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Abstract. In this paper, we shall prove some strong laws of large numbers(SLLN’s)
for weighted sums of set-valued random variables in the sense of Hausdorff metric dH

for which the basic space being Rademacher type p (1 ≤ p ≤ 2) Banach space. We
partially follow the results of classical SLLN’s for X-valued random variables in [2],
extending it to more general set-valued case.

1. Introduction As it is well known, the strong law of large numbers is essential theory in
probability, statistics and the related fields. In 1975, Artstein and Vitale used an embedding
theorem to prove a strong law of large numbers for independent and identically distributed
set-valued random variables whose basic space is a d-dimensional Euclidean space �

d in
[3], and Hiai extended it to the case that basic space is a separable Banach space X in [8].
Taylor and Inoue proved SLLN’s for only independent case in Banach space in [19]. Many
other authors such as Giné, Hahn and Zinn [6], Hess [7], Puri and Ralescu [17] discussed
SLLN’s under different settings for set-valued random variables where the underlying space
is a separable Banach space.

On the other hand, SLLN’s for weighted sums of random variables are important in
probability theory and often used in practice. Taylor [18] discussed different types of LLN’s
for weighted sums of random elements in normed linear spaces. In 1985, Taylor and Inoue
proved the SLLN for weighted sums of independent set-valued random variables in [19],
where the weights is a triangular array of constants. Since the growth behaviors of weights
will affect the convergence of sums, and the weights are not always a triangular array of
constants, it is necessary to discuss SLLN’s for more general weights. In general, additional
restrictions on the distributions or the Banach spaces are needed to obtain some results for
which the identical distribution is not assumed. In [2], Adler etc. proved this type of SLLN
for X-valued random variables.

In this paper, what we are concerned is strong laws of large numbers for weighted sums
of set-valued random variables in Racemacher type p Banach space. First we prove some
properties for the Rademacher type p of Kk(X), the space of all compact subsets of X. Then
we obtain SLLN’s for weighted sums of set-valued random variables in the sense of dH .

The organization of this paper is as follows. In section 2, we shall briefly introduce some
definitions of set-valued random variables and two Lemmas. In section 3, we shall prove
SLLN’s for weighted sums of set-valued random variables in the sense of dH .

2. Preliminaries on Set-Valued Random Variables Throughout this paper, we as-
sume that (Ω,A, P ) is a complete probability space, (X, ‖ · ‖) is a real separable Banach
space, K(X) is the family of all nonempty closed subsets of X, Kk(X) is the family of all
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nonempty compact subsets of X, and Kkc(X) is the family of all nonempty compact convex
subsets of X. If E is some metric space, let B(E) denote the Borel field of E.

Let A and B be two nonempty subsets of X and let λ ∈ R, the set of all real numbers.
We define addition and scalar multiplication by

A + B = {a + b : a ∈ A, b ∈ B},
λA = {λa : a ∈ A}.

The Hausdorff metric on Kk(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖}

for A, B ∈ Kk(X). For an A in Kk(X), let ‖A‖K = dH({0}, A).

The metric space (Kk(X), dH) is complete and separable, and Kkc(X) is a closed subset
of (Kk(X), dH) (cf. [14], Theorems 1.1.2 and 1.1.3).

A set-valued mapping F : Ω → Kk(X) is called set-valued random variable (or measur-
able) if, for each open subset O of X, F−1(O) = {ω ∈ Ω : F (ω) ∩ O �= ∅} ∈ A. Notice
that we usually define a set-valued random variable as F : Ω → K(X), but we focus on
Kk(X)-valued case in this paper.

For each set-valued random variable F , the expectation of F , denoted by E[F ], is defined
as

E[F ] =
{∫

Ω

fdP : f ∈ SF

}
,

where
∫
Ω fdP is the usual Bochner integral in L1[Ω, X], the family of integrable X-valued

random variables, and SF = {f ∈ L1[Ω, X] : f(ω) ∈ F (ω), a.e.}. This kind of integral is
also called the Aumann integral, as it was introduced by Aumann in [4].

Let A,B ∈ K(X). If there exists a W ∈ K(X) such that A = B + W then W is called
the Hukuhara difference of A and B, denoted by A � B. We have A � B + B = A.

Let A,B be nonempty subsets of X. If there exists x ∈ X such that x + B ⊂ A, then
A � B exists, and if A,B ∈ Kkc(X), we have

A � B = {x ∈ X : x + B ⊂ A}.
We call {Vn : n ≥ 1} is stochastically dominated by a set-valued random element V , if for
some constant D < ∞, such that for each n ≥ 1,

(2.1) P{‖Vn‖K > t} ≤ DP{‖DV ‖K > t}, t ≥ 0.

Of course, (2.1) is automatic with V = V1 and D = 1 if the {Vn : n ≥ 1} are identically
distributed set-valued random variables.

Now we will introduce an important definition and two Lemmas, which will be used
later.

Let {εi : i ≥ 1} are independent and identically distributed random variables with
P{ε1 = 1} = P{ε1 = −1} = 1/2, we usually call {εi} a Bernoulli sequence or a Rademacher
series.

Definition 1 Let {εi} be a Rademacher series, 1 ≤ p ≤ 2, X is called Rademacher type
p Banach space if there is a constant C such that for all finite sequences xi ∈ X,

E
[
‖

n∑
i=1

εixi‖p
]
≤ C

n∑
i=1

E[‖xi‖p].
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Hoffmann-Jorgensen and Pisier [10] proved that for 1 ≤ p ≤ 2 , a real separable Banach
space is of Rademacher type p Banach space iff there exists a constant 0 < C < ∞ such
that

E
[
‖

n∑
i=1

xi‖p
]
≤ C

n∑
i=1

E[‖xi‖p]

for every finite collection {x1, · · · , xn} of independent random elements with E[xi] = 0, E[‖xi‖p] <
∞, 1 ≤ i ≤ n.

We can easily extend Lemmas 2 and 3 in [2] to the case of set-valued random variables.
Lemma 1 Let {Vn : n ≥ 1} and V be set-valued random variables such that {Vn : n ≥ 1}

is stochastically dominated by V in the sense that (2.1) holds. Let {cn : n ≥ 1} be positive
constants such that

( max
1≤j≤n

cq
j)

∞∑
j=n

1
cq
j

= O(n) for some q > 0

and ∞∑
n=1

P{‖V ‖K > Dcn} < ∞.

Then for all 0 < M < ∞, we have

∞∑
j=1

1
cq
j

E
[
‖Vj‖q

KI{‖Vj‖K≤Mcj}
]

< ∞.

Lemma 2 Let V0 and V be set-valued random variables such that V0 is stochsatically
dominated by V in the sense that (2.1) holds. Then for x ≥ 0,

E[‖V0‖KI{‖V0‖K>x}] =
∫ ∞

x

P{‖V0‖K > t}dt + xP{‖V0‖K > x},

and
E[‖V0‖KI{‖V0‖K>x}] ≤ D2E[‖V ‖KI{‖DV ‖K>x}].

3. Main Results In order to get strong laws of large numbers for weighted sums of
set-valued random variables in Rademacher type p Banach space, we need to prove several
Lemmas. We note that, since we often deal with the constants in our proofs, we may use the
same symbol C(0 < C < ∞) to denote different constants in order to simplify the notation.

Lemma 3 If {Fi : i ≥ 1} is a sequence of independent compact set-valued random
variables with E[Fi] = {0}, then

(i) for any xi ∈ SFi , E[xi] = 0;
(ii) for any finite n, if xi ∈ SFi , i = 1, · · · , n, then x1, · · · , xn are independent.
Proof. (i) is obviously. (ii) It only needs to prove the case n = 2. Since X is sep-

arable and xi, i = 1, 2 are X-valued random variable, there exist measurable function
ϕi : (Kk(X),B(Kk(X))) → (X,B(X)) such that for each i = 1, 2, xi(ω) = ϕi(Fi(ω)) for every
ω ∈ Ω. Now we prove that x1, x2 are independent. Indeed, for any Borel set A,B ∈ B(X),

P{ϕ1(F1(ω)) ∈ A,ϕ2(F2(ω)) ∈ B} = P{F1(ω) ∈ ϕ−1
1 (A), F2(ω) ∈ ϕ−1

2 (B)}
= P{F1(ω) ∈ ϕ−1

1 (A)}P{F2(ω) ∈ ϕ−1
2 (B)}

= P{ϕ1(F1(ω)) ∈ A}P{ϕ2(F2(ω)) ∈ B}.



626 LI GUAN, SHOUMEI LI AND HIROSHI INOUE

Hence, x1, x2 are independent. �

Then we can have the following Lemma.
Lemma 4 If X is a Rademacher type p(1 < p ≤ 2) Banach space, {Fi : i ≥ 1} are

independent compact set-valued random variables with E[Fi] = {0}, E[‖Fi‖p
K] < ∞ for all

i ≥ 1, then there exists a constant C such that for all finite sequences Fi,

E
[∥∥∥

n∑
i=1

Fi

∥∥∥p

K

]
≤ C

n∑
i=1

E
[
‖Fi‖p

K

]
.

Proof. Since X is a Rademacher type p Banach space, there exists a constant C such
that for all finite independent sequences xi with E[xi] = 0, E[‖xi‖p] < ∞, 1 ≤ i ≤ n

(3.1) E
[∥∥∥

n∑
i=1

xi

∥∥∥p]
≤ C

n∑
i=1

E
[
‖xi‖p

]
,

thus

E
[∥∥∥

n∑
i=1

Fi

∥∥∥p

K

]
= E

[
sup

x∈
∑n

i=1
Fi

‖x‖
]p

= E
[
‖x0‖p

]
(there exists x0 =

n∑
i=1

x0i ∈
n∑

i=1

Fi, x0i ∈ Fi)

= E
[∥∥∥

n∑
i=1

x0i

∥∥∥p]

≤ C
n∑

i=1

E
[
‖x0i‖p

]
(by (3.1))

≤ C

n∑
i=1

E
[
‖Fi‖p

K

]
.

The result is proved. �

¿From Lemma 4, we obtain Kk(X) has Rademacher type p property in ‖ · ‖K sense.
Furthermore, if Fi � E[Fi] exist for all i ≥ 1, by Lemma 4, we can get

(3.2) E
[∣∣∣dH(

n∑
i=1

Fi,

n∑
i=1

E[Fi])
∣∣∣p] ≤ C

n∑
i=1

E‖Fi‖p
K.

Indeed,

E
[∣∣∣dH

( n∑
i=1

Fi,
n∑

i=1

E[Fi]
)∣∣∣p] = E

[∣∣∣dH

( n∑
i=1

((Fi � E[Fi]) + E[Fi]),
n∑

i=1

E[Fi]
)∣∣∣p]

= E
[∣∣∣dH

( n∑
i=1

(Fi � E[Fi]) +
n∑

i=1

E[Fi],
n∑

i=1

E[Fi]
)∣∣∣p]

≤ E
[∣∣∣dH

( n∑
i=1

(Fi � E[Fi]), {0}
)∣∣∣p]
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≤ C
n∑

i=1

E[‖Fi � E[Fi]‖p
K] (by Lemma 4)

≤ C

n∑
i=1

E[‖Fi‖p
K],

where the first inequality comes from the property dH(A + D, B + D) ≤ dH(A,B) for
A,B, D ∈ K(X), for this property readers may refer to [14].

Lemma 5 Let {An : n ≥ 1}, {Bn : n ≥ 1}, {Cn : n ≥ 1} be compact convex subsets
such that

An = Bn + Cn

and
dH(An, A) −→ 0, dH(Bn, A) −→ 0.

Then
dH(Cn, {0}) −→ 0.

Proof. Suppose that there exists C �= {0}, such that

dH(Cn, C) −→ 0.

Then

dH(An, A + C) = dH(Bn + Cn, A + C)
≤ dH(Bn, A) + dH(Cn, C) −→ 0.

Hence, we have

dH(A + C,A) ≤ dH(An, A + C) + dH(An, A) −→ 0.

This means A + C = A, i.e. C = {0}, which contracts with supposition. �

Now we prove the Kronecker Lemma for sets.
Lemma 6 (Kronecker Lemma) Let {Fn : n ≥ 1} be a sequence of compact convex

sets, {an : n ≥ 1} be real-valued sequence and 0 < an ↑ ∞,
n∑

i=1

Fi

ai
convergent to F in the

sense of dH , then

dH

( 1
an

n∑
i=1

Fi, {0}
)
−→ 0.

Proof. Let a0 = 0, define V1 = {0}, Vn =
n−1∑
i=1

Fi

ai
for n ≥ 2, V =

∞∑
i=1

Fi

ai
, then

lim
n→∞ dH(Vn, V ) = 0,

furthermore, for any ε > 0, there exists n0, such that dH(Vn, V ) < ε for any n ≥ n0.
Now we prove

(3.3) Vn+1 =
1
an

n∑
i=1

(ai − ai−1)Vi +
1
an

n∑
i=1

Fi.
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Indeed,

1
an

n∑
i=1

(ai − ai−1)Vi +
1
an

n∑
i=1

Fi

=
1
an

n∑
i=1

(
(ai − ai−1)

i−1∑
j=1

Fj

aj

)
+

1
an

n∑
i=1

Fi

=
1
an

n∑
i=1

i−1∑
j=1

(
(ai − ai−1)

Fj

aj

)
+

1
an

n∑
i=1

Fi

=
1
an

n∑
j=1

n∑
i=j+1

(
(ai − ai−1)

Fj

aj

)
+

1
an

n∑
i=1

Fi

=
1
an

n∑
j=1

Fj

aj

n∑
i=j+1

(ai − ai−1) +
1
an

n∑
i=1

Fi

=
1
an

n∑
j=1

Fj

aj
(an − aj) +

1
an

n∑
i=1

Fi

=
1
an

n∑
i=1

an

ai
Fi

= Vn+1.

We also have

dH

( 1
an

n∑
i=1

(ai − ai−1)Vi, V
)

= dH

( 1
an

n∑
i=1

(ai − ai−1)Vi,
1
an

n∑
i=1

(ai − ai−1)V
)

≤ 1
an

n∑
i=1

(ai − ai−1)dH(Vi, V )

≤ 1
an

n0∑
i=1

(ai − ai−1)dH(Vi, V ) +
an + an0−1

an
ε.

That means

dH

( 1
an

n∑
i=1

(ai − ai−1)Vi, V
)
−→ 0.

This with (3.3) and Lemma 5 implies

dH

( 1
an

n∑
i=1

Fi, {0}
)
−→ 0.

The result is proved. �

The following lemma plays an important role to obtain the main results.
Lemma 7 Let {Vn : n ≥ 1} be independent Kkc(X)-valued random variables in a real

separable Rademacher type p(1 < p ≤ 2) Banach space X. Assume that {Vn : n ≥ 1} is
stochastically dominated by a set-valued random variable V in the sense that (2.1) holds,
and Vi �E[Vi] exist for all i ≥ 1. Let {an : n ≥ 1} and {bn : n ≥ 1} be constants satisfying
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0 < bn ↑ ∞ and

(3.4)
(

max
1≤j≤n

bp
j

|aj |p
) ∞∑

j=n

|aj |p
bp
j

= O(n).

If

(3.5)
∞∑

n=1

P{‖anV ‖K > Dbn} < ∞,

then

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[VjI{‖Vj‖K≤D2cj}]
)
−→ 0, a.e.

Proof. Let cn = bn

|an| , Yn = VnI{‖Vn‖K≤D2cn}. Then for n ≥ 1,

sup
m>n

E
[∣∣∣dH

( m∑
j=1

aj

bj
Yj ,

m∑
j=1

aj

bj
E[Yj ]

)
− dH

( n∑
j=1

aj

bj
Yj ,

n∑
j=1

aj

bj
E[Yj ]

)∣∣∣p]

≤ sup
m>n

E
[∣∣∣dH

( m∑
j=n+1

aj

bj
Yj ,

m∑
j=n+1

aj

bj
E[Yj ]

)∣∣∣p]

≤ sup
m>n

C

m∑
j=n+1

E[‖Yj‖p
K]

cp
j

(by (3.2))

−→ 0 (by Lemma 1),

thus there exists S such that

E
[∣∣∣dH

( n∑
j=1

aj

bj
Yj ,

n∑
j=1

aj

bj
E[Yj ]

)
− S

∣∣∣p] −→ 0,

then

dH

( n∑
j=1

aj

bj
Yj ,

n∑
j=1

aj

bj
E[Yj ]

)
P−→ S.

Since Kkc(X) can be embedded as a closed cone in a real separable Banach space, Yi can
be considered to be an element of this Banach space. On the other hand, convergence in
probability and almost every convergence are equivalent for sums of independent random
elements (see Itô and Nisio[11]), so we have

dH

( n∑
j=1

aj

bj
Yj ,

n∑
j=1

aj

bj
E[Yj ]

)
−→ S, a.e..

Then by Kronecher Lemma(Lemma 6) we have

(3.6) dH

( 1
bn

n∑
j=1

ajYj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..



630 LI GUAN, SHOUMEI LI AND HIROSHI INOUE

Since (2.1) and (3.5) ensure that

∞∑
n=1

P{Vn �= Yn} =
∞∑

n=1

P{‖Vn‖K > D2cn}

≤ D

∞∑
n=1

P{‖V ‖K > Dcn}

< ∞,

by the Borel-Cantelli Lemma we have P{lim inf
n→∞ {Vn = Yn}} = 1, then P{ lim

n→∞{Vn = Yn}} =

1, so lim
n→∞ dH(Vn, Yn) = 0, a.e.. Then combining with triangular inequality and (3.6), we

have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

≤ dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajYj

)
+ dH

( 1
bn

n∑
j=1

ajYj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

The result is proved. �

Theorem 1 Let {Vn : n ≥ 1} be independent Kkc(X)-valued random variables in a
real separable, Rademacher type p(1 < p ≤ 2) Banach space. Assume that {Vn : n ≥ 1}
is stochastically dominated by set-valued random variable V in the sense that (2.1) holds,
and Vi �E[Vi] exist for all i ≥ 1. Let {an : n ≥ 1} and {bn : n ≥ 1} be constants satisfying
0 < bn ↑ ∞, bn

an
↑,

(3.7)
bp
n

|an|p
∞∑

j=n

|aj |p
bp
j

= O(n)

and

(3.8)
bn

|an|
n∑

j=1

|aj |
bj

= O(n).

If (3.5) is satisfied, then we obtain the SLLN

dH

( 1
bn

∞∑
j=1

ajVj ,
1
bn

∞∑
j=1

ajE[Vj ]
)
−→ 0, a.e..

Proof. Let cn = bn

|an| , Yn = VnI{‖Vn‖K≤D2cn}. Note that (3.8) ensures that cn ≤
Cn, n ≥ 1, and so for all j ≥ 1, by (2.1) and (3.5).

∞∑
n=1

P{‖Vj‖K > CD2n} ≤ D

∞∑
n=1

P{‖V ‖K > CDn}

≤ D
∞∑

n=1

P{‖V ‖K > Dcn}

< ∞.
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By Borel-Cantelli Lemma, we have P{‖Vj‖K > CD2n i.o.} = 0, then P{lim sup
n→∞

‖Vj‖K >

CD2n} = 0. Thus ‖Vj‖K is bounded a.e., which means E‖Vj‖K < ∞.
Since the conditions of Lemma 7 are all satisfied, we have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

Hence it only needs to prove that

dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Vj ]
)
−→ 0, a.e..

Indeed,

dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Vj ]
)

≤ 1
bn

n∑
j=1

dH

(
ajE[Yj ], ajE[Vj ]

)

=
1
bn

n∑
j=1

dH

(
ajE[Yj ], ajE[Yj ] + ajE[VjI{‖Vj‖K>D2cj}]

)

≤ 1
bn

n∑
j=1

dH

(
{0}, ajE[VjI{‖Vj‖K>D2cj}]

)

=
1
bn

n∑
j=1

|aj |‖E[VjI{‖Vj‖K>D2cj}]‖K

and
∞∑

n=1

1
cn

E[‖Vn‖KI{‖Vn‖K>D2cn}] ≤ D2
∞∑

n=1

1
cn

E[‖V ‖KI{‖V ‖K>Dcn}] (by Lemma 2)

= D2
∞∑

n=1

1
cn

∞∑
j=n

E[‖V ‖KI{Dcj<‖V ‖K≤Dcj+1}]

≤ D2
∞∑

j=1

E[‖V ‖KI{Dcj<‖V ‖K≤Dcj+1}]
j+1∑
n=1

1
cn

≤ D3
∞∑

j=1

cj+1P{Dcj < ‖V ‖K ≤ Dcj+1}C(j + 1)
cj+1

(by (3.8))

= D3C
∞∑

j=1

P{Dcj < ‖V ‖K ≤ Dcj+1}(j + 1)

≤ C

∞∑
j=1

jP{Dcj < ‖V ‖K ≤ Dcj+1} (by j + 1 ≤ 2j)

= C
∞∑

j=1

j∑
n=1

P{Dcj < ‖V ‖K ≤ Dcj+1}

= C
∞∑

n=1

∞∑
j=n

P{Dcj < ‖V ‖K ≤ Dcj+1}
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= C
∞∑

n=1

P{‖V ‖K > Dcn} < ∞, (by (3.5))

then by Kronecker Lemma we have

1
bn

n∑
j=1

|aj |E[‖Vj‖KI{‖Vj‖K>D2cj}] −→ 0.

Then we have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)
−→ 0, a.e..

The result is proved. �

Now we shall introduce the definition of Toeplitz sequence.
Definition 2 A double array {ank : n, k = 1, 2, · · ·} of real numbers is said to be a

Toeplitz sequence, if
(i) lim

n→∞ ank = 0 for each k,

(ii)
∞∑

k=1

|ank| ≤ C(constant) for each n.

For example, the following Toeplitz sequence

ank =
{

1
n k = 1, · · · , n
0 k > n

is the most simple one and often used. The following lemma is about Toeplitz sequence, we
call it Toeplitz Lemma which will be used later.

Lemma 8(Toeplitz Lemma)(cf.[15]) Let {ank : n, k = 1, 2, · · ·} be a Toeplitz sequence
and {xn : n ≥ 1} be a sequence of real-valued random variables,

(i) If xn → 0, then
n∑

k=1

ankxk → 0;

(ii) If xn → x and
n∑

k=1

ank → 1, then
n∑

k=1

ankxk → x.

Theorem 2 Let {Vn : n ≥ 1} be independent Kkc(X)-valued random variables in a
real separable Rademacher type p(1 < p ≤ 2) Banach space. Suppose that {Vn : n ≥ 1} is
stochastically dominated by a set-valued random variable V in the sense that (2.1) holds,
and suppose that E[‖V ‖K] < ∞, Vi � E[Vi] exist for all i ≥ 1. Let {an : n ≥ 1} and
{bn : n ≥ 1} be constants satisfying 0 < bn ↑ ∞, (3.4) and

(3.9)
n∑

j=1

|aj | = O(bn).

If the series of (3.5) converges, then the SLLN is obtained

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)
−→ 0, a.e.

Proof. Let cn = bn

|an| , Yn = VnI{‖Vn‖K≤D2cn}. Since the conditions of Lemma 7 are all
satisfied, we have
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dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

So it only needs to prove that

dH

( 1
bn

n∑
j=1

ajE[Vj ],
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e.

By (3.4) we can have that cn → ∞. By Lemma 2, E[‖V ‖K] < ∞ and the dominated
convergence theorem we have

‖E[VnI{‖Vn‖K>D2cn}]‖K ≤ E[‖Vn‖KI{‖Vn‖K>D2cn}]

≤ D2E[‖V ‖KI{‖V ‖K>Dcn}]
→ 0 (n → ∞)

Let cnj = aj

bn
, then for each j, cnj → 0 as (n → ∞). (3.9) means that

n∑
j=1

cnj =
n∑

j=1

|aj|
bn

=

O(1), then there exists a constant C such that

∞∑
j=1

cnj =
∞∑

j=1

|aj|
bn

≤ C.

Thus {cnj : n, j = 1, 2, · · ·} is a Teoplitz sequence. By Toeplitz Lemma we have

1
bn

∥∥∥
n∑

j=1

ajE[VjI{‖Vj‖K>D2cj}]
∥∥∥
K

≤ 1
bn

n∑
j=1

|aj |
∥∥∥E[VjI{‖Vj‖K>D2cj}]

∥∥∥
K

−→ 0 (n → ∞).

Then we have

dH

( 1
bn

n∑
j=1

ajE[Vj ],
1
bn

n∑
j=1

ajE[Yj ]
)

= dH

( 1
bn

n∑
j=1

ajE[Yj ] +
1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>D2cj}],
1
bn

n∑
j=1

ajE[Yj ]
)

≤ dH

( 1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>D2cj}], {0}
)

=
1
bn

∥∥∥
n∑

j=1

ajE[VjI{‖Vj‖K>D2cj}
∥∥∥
K

−→ 0, (n → ∞).

The result is proved. �

Theorem 3 Let {Vn : n ≥ 1} be independent Kkc(X)-valued random variables in a
real separable Rademacher type p(1 < p ≤ 2) Banach space. Suppose that Vi � E[Vi] exist
for all i ≥ 1 and

(3.10) sup
n≥1

E[‖Vn‖p
K] < ∞.



634 LI GUAN, SHOUMEI LI AND HIROSHI INOUE

Let {an : n ≥ 1} and {bn : n ≥ 1} be constants such that 0 < bn ↑ ∞ and

(3.11)
an

bn
= O(n−1/p(log n)−1/q) for some 0 < q < p.

Then the SLLN

(3.12) dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)
−→ 0, a.e..

Proof. Let cn = bn

|an| , Yn = VnI{‖Vn‖K≤cn}. Then we have

∞∑
n=1

E[‖Yn‖p
K]

cp
n

≤
∞∑

n=1

E[‖Vn‖p
K]

cp
n

≤
∞∑

n=1

C
1
cp
n

(by (3.10))

≤ C
1
cp
1

+ C
∞∑

n=2

1
n(log n)p/q

(by 3.11)

< ∞,

which implies (see the proof of Lemma 7)

(3.13) dH

( 1
bn

n∑
j=1

ajYj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

Since
∞∑

n=1

P{Vn �= Yn} =
∞∑

n=1

P{‖Vn‖K > cn}

≤
∞∑

n=1

E[‖Vn‖p
K]

cp
n

(by Markov inequality)

< ∞,

by the Borel-Cantellia Lemma we have

P{lim inf
n→∞ {Vn = Yn}} = 1,

Combine the above equality with (3.13), we can get

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

Next,

dH

( ∞∑
n=1

1
cn

E[VnI{‖Vn‖K>cn}], {0}
)

=
∥∥∥

∞∑
n=1

1
cn

E[VnI{‖Vn‖K>cn}]
∥∥∥
K
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≤
∞∑

n=1

1
cn

E[‖Vn‖KI{‖Vn‖K>cn}]

=
∞∑

n=1

P{‖Vn‖K > cn} +
∞∑

n=1

1
cn

∫ ∞

cn

P{‖Vn‖K > t}dt (by Lemma 2)

≤
∞∑

n=1

P{Vn �= Yn} +
∞∑

n=1

1
cn

∫ ∞

cn

E[‖Vn‖p
K]

tp
dt (by Markov inequality)

≤ C + C
∞∑

n=1

1
cn

∫ ∞

cn

1
tp

dt

≤ C + C

∞∑
n=1

1
cp
n

< ∞,

and so by the Kronecker Lemma

dH

( 1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>cj}], {0}
)
−→ 0.

Then we have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)

≤ dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+ dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Vj ]
)

= dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Yj ] +
1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>cj}]
)

≤ dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+ dH

(
{0}, 1

bn

n∑
j=1

ajE[VjI{‖Vj‖K>cj}]
)

−→ 0, a.e..

The result is proved. �

We can easily extend Lemma 1 in [1] to the case of set-valued random variables.
Lemma 9 Let V0 and V be set-valued random variables such that V0 is stochastically

dominated by V in the sense that there exists a constant D < ∞ such that

P{‖V0‖K > t} ≤ DP{‖DV ‖K > t}, t ≥ 0.

Then for all p > 0,

E[‖V0‖p
KI{‖V0‖K≤t}] ≤ DtpP{‖DV ‖K > t} + Dp+1E[‖V ‖p

KI{‖DV ‖K≤t}], t ≥ 0.
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Then we can have the following theorem.
Theorem 4 Let {Vn : n ≥ 1} be independent Kkc(X)-valued random variables in a real

separable, Rademacher type p(1 < p ≤ 2) Banach space. Suppose that {Vn : n ≥ 1} is
stochastically dominated by a set-valued random variable V in the sense that (2.1) holds,
and suppose that E[‖V ‖p

K] < ∞ for some 1 ≤ q < p, Vi � E[Vi] exist for i ≥ 1. Let
{an : n ≥ 1} and {bn : n ≥ 1} be constants satisfying 0 < bn ↑ ∞, (3.9) and

(3.14)
an

bn
= O(n−1/q).

Then we have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)
−→ 0, a.e..

Proof. Let cn = bn/|an|, Yn = VnI{‖Vn‖K≤n1/q}. Now

∞∑
n=1

E[‖Yn‖p
K]

cp
n

≤ D

∞∑
n=1

np/q

cp
n

P
{
‖DV ‖K > n

1
q

}

+Dp+1
∞∑

n=1

1
cp
n
E

[
‖V ‖p

KI{‖DV ‖K≤n1/q}
]

(by Lemma 9)

≤ C + C

∞∑
n=1

n−p/q
n∑

k=1

E[‖V ‖p
K]I{(k−1)1/q<‖DV ‖K≤k−1/q}

(by (3.14) and E‖V ‖p
K < ∞)

= C + C

∞∑
k=1

E‖V ‖p
KI{(k−1)1/q<‖DV ‖K≤k−1/q}

∞∑
n=k

n−p/q

≤ C + C

∞∑
k=1

E
[
‖V ‖p

KI{(k−1)1/q<‖DV ‖K≤k−1/q}
]

= C + CE[‖V ‖p
K] < ∞.

The above inequality means (see the proof of Lemma 7)

(3.15) dH

( 1
bn

n∑
j=1

ajYj ,
1
bn

n∑
j=1

E[Yj ]
)
−→ 0, a.e..

Now by (2.1) and E[‖V ‖p
K] < ∞ and Markov inequality, we have

∞∑
n=1

P{Vn �= Yn} =
∞∑

n=1

P{‖Vn‖K > n1/q}

≤ D

∞∑
n=1

P{‖‖K > n1/q}

≤ D
∞∑

n=1

E[‖DV ‖p
K]

np/q

< ∞,

so by the Borel-Cantellia Lemma we have

P{lim inf
n→∞ [Vn = Yn]} = 1,
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which combine with (3.15) can get

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)
−→ 0, a.e..

Next, by Lemma 2, E[‖V ‖K] < ∞ and the dominated convergence theorem, we have

E
[
‖Vn‖KI{‖Vn‖K>n1/q}

]
≤ D2E

[
‖V ‖KI{‖DV ‖K>n1/q}

]
−→ 0 (n → ∞).

0 < bn ↑ ∞ and (3.9) means that { aj

bn
: j, n ≥ 1} is a Toeplitz sequence, by Toeplitz Lemma

we can get

dH

( 1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>j1/q}], {0}
)

=
1
bn

∥∥∥
n∑

j=1

ajE[VjI{‖Vj‖K>j1/q}]
∥∥∥
K

≤ 1
bn

n∑
j=1

|aj |E
[
‖Vj‖KI{‖Vj‖K>j1/q}

]

−→ 0

Then we have

dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Vj ]
)

≤ dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+ dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Vj ]
)

= dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+ dH

( 1
bn

n∑
j=1

ajE[Yj ],
1
bn

n∑
j=1

ajE[Yj ]

+
1
bn

n∑
j=1

ajE[VjI{‖Vj‖K>j1/q}]
)

≤ dH

( 1
bn

n∑
j=1

ajVj ,
1
bn

n∑
j=1

ajE[Yj ]
)

+ dH

(
{0}, 1

bn

n∑
j=1

ajE[VjI{‖Vj‖K>j1/q}]
)

−→ 0, a.e..

The result is proved. �
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