k) = rl + rk ⊆ L + K for all r ∈ R, l ∈ L and

k ∈ K. This completes the proof of (i).
(ii) Now assume that K is a right hyperideal and K is a right hyper R-subgroup. Let

r ∈ R, l ∈ L, k ∈ K. Then (l + k)r − lr ⊆ K as K is a right hyperideal of R. So for some
k1 ∈ K, we have

(l + k)r = k1 + lr ⊆ K + LR ⊆ K + L.

Hence L + K = K + L is a right hyper R-subgroup.

Lemma 3.23. Let R be a hypernear-ring, S a subhypernear-ring of R and H a left (resp.
right, two-sided) hyper R-subgroup of R. Then H ∩S is a left (resp. right, two-sided) hyper
R-subgroup of R.

Proof. The proof is so easy that it will be omitted.

Let H be a normal hyper R-subgroup of hypernear-ring R. If we define a relation

x ∼ y ( mod H) if and only if x − y ∩ H �= ∅
for all x, y ∈ H, then this relation is a congruence on H.

Let ρ(x) be the equivalence class of the element x ∈ H and define R/H as follows;

R/H = {ρ(x) | x ∈ H}.
Define the hyperoperation ⊕ and multiplication  on R/H by

ρ(a) ⊕ ρ(b) = {ρ(c) | c ∈ ρ(a) ⊕ ρ(b)} and ρ(a)  ρ(b) = ρ(a · b).
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Theorem 3.24. (R/H,⊕,) is a hypernear-ring, factor hypernear-ring.

Lemma 3.25. Let H be a normal hyper R-subgroup of R. Then ρ(x) = H + x.

Proof. Suppose that y ∈ H + x, then there exists a ∈ H such that y ∈ a + x, which implies
that a ∈ y − x and so (y − x) ∩ H �= ∅ or y ∈ ρ(x). Thus H + x ⊆ ρ(x). Similarly, we have
ρ(x) ⊆ H + x.

Theorem 3.26. (First isomorphism theorem). Let f be a homomorphism from R into
R′ with kernel K such that K is a normal hyper R-subgroup of R, then R/H ∼= Imf .

Proof. The proof is straightforward.

Theorem 3.27. Let R be a hypernear-ring and K a normal hyper R-subgroup of R. Then
the following statement are equivalent:

(i) K is the kernel of a hypernear-ring homomorphism.

(ii) (a + x)y − xy ⊆ K for all x, y ∈ R and all a ∈ K.

(iii) −xy + (a + x)y ⊆ K for all x, y ∈ R and all a ∈ K.

Proof. (i)−→(ii): Suppose that K is the kernel of a hypernear-ring homomorphism f . Then

f((a + x)y − xy) = (f(a) + f(x))f(y) − f(x)f(y) = 0

if x, y ∈ R and a ∈ K. Hence (a + x)y − xy ⊆ K.
(ii)−→(i): For the normal hyper R-subgroup K of R, there is the quotient R/K . We

consider the natural map π : R −→ R/K where π(x) = x+K. Clearly by Proposition 3.10,
we have π(x + y) = π(x) + π(y) and π(0) = 0. We show that π(xy) = π(x)π(y), that is,
K +xy = (K +x)(K + y) and to do this, we only need to show (K +x)(K + y) = K +xy is
well defined binary operation. We take K + x′ = K + x and K + y′ = K + y. So there are
a, b ∈ K such that x′ ∈ a+x and y′ ∈ b+y. Hence x′y′ ∈ (a+x)(b+y) = (a+x)b+(a+x)y.
Now x′y′ − xy ⊆ (a + x)b + [(a + x)y − xy] ⊆ K + K ⊆ K. This means K + x′y′ = K + xy,
which in turn means (K + x)(K + y) = K + xy is well defined.

(ii)−→(iii): For any a ∈ K and x, y ∈ R, we have

−xy + (a + x)y = −[−(a + x)y + xy] = −[(a + y)(−y) − x(−y)] ⊆ K

since by (ii) (a + y)(−y) − x(−y) ⊆ K.
(iii)−→(ii): The proof is similar to (ii)−→(iii).
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