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ABSTRACT. Let T'= U|T| be the polar decomposition of a bounded linear operator on
a complex Hilbert space H. T is called a class A operator if |T|* < |T?|. Recently, M.
Cho and T. Yamazaki found an interesting operator transform from a class A operator
T to a hyponormal operator T. In this paper we obtain a more suitable form for T , and
prove Putnam’s inequality for a class A operator, i.e., || |72 — |T)? || < || |T(1,1)] —
|T(1,1)*| || < 2meas (o(T)) where T(1,1) = |T|U|T| denotes the generalized Aluthge
transform. Also, we study related results.

1 Introduction Let H be a complex Hilbert space and B(H) be the algebra of all
bounded linear operators on H. Let T' = U|T| be the polar decomposition of ' € B(H). In
this paper, we consider following classes of operators.

1) p-hyponormal : (TT*)? < (T*T)P, where p > 0.

2) class A : |T|? < |T?.

3) class A(s,t) « |T*|2t < (|T*|Y|T|2|T*[t) =, where s,t > 0.

4) paranormal : ||Tx||? < || T?z]|||z| for = € H.

(5) normaloid : ||T|| = r(T) (spectral radius of T).

For p =1 and p = 1/2, p-hyponormal operator turns out to be hyponormal and semihy-
ponormal, respectively. It is well known that every p-hyponormal operator is a class A(s,t)
operator for any 0 < s,t, a class A(s,t) operator is class A(s',¢') if s < §/,t < t/, the class A
coincides with A(1,1) and a class A operator is paranormal. (see ([5], [6], [7], [8], [9], [12].)

The well known operator transform T = |T'|'/2U|T|'/? introduced by A. Aluthge [1] is
now known as the Aluthge transform in the literature. A further extension of T' called the
generalized Aluthge transform is defined as T'(s,t) = |T|*U|T|*. (We remark class A(s,t)
can be definded as |T'|? < |T'(s,t) e .) These transforms have wide variety of applications
for p-hyponormal operators as well as the detailed investigation of several classes of non-
hyponormal operators. On the other hand M. Cho and T. Yamazaki [3] revealed some
spectral properties of class A operators with the help of the new operator transform as
follows:

DEFINITION. Let T'=U|T| and |T|[T*| = W [T'||T*| | be the polar decompositions
of T and |T||T*|. The operator transform T of T is defined as T = WU|T?|'/2.

(
(
(
(

This transform 7’ may seem complicated, but it is very interesting. By using this trans-
form, M. Cho and T. Yamazaki [3] proved that a class A operator has Bishop’s property
(8), and also proved the following.

Theorem A [3]. Let T be a class A operator. Then the following assertions hold.
(i) T' is hyponormal.
(ii) o(T) = o(T).
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(iii) For p € C and a sequence {z,} of unit vectors,

(T — pwa, — 0= (T — p)z, — 0.

In Section 2 we prove this transform has a close relation to the generalized Aluthge
transform T'(1,1) = |T|U|T| and we obtain a more suitable form for 7. Also we consider
the normality condition on T.

Putnam’s inequality [13] is famous in operator theory. It means that if T is hyponormal,
ie., T*T —TT* >0, then

1
|IT*T — TT*|| < —meas (o(T)).
T

This inequality was extended for p-hyponormal operators by M. Chd and M. Itoh [2], and
for log-hyponormal operator by Tanahashi [14]. In Section 3 we prove Putnam’s inequality
for class A operator T, i.e.,

T2 = TP | < || 17,1 = 7,17 ] < %meas (o(T))

where T'(1,1) = |T|U|T| denotes the generalized Aluthge transform. Also, we prove Put-
nam’s inequality for class A(s,t) operators for 0 < s,¢ < 1.

Section 4 is mainly concerned with the polar decomposition of the product of two opera-
tors. M. Tto, T. Yamazaki and M. Yanagida [10] proved an interesting polar decomposition
of the product of two operators and obtained characterizations of binormal operator T (i.e.,
|T'| commutes with |[T]). In this section, we rewrite the polar decomposition of the product
of two operators and prove related results.

2 Normality First we make a simple formula of the operator transform defined by M.
Cho and T. Yamazaki [3]. Let T € B(H) and [ran T'] be the closure of the range of T.

Theorem 2.1. Let T = U|T| and T'(1,1) = |T|U|T| = V[T (1,1)| be the polar decomposi-
tions of T and T'(1,1). Then T has the polar decomposition given by T = V|T'(1,1)[*/2.

Proof. As noted in (2.5) of [3],
T|T(1,1)|"Y? = T|T*V? = |T|T = |T\U|T| = V|T(1,1)].

Then Ty = V|T(1,1)|'/2y for y € [ran |T(1,1)[*/?]. On the other hand, Tz =WU|T(1,1)'/ %
=0 and V|T(1,1)['/?x = 0 for « € ker |T(1,1)|*/2. This implies 7' = V/|T'(1,1)|/? and

ker T’ = ker |T'(1,1)|*/? = ker |T(1,1)| = ker V.
This completes the proof. O

In [11], the first author established that a p-hyponormal operator is normal if its Aluthge
transform is normal. Various extensions of this result can be found in [14], [15]; among the
recent ones, we quote the following from [12].

Theorem B [12]. Let T be a class A(s,t) operator. Then the following assertions hold.
(i) T is quasinormal <= T'(s,t) is quasinormal.

(ii) T is normal <= T'(s,t) is normal.

We consider the analogous situations for T.
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Theorem 2.2. Let T be a class A operator. Then the following assertions hold.
(i) T is quasinormal <= T is quasinormal.
(i) T is normal <= T is normal.
Proof. (i) (=) Let T be quasinormal. Then T(1,1) = |T|U|T| = U|T|?. Hence T =
VIT(QL, DV =UIT| =
(<) Let T = V|T(1, 1)|'/2 be quasinormal. Then V commutes with |T°(1,1)[*/2.
Hence V commutes with |T(1,1)| and this implies T'(1,1) is quasinormal. Thus T is quasi-
normal by Theorem B.
(ii) (=) (i) implies T = T'.
(<=) T is quasinormal by (i). Since 7" is normal,

T, D[ =VITA DV = [T, 1)

T'(1,1) is quasinormal by Theorem A and ker 7'(1,1) = ker T'(1,1)*. Hence T'(1, 1) is normal
and this implies T' is normal by Theorem B. [l

We know that an operator 7' is quasinormal if and only if T = T. This prompts the
corresponding result for 7.

Theorem 2.3. T =1 if and only if T is quasinormal.

Proof. (<=) T =T by Theorem 2.2.
(=) By the assumption, V|T'(1,1)|'/2 = U|T|. Then the uniqueness of the polar
decomposition shows that V = U and |T'(1,1)|*/? = |T|. Since

ITIVIT(1, D2 = |T|U|IT| = VIT(L,1)],

we have |T|Vy = V|T(1,1)|"/?y for y € [ran |T(1,1)|'/?]. On the otherhand |T|Vz = 0 and
V|T(1,1)]*22 = 0 for z € ker |T(1,1)|'/? = ker V. Hence |T|V = V|T(1,1)|'/?2 =V|T|. O

M. Fujii, S. Izumino and R. Nakamoto [4] showed the following characterization of
normaloid operators via the Aluthge transform T = |T|'/2U|T|'/? as follows:

_ Theorem C [4]. An operator T is normaloid if and only if T is normaloid and ||T'|| =
I7°]-

The following theorem shows that analogus result holds for T.
Theorem 2.4. An operator T is normaloid if and only if T is normaloid and ||T|| = ||T.

Proof. Suppose T is normaloid. Let T = U|T| and T(1,1) = |T|U|T| = V| |T|U|T| |
be the polar decompositions of 7" and 7T'(1,1). Then |T| = r for some re?® € o(T).
Select a sequence {z,} of unit vectors such that (|7 — r)xn — 0 and (U — ")z, —
0. Then (U — ez, — 0. Hence (T(1,1) — 7‘2619) = (|T|U|T| — r?e")x, — 0 and
(T(1,1)* — r?e~¥)z, — 0, and so (|T(1,1)| — r*)z,, — 0 and (V — ¢e%)z,, — 0. Hence
rei® € o(T). In particular, |T|| < #(T) < ||T]. Since

. 1
IT) = IVIT@ D2 < | IO =)
< T =171,
it follows that r(T) = ||T|| = ||T|.

Now assume the converse. Choose ¢ € o(T") such that r = | T = || T Then there
exists a sequence {x,, } of unit vectors for Wthh (7@, D)2 =r)2, — 0and (V—e?)z, — 0.
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This clearly implies (T(1,1) — r2¢®)x,, — 0. Therefore r2¢?? € o(U|T|?) and hence 72 <
|U|T|?|| < |IT))> = ||IT)|* = #2. This shows that U|T|? is normaloid. Choose a sequence
{yn} of unit vectors such that (U — )y, — 0 and (|T|?> — r?)y, — 0. Consequently
(T —re)y,, — 0 and so re’’ € o(T). Since ||T|| = r, we conclude that 7" is normaloid. O

Theorem 2.5. Let T be a class A(s,t) operator with ker T C ker T™*. IfT is mormal, then
soisT.

Proof. Assume s > t. The normality of 7" implies that | |T|U|T| | commutes with V
and ker V' = ker V*. Since |T|\U|T| = V| |T|U|T| |, it is clear that |T|U|T| is normal or
\T|U*|T|2U|T| = |T|U|T2U*|T|. Then UU*|T|2UU* = U?|T|2U*? and hence U*|T|2U =
U*U?|T|?U*2U. Since kerU = ker T C ker T* = ker U*, we have [ran UU*] C [ran U*U].
Hence U*UUU* = UU*, and so U*U? = U. Therefore

(2.1) U*|T|?U = U|T|*U*.

If U*z = 0, then (2.1) gives |T|Uz = 0 and U?z = 0. Hence Uz € kerU C ker U*. This
implies U*Uzx = and so Uz = 0. Thus we see kerU = ker U*. Hence U is normal. This
fact along with (2.1) shows that U*|T|?*U = U|T|**U* and therefore T(s,s) = |T|*U|T|*
is normal. Since s > ¢, T is a class A(s, s) operator. Now the normality of T follows from
Theorem B. O

Theorem 2.6. Let T be a class A(s,t) operator. If T is selfadjoint, then so is T.

Proof. Assume s > t. Then T is both a class A(s, s) operator and a class A(2s, 2s) operator.
Equivalently, both U|T|* and U|T|?* are class A operators. Let z = 7¢?’ be a non-zero
complex number in Bdry o(U|T|?*). Then there exists a sequence {x,} of unit vectors
such that (U|T|?** — 2z)x, — 0. Since U|T|* is a class A operator, (U|T|* — 2)*z, —
0 by [15]. Therefore (U — e)z,, — 0 and (|T|** — r)z, — 0. In turn, this implies
(|T|U|T| = r'/*€)z,, — 0. Since T is selfadjoint, |T|U|T| = V| |T|U|T| | = V|T(1,1)| is
quasinormal. Then (|T'(1,1)|—r"/%)z, — 0 and (V —e®)z, — 0 imply (T'—r'/25¢")z, — 0.
Since 7' is selfadjoint, r'/2%¢% and hence z is real. Thus o(T(s,s)) = o(U|T|**) C R. Since
T is a class A(s, s) operator, it follows that T'(s, s) is selfadjoint, and T is normal by Theorem
B. Consequently, T' = T by Theorem 2.3. |

Corollary 2.7. Let T be a class A(s,t) operator with real spectrum. Then T is self-adjoint.

Proof. Let s > t. Then the operator S = U|T|® is of class A. Let z = re®® be a non-zero
complex number in the boundary of o(S). Then there exists a sequence {z,} of unit vectors
such that (|T|* — )z, — 0 and (U — €*)z,, — 0 and therefore (T — r'/*¢*)x,, — 0. Since
o(T) C R, r'/#¢® and hence re® is real. Thus o(S) C R. Since S is hyponormal and
0(5) = 0(S) C R by Theorem A, it follows that S is selfadjoint by [2]. Then Theorem 2.6
implies that S is self-adjoint. Thus T is self-adjoint. O

3 Putnam’s inequality In this section, we extend Putnam’s inequality for class A and
A(s,t) operators for 0 < s,¢ < 1. The following result due to M. Ito and T. Yamazaki [9]
is essential.

Theorem D [9]. Let 0 < A, B € B(H) and 0 < p,r € R. Then

r

B" < (B:APB%)w

implies ’
AP > (A5 BT A%)wtr .
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Theorem 3.1. Let T be a class A(s,t) operator for 0 < s,t <1 and T(s,t) = |T|*U|T|*.
Then

2min{s,t} 2min{s,t} 2min{s,t}
s

T (s, )] =5 = TP < T (s, )] 50 = |T(s,t)*] =+ |

min{s, t} / / p2min{s,t} =1 4. 4g.
™ o(T)

Moreover, if meas (o(T)) =0, then T is normal.

IN

Proof. Assume 0 <t < s. Since T is class A(s,t), we have
|T*|2t S (|T*|t|T|29|T*|t)m

and
2s

s+t

TP > (T[T 7)== [7(s,0)°

by Theorem D. Also, we have

U|T|2tU* S (UlTltU*|T|25U|T|tU*) sj—t
— U (|IT['U|T P U T o

and
2t
ST,

T < (IT|'U*|TP**U|T|") = =|T(s,1)

Hence

T (s,t)* |7 < |T|* < |T(s, )|+

by Lowner-Heinz’s inequality. This implies that T'(s,t) is ﬁ—hyponormal. Hence

2t
=l

= [T(s,1)"

t 2t g
< —- ps+t dpdf
m(s+1) //U(T(s,t))

by [2]. Since 0 < s,t <1, T is class A. Hence we have

2t
1T (s, )75 = |T1* || < || |T(s,1)

o(T(s,t)) = {7"5+tem|7“em eo(T)}

by [16, Theorem 5]. By taking e = pe'® € o(T(s,t)), we have

t 2t t
// ps+t tdpdf = — // 2= tdrdg.
(s +1) o(T(s,1)) ™ o(T)

The proof of the case 0 < s <t is similar.
If meas (o(T")) = 0, then |T'(s,t)| = |T'(s,t)*|. Hence T'(s,t) is normal. Thus T is normal
by Theorem B. [l

Corollary 3.2. Let T be a class A operator. Then
. 1
HT2 =T || < 1T D] = [T, || < —meas (o(T)).

Moreover, if meas (o(T)) =0, then T is normal.
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Proof. Since T is class A(1,1), we have
IT? < |12 = (T*T*TT)"/?
= (TwHrPUir)*? = [, ).
Hence

T2 = |7 |

IN

T D] = [T 1) ]
1

— // rdrdf = lmeaus (a(T)).
™ o(T) ™

by Theorem 3.1. |

IN

Remark. It seems an interesting problem whether Putnam’s inequality holds for the
case 1 < sorl <t If0 < s,t<1,aclass A(s,t) operator T = U|T| is class A, so
(T — Nxzp — 0(A#0,||zy,]| = 1) implies (T'— A\)*z, — 0 by [16, Lemma 2]. Hence we have
o(T(s,t)) = a(U|T|**t) = {rtte?® . re? € o(T)} by [16, Theorem 5]. However it is an
open problem that a class A(s,t) operator T with 1 < s or 1 < ¢ has such property.

4 Polar decomposition M. Ito, T. Yamazaki and M. Yanagida [10] obtained an inter-
esting polar decomposition of the product of two operators as follows:

Theorem E [10]. Let T = U|T|,S = V|S| and |T||S*| = W | |T||S*| | be the polar
decompositions. Then T'S = UWV|TS| is also the polar decomposition.

In this section we consider another form of the polar decomposition of the products of
two operators and prove related results.

Theorem 4.1. Let T = U|T|,S = V|S| and |T|V|S| = W| |T|V|S| | be the polar decom-
positions of T, S and |T|V|S|, respectively. Then |T||S*| = WV*| |T||S*| | is the polar
decomposition of |T||S*|.

Proof. Since
[ TIS™ = [T|VIS|V* = W[ [T|V]S| [V,

we have

(T(S*D=(T([S*]) = V| [T|VIS| |W*W [ [T|V|S] |V*
=V ||T|V|S| PV*.

Hence | |T]|S*| | = V| [T|V]S| | V* and

ITIIS*| =W [T[VIS] [V*
=WVVTIVIS] [VT = WV [ [T][S™] |.

[Claim 1] WV™ is a partial isometry.

Let Vo = 0. Then |S|z = 0. Hence |T|V|S|x = 0 and Wz = 0. Then ker V*V =
kerV C ker W = ker W*W and [ran W*W] C [ran V*V]. Hence V*VIW*W = W*W.
Therefore WV*(WV*)*WV* = W(V*VW*W)V* = WIW*WV* = WV™.

[Claim 2] ker WV* = ker| |T'||S™| |.
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x €kerWV* <= V*z € ker W =ker| |T|V]S| |
= | |T||S*| |[x=V||T|V|S| |V'x=0
< x € ker| |T|S*| |.

O

Theorem 4.2. Let T = U|T|,S = V|S| and |T|V|S| = W| |T|V|S| | be the polar decom-
positions of T, S and |T|V|S|, respectively. Then T'S = UW|T'S| is the polar decomposition
of TS.

Proof. Tt is clear that T'S = U|T|V|S| = UW|TS]|.

[Claim 1] UW is a partial isometry.

Let Uz = 0. Then |S|V*|T|z = 0 and W*x = 0. Hence [ran WW*] C [ran U*U] and
U*UWW* = WW*. Then

UW({UW)'UW =UWW*UUW = UWW*W =UW.

[Claim 2] ker UW = ker |T'S]|.

Let « € ker UW. Then Wz € ker |T| and (|T|V|S])*Wx = 0. Hence W*Wz = 0 and
Wz = 0. Then |T|V|S|z = 0 and T'Sz = 0. Hence |T'S|x = 0. Conversely, if |T'S|x = 0,
then T'Sz = 0. Hence |T|V|S|x =0 and Wz = 0. Thus x € ker UW. O

Theorem 4.3. Let T be a class A operator and T = U|T| and |T||T*| = W | |T||T*| | be
the polar decompositions of T and |T||T*|. Then UW is a quasinormal partial isometry.

Proof. As shown in the proof of Theorem 1.2 of [7], T(1,1) = |T|U|T is semi-hyponormal
with the polar decomposition U*UWU | |T|U|T| |. Then ker |T|U|T| C ker |T|U*|T| or
kerU*UWU C kerU*W*U*U. Let U*UWUz = 0. Then U*W*U*Uz = 0 and so
UU*W*U*Uxz = 0. Since kerUU* C ker| |T||T*| | = ket W, WW*U*Uxz = 0 and so
W*U*Uz = 0. Then 0 = |T*||T|U*Uz = |T*||T|x and W*z = 0. Thus ker U*UWU C
ker W* or [ran (WW*)] C [ran U*W*U*UWU]. Then U*W*U*UWUWW* = WW*
and so UW*U*UWUW = W. Since kerUU* C ker W*W, UU*W*W = W*W and so
UU*W* = W*. Hence

UW = UU*W*U*UWUW
=W*U*UWUW = (UW)*(UW)2

If Uz = 0, then |T*||T|z = 0 or W*z = 0. Therefore [ran WW*] C [ran U*U]. This implies
U UWW* = WW* and so U*UW = W. Hence UW(UW)*UW = UWW*U*UW =
UWW*W = UW. This completes the proof. O

Theorem 4.4. Let T = U|T| be binormal, i.e., |T| commutes with |T*|, and kerT =
kerT'(s,t). Then T(s,t) has the polar decomposition given by T'(s,t) = U|T'(s,t)|.

Proof. Since T is binormal, an application of Theorem 2.3 of [10] shows that T'(s,t) =
U*U?|T(s,t)] is the polar decomposition of T'(s, t). Consequently, U*U? is a partial isometry
and so U? turns out to be a partial isometry. If U2z = 0 then U*U2%x = 0 and therefore
T(s,t)z = 0. That Uz = 0 follows from the kernel condition. Hence ker U? = ker U. Thus
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we have two projections U*U and U*2U? acting on the same range space. This means
U*U = U*2U?. Since U is a contraction, we see that for all € H,

|U*U%x — Uz||? = (U*U?x, U*U?x) — 2(U%2,U?z) + (Uz,Uxz)
< |Uz|* - |U22|* = 0.

Hence U*U? = U. Therefore T(s,t) = U|T(s,t)|. Since kerT = ker |T'(s,t)|, the result
follows. 0

Theorem 4.5. Let T = U|T| and |T|U|T| = V| |T|U|T| | be the polar decompositions of

T and |T|U|T|, respectively. Then (T*) " has the polar decomposition given by (T*) "~ =

Proof. In view of Theorem 2.1, it is enough to show that the operator |[T*|U*|T*| has the
polar decomposition given by |T*|U*|T*| = UV*U*| |T*|U*|T*| |. Now
[T U T = UIT|\UHT|U* = U(] [T|U|T| [V)U™
=UVv (VI [T|U[T| [V))U" = UV |T|U*T| |U*
= UV UrU(T\U|TIPU|T)) 2 U]
= UV*U*[U|T|U|T|*U*|T|U*]*/?
=UV*U*T*?| = UV*U*| |[T*|U*|T*| |.
Next we show that UV*U* is a partial isometry. Since ker U C ker V and kerU C ker V*,
one can show that U*UV =V and U*UV* = V*. Therefore (UV*U*)(UV*U*)*(UV*U*) =
UV*VV*U* = UV*U*. This means that UV*U* is a partial isometry. Finally,
UV U*s =0« UUV*U 'z =0
= VU'z=0
— |T|U*T|U*z =0
— [T**]*z = 0.

Thus we have shown that ker UV*U* = ker |T*2|, which finishes the proof. O

Acknowledgement. The authors would like to express their sincere thanks to the
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