PUTNAM'S INEQUALITY FOR CLASS A OPERATORS AND AN OPERATOR TRANSFORM BY CHŌ AND YAMAZAKI

S.M. PATEL, M. CHO, K. TANAHASHI AND A. UCHIYAMA

Received July 17, 2007; revised September 19, 2007

ABSTRACT. Let T = U|T| be the polar decomposition of a bounded linear operator on a complex Hilbert space \mathcal{H} . T is called a class A operator if $|T|^2 \leq |T^2|$. Recently, M. Chō and T. Yamazaki found an interesting operator transform from a class A operator T to a hyponormal operator \hat{T} . In this paper we obtain a more suitable form for \hat{T} , and prove Putnam's inequality for a class A operator, i.e., $|| |T^2| - |T|^2 || \leq || |T(1,1)| - |T(1,1)^*| || \leq \frac{1}{\pi} \text{meas } (\sigma(T))$ where T(1,1) = |T|U|T| denotes the generalized Aluthge transform. Also, we study related results.

1 Introduction Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . Let T = U|T| be the polar decomposition of $T \in B(\mathcal{H})$. In this paper, we consider following classes of operators.

(1) p-hyponormal : $(TT^*)^p \leq (T^*T)^p$, where p > 0.

- (2) class $A : |T|^2 \le |T^2|$.
- (3) class A(s,t) : $|T^*|^{2t} \le (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{t}{s+t}}$, where s,t > 0.
- (4) paranormal : $||Tx||^2 \le ||T^2x|| ||x||$ for $x \in \mathcal{H}$.
- (5) normaloid : ||T|| = r(T) (spectral radius of T).

For p = 1 and p = 1/2, *p*-hyponormal operator turns out to be hyponormal and semihyponormal, respectively. It is well known that every *p*-hyponormal operator is a class A(s,t) operator for any 0 < s, t, a class A(s,t) operator is class A(s',t') if $s \le s', t \le t'$, the class A coincides with A(1,1) and a class A operator is paranormal. (see ([5], [6], [7], [8], [9], [12].)

The well known operator transform $\tilde{T} = |T|^{1/2}U|T|^{1/2}$ introduced by A. Aluthge [1] is now known as the Aluthge transform in the literature. A further extension of \tilde{T} called the generalized Aluthge transform is defined as $T(s,t) = |T|^s U|T|^t$. (We remark class A(s,t)can be definded as $|T|^{2t} \leq |T(s,t)|^{\frac{t}{s+t}}$.) These transforms have wide variety of applications for *p*-hyponormal operators as well as the detailed investigation of several classes of nonhyponormal operators. On the other hand M. Chō and T. Yamazaki [3] revealed some spectral properties of class A operators with the help of the new operator transform as follows:

DEFINITION. Let T = U|T| and $|T||T^*| = W||T||T^*||$ be the polar decompositions of T and $|T||T^*|$. The operator transform \hat{T} of T is defined as $\hat{T} = WU|T^2|^{1/2}$.

This transform \hat{T} may seem complicated, but it is very interesting. By using this transform, M. Chō and T. Yamazaki [3] proved that a class A operator has Bishop's property (β) , and also proved the following.

Theorem A [3]. Let T be a class A operator. Then the following assertions hold. (i) \hat{T} is hyponormal. (ii) $-(T) = -(\hat{T})$

(ii) $\sigma(T) = \sigma(\hat{T})$.

2000 Mathematics Subject Classification. 47B20.

Key words and phrases. Putnam inequality, class A operator, class A(s,t) operator.

(iii) For $\mu \in \mathbb{C}$ and a sequence $\{x_n\}$ of unit vectors,

$$(T-\mu)x_n \to 0 \iff (\hat{T}-\mu)x_n \to 0.$$

In Section 2 we prove this transform has a close relation to the generalized Aluthge transform T(1,1) = |T|U|T| and we obtain a more suitable form for \hat{T} . Also we consider the normality condition on \hat{T} .

Putnam's inequality [13] is famous in operator theory. It means that if T is hyponormal, i.e., $T^*T - TT^* \ge 0$, then

$$||T^*T - TT^*|| \le \frac{1}{\pi} \text{meas} \ (\sigma(T)).$$

This inequality was extended for *p*-hyponormal operators by M. Chō and M. Itoh [2], and for log-hyponormal operator by Tanahashi [14]. In Section 3 we prove Putnam's inequality for class A operator T, i.e.,

$$||||T^2| - |T|^2|| \le ||||T(1,1)| - |T(1,1)^*|||| \le \frac{1}{\pi} \text{meas} (\sigma(T))$$

where T(1,1) = |T|U|T| denotes the generalized Aluthge transform. Also, we prove Putnam's inequality for class A(s,t) operators for $0 < s, t \le 1$.

Section 4 is mainly concerned with the polar decomposition of the product of two operators. M. Ito, T. Yamazaki and M. Yanagida [10] proved an interesting polar decomposition of the product of two operators and obtained characterizations of binormal operator T (i.e., |T| commutes with $|T^*|$). In this section, we rewrite the polar decomposition of the product of two operators and prove related results.

2 Normality First we make a simple formula of the operator transform defined by M. Chō and T. Yamazaki [3]. Let $T \in B(\mathcal{H})$ and [ran T] be the closure of the range of T.

Theorem 2.1. Let T = U|T| and T(1,1) = |T|U|T| = V|T(1,1)| be the polar decompositions of T and T(1,1). Then \hat{T} has the polar decomposition given by $\hat{T} = V|T(1,1)|^{1/2}$.

Proof. As noted in (2.5) of [3],

$$\hat{T}|T(1,1)|^{1/2} = \hat{T}|T^2|^{1/2} = |T|T = |T|U|T| = V|T(1,1)|.$$

Then $\hat{T}y = V|T(1,1)|^{1/2}y$ for $y \in [\operatorname{ran} |T(1,1)|^{1/2}]$. On the other hand, $\hat{T}x = WU|T(1,1)|^{1/2}x = 0$ and $V|T(1,1)|^{1/2}x = 0$ for $x \in \ker |T(1,1)|^{1/2}$. This implies $\hat{T} = V|T(1,1)|^{1/2}$ and

$$\ker \hat{T} = \ker |T(1,1)|^{1/2} = \ker |T(1,1)| = \ker V.$$

This completes the proof.

In [11], the first author established that a *p*-hyponormal operator is normal if its Aluthge transform is normal. Various extensions of this result can be found in [14], [15]; among the recent ones, we quote the following from [12].

Theorem B [12]. Let T be a class A(s,t) operator. Then the following assertions hold. (i) T is quasinormal $\iff T(s,t)$ is quasinormal. (ii) T is normal $(\implies T(s,t)$ is quasinormal.

(ii) T is normal $\iff T(s,t)$ is normal.

We consider the analogous situations for T.

(i) T is quasinormal $\iff \hat{T}$ is quasinormal.

(ii) T is normal $\iff \hat{T}$ is normal.

Proof. (i) (\Longrightarrow) Let T be quasinormal. Then $T(1,1) = |T|U|T| = U|T|^2$. Hence $\hat{T} = V|T(1,1)|^{1/2} = U|T| = T$.

(\Leftarrow) Let $\hat{T} = V|T(1,1)|^{1/2}$ be quasinormal. Then V commutes with $|T(1,1)|^{1/2}$. Hence V commutes with |T(1,1)| and this implies T(1,1) is quasinormal. Thus T is quasinormal by Theorem B.

(ii) (\Longrightarrow) (i) implies $T = \hat{T}$.

 (\Leftarrow) T is quasinormal by (i). Since \hat{T} is normal,

$$|T(1,1)| = V|T(1,1)|V^* = |T(1,1)^*|$$

T(1,1) is quasinormal by Theorem A and ker $T(1,1) = \ker T(1,1)^*$. Hence T(1,1) is normal and this implies T is normal by Theorem B.

We know that an operator T is quasinormal if and only if $T = \tilde{T}$. This prompts the corresponding result for \hat{T} .

Theorem 2.3. $T = \hat{T}$ if and only if T is quasinormal.

Proof. (\iff) $T = \hat{T}$ by Theorem 2.2.

(\Longrightarrow) By the assumption, $V|T(1,1)|^{1/2} = U|T|$. Then the uniqueness of the polar decomposition shows that V = U and $|T(1,1)|^{1/2} = |T|$. Since

 $|T|V|T(1,1)|^{1/2} = |T|U|T| = V|T(1,1)|,$

we have $|T|Vy = V|T(1,1)|^{1/2}y$ for $y \in [\operatorname{ran} |T(1,1)|^{1/2}]$. On the other hand |T|Vx = 0 and $V|T(1,1)|^{1/2}x = 0$ for $x \in \ker |T(1,1)|^{1/2} = \ker V$. Hence $|T|V = V|T(1,1)|^{1/2} = V|T|$.

M. Fujii, S. Izumino and R. Nakamoto [4] showed the following characterization of normaloid operators via the Aluthge transform $\tilde{T} = |T|^{1/2} U|T|^{1/2}$ as follows:

Theorem C [4]. An operator T is normaloid if and only if \tilde{T} is normaloid and $||T|| = ||\tilde{T}||$.

The following theorem shows that analogus result holds for \hat{T} .

Theorem 2.4. An operator T is normaloid if and only if \hat{T} is normaloid and $||T|| = ||\hat{T}||$.

Proof. Suppose T is normaloid. Let T = U|T| and T(1,1) = |T|U|T| = V||T|U|T||be the polar decompositions of T and T(1,1). Then ||T|| = r for some $re^{i\theta} \in \sigma(T)$. Select a sequence $\{x_n\}$ of unit vectors such that $(|T| - r)x_n \to 0$ and $(U - e^{i\theta})x_n \to 0$. Then $(U - e^{i\theta})^*x_n \to 0$. Hence $(T(1,1) - r^2e^{i\theta})x_n = (|T|U|T| - r^2e^{i\theta})x_n \to 0$ and $(T(1,1)^* - r^2e^{-i\theta})x_n \to 0$, and so $(|T(1,1)| - r^2)x_n \to 0$ and $(V - e^{i\theta})x_n \to 0$. Hence $re^{i\theta} \in \sigma(\hat{T})$. In particular, $||T|| \leq r(\hat{T}) \leq ||\hat{T}||$. Since

$$\begin{aligned} \|\ddot{T}\| &= \|V|T(1,1)|^{1/2} \| \le \| \mid |T|U|T| \mid^{\frac{1}{2}} \\ &\le \| \mid T| \mid = \|T\|, \end{aligned}$$

it follows that $r(\hat{T}) = \|\hat{T}\| = \|T\|$.

Now assume the converse. Choose $re^{i\theta} \in \sigma(\hat{T})$ such that $r = ||\hat{T}|| = ||T||$. Then there exists a sequence $\{x_n\}$ of unit vectors for which $(|T(1,1)|^{1/2} - r)x_n \to 0$ and $(V - e^{i\theta})x_n \to 0$.

This clearly implies $(T(1,1) - r^2 e^{i\theta})x_n \to 0$. Therefore $r^2 e^{i\theta} \in \sigma(U|T|^2)$ and hence $r^2 \leq r^2 e^{i\theta}$ $||U|T|^2|| \leq ||T||^2 = ||\hat{T}||^2 = r^2$. This shows that $U|T|^2$ is normaloid. Choose a sequence $\{y_n\}$ of unit vectors such that $(U - e^{i\theta})y_n \to 0$ and $(|T|^2 - r^2)y_n \to 0$. Consequently $(T - re^{i\theta})y_n \to 0$ and so $re^{i\theta} \in \sigma(T)$. Since ||T|| = r, we conclude that T is normaloid. \Box

Theorem 2.5. Let T be a class A(s,t) operator with ker $T \subset \ker T^*$. If \hat{T} is normal, then so is T.

Proof. Assume $s \geq t$. The normality of \hat{T} implies that ||T|U|T|| commutes with V and ker $V = \ker V^*$. Since |T|U|T| = V||T|U|T||, it is clear that |T|U|T| is normal or $|T|U^*|T|^2U|T| = |T|U|T|^2U^*|T|$. Then $UU^*|T|^2UU^* = U^2|T|^2U^{*2}$ and hence $U^*|T|^2U = U^2|T|^2U^{*2}$ $U^*U^2|T|^2U^{*2}U$. Since ker $U = \ker T \subset \ker T^* = \ker U^*$, we have $[\operatorname{ran} UU^*] \subset [\operatorname{ran} U^*U]$. Hence $U^*UUU^* = UU^*$, and so $U^*U^2 = U$. Therefore

(2.1)
$$U^*|T|^2 U = U|T|^2 U^*.$$

If $U^*x = 0$, then (2.1) gives |T|Ux = 0 and $U^2x = 0$. Hence $Ux \in \ker U \subset \ker U^*$. This implies $U^*Ux =$ and so Ux = 0. Thus we see ker $U = \ker U^*$. Hence U is normal. This fact along with (2.1) shows that $U^*|T|^{2s}U = U|T|^{2s}U^*$ and therefore $T(s,s) = |T|^s U|T|^s$ is normal. Since $s \ge t$, T is a class A(s,s) operator. Now the normality of T follows from Theorem B.

Theorem 2.6. Let T be a class A(s,t) operator. If \hat{T} is selfadjoint, then so is T.

Proof. Assume $s \ge t$. Then T is both a class A(s, s) operator and a class A(2s, 2s) operator. Equivalently, both $U|T|^s$ and $U|T|^{2s}$ are class A operators. Let $z = re^{i\theta}$ be a non-zero complex number in Bdry $\sigma(U|T|^{2s})$. Then there exists a sequence $\{x_n\}$ of unit vectors such that $(U|T|^{2s} - z)x_n \to 0$. Since $U|T|^{2s}$ is a class A operator, $(U|T|^{2s} - z)^*x_n \to 0$ by [15]. Therefore $(U - e^{i\theta})x_n \to 0$ and $(|T|^{2s} - r)x_n \to 0$. In turn, this implies $(|T|U|T| - r^{1/s}e^{i\theta})x_n \to 0$. Since \hat{T} is selfadjoint, |T|U|T| = V||T|U|T|| = V|T(1,1)| is quasinormal. Then $(|T(1,1)| - r^{1/s})x_n \to 0$ and $(V - e^{i\theta})x_n \to 0$ imply $(\hat{T} - r^{1/2s}e^{i\theta})x_n \to 0$. Since \hat{T} is selfadjoint, $r^{1/2s}e^{i\theta}$ and hence z is real. Thus $\sigma(T(s,s)) = \sigma(U|T|^{2s}) \subset \mathbb{R}$. Since T is a class A(s, s) operator, it follows that T(s, s) is selfadjoint, and T is normal by Theorem B. Consequently, $T = \hat{T}$ by Theorem 2.3.

Corollary 2.7. Let T be a class A(s,t) operator with real spectrum. Then T is self-adjoint.

Proof. Let $s \ge t$. Then the operator $S = U|T|^s$ is of class A. Let $z = re^{i\theta}$ be a non-zero complex number in the boundary of $\sigma(S)$. Then there exists a sequence $\{x_n\}$ of unit vectors such that $(|T|^s - r)x_n \to 0$ and $(U - e^{i\theta})x_n \to 0$ and therefore $(T - r^{1/s}e^{i\theta})x_n \to 0$. Since $\sigma(T) \subset \mathbb{R}, r^{1/s}e^{i\theta}$ and hence $re^{i\theta}$ is real. Thus $\sigma(S) \subset \mathbb{R}$. Since \hat{S} is hyponormal and $\sigma(\hat{S}) = \sigma(S) \subset \mathbb{R}$ by Theorem A, it follows that \hat{S} is selfadjoint by [2]. Then Theorem 2.6 implies that S is self-adjoint. Thus T is self-adjoint.

3 Putnam's inequality In this section, we extend Putnam's inequality for class A and A(s,t) operators for $0 < s, t \leq 1$. The following result due to M. Ito and T. Yamazaki [9] is essential.

Theorem D [9]. Let $0 \leq A, B \in B(\mathcal{H})$ and $0 < p, r \in \mathbb{R}$. Then $B^{r} < (B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}}$

implies

 $A^{p} > (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}.$

Theorem 3.1. Let T be a class A(s,t) operator for $0 < s,t \leq 1$ and $T(s,t) = |T|^s U|T|^t$. Then

$$\| |T(s,t)|^{\frac{2\min\{s,t\}}{s+t}} - |T|^{2\min\{s,t\}} \| \le \| |T(s,t)|^{\frac{2\min\{s,t\}}{s+t}} - |T(s,t)^*|^{\frac{2\min\{s,t\}}{s+t}} \| \le \frac{\min\{s,t\}}{\pi} \iint_{\sigma(T)} r^{2\min\{s,t\}-1} dr d\theta.$$

Moreover, if meas $(\sigma(T)) = 0$, then T is normal.

Proof. Assume $0 < t \le s$. Since T is class A(s, t), we have

$$|T^*|^{2t} \le \left(|T^*|^t |T|^{2s} |T^*|^t\right)^{\frac{t}{s+t}}$$

and

$$|T|^{2s} \ge \left(|T|^s |T^*|^{2t} |T|^s\right)^{\frac{s}{s+t}} = |T(s,t)^*|^{\frac{2s}{s+t}}$$

by Theorem D. Also, we have

$$U|T|^{2t}U^* \le \left(U|T|^t U^*|T|^{2s}U|T|^t U^*\right)^{\frac{t}{s+t}}$$
$$= U\left(|T|^t U^*|T|^{2s}U|T|^t\right)^{\frac{t}{s+t}}U^*$$

and

$$|T|^{2t} \le \left(|T|^t U^* |T|^{2s} U |T|^t \right)^{\frac{t}{s+t}} = |T(s,t)|^{\frac{2t}{s+t}}.$$

Hence

$$|T(s,t)^*|^{\frac{2t}{s+t}} \le |T|^{2t} \le |T(s,t)|^{\frac{2t}{s+t}}$$

by Löwner-Heinz's inequality. This implies that T(s,t) is $\frac{t}{s+t}$ -hyponormal. Hence

$$\| |T(s,t)|^{\frac{2t}{s+t}} - |T|^{2t} \| \le \| |T(s,t)|^{\frac{2t}{s+t}} - |T(s,t)^*|^{\frac{2t}{s+t}} \|$$
$$\le \frac{t}{\pi(s+t)} \iint_{\sigma(T(s,t))} \rho^{\frac{2t}{s+t}-1} d\rho d\theta$$

by [2]. Since $0 < s, t \le 1, T$ is class A. Hence we have

$$\sigma(T(s,t)) = \{ r^{s+t} e^{i\theta} | r e^{i\theta} \in \sigma(T) \}$$

by [16, Theorem 5]. By taking $r^{s+t}e^{i\theta} = \rho e^{i\theta} \in \sigma(T(s,t))$, we have

$$\frac{t}{\pi(s+t)} \iint_{\sigma(T(s,t))} \rho^{\frac{2t}{s+t}-1} d\rho d\theta = \frac{t}{\pi} \iint_{\sigma(T)} r^{2t-1} dr d\theta.$$

The proof of the case $0 < s \le t$ is similar.

If meas $(\sigma(T)) = 0$, then $|T(s,t)| = |T(s,t)^*|$. Hence T(s,t) is normal. Thus T is normal by Theorem B.

Corollary 3.2. Let T be a class A operator. Then

$$|| |T^2| - |T|^2 || \le || |T(1,1)| - |T(1,1)^*| || \le \frac{1}{\pi} \text{meas} (\sigma(T)).$$

Moreover, if meas $(\sigma(T)) = 0$, then T is normal.

Proof. Since T is class A(1,1), we have

$$|T|^{2} \leq |T^{2}| = (T^{*}T^{*}TT)^{1/2}$$
$$= (|T|U^{*}|T|^{2}U|T|)^{1/2} = |T(1,1)|$$

Hence

$$|| |T^{2}| - |T|^{2} || \leq || |T(1,1)| - |T(1,1)^{*}| ||$$

$$\leq \frac{1}{\pi} \iint_{\sigma(T)} r dr d\theta = \frac{1}{\pi} \text{meas} (\sigma(T)).$$

by Theorem 3.1.

Remark. It seems an interesting problem whether Putnam's inequality holds for the case 1 < s or 1 < t. If $0 < s, t \leq 1$, a class A(s,t) operator T = U|T| is class A, so $(T - \lambda)x_n \to 0(\lambda \neq 0, ||x_n|| = 1)$ implies $(T - \lambda)^*x_n \to 0$ by [16, Lemma 2]. Hence we have $\sigma(T(s,t)) = \sigma(U|T|^{s+t}) = \{r^{s+t}e^{i\theta} : re^{i\theta} \in \sigma(T)\}$ by [16, Theorem 5]. However it is an open problem that a class A(s,t) operator T with 1 < s or 1 < t has such property.

4 Polar decomposition M. Ito, T. Yamazaki and M. Yanagida [10] obtained an interesting polar decomposition of the product of two operators as follows:

Theorem E [10]. Let T = U|T|, S = V|S| and $|T||S^*| = W||T||S^*||$ be the polar decompositions. Then TS = UWV|TS| is also the polar decomposition.

In this section we consider another form of the polar decomposition of the products of two operators and prove related results.

Theorem 4.1. Let T = U|T|, S = V|S| and |T|V|S| = W| |T|V|S| | be the polar decompositions of T, S and |T|V|S|, respectively. Then $|T||S^*| = WV^* | |T||S^*| |$ is the polar decomposition of $|T||S^*|$.

Proof. Since

$$|T||S^*| = |T|V|S|V^* = W| |T|V|S| |V^*,$$

we have

$$(|T||S^*|)^*(|T||S^*|) = V | |T|V|S| | W^*W | |T|V|S| | V^*$$

= V | |T|V|S| |² V^{*}.

Hence $||T||S^*|| = V ||T|V|S||V^*$ and

$$\begin{split} |T||S^*| &= W \mid |T|V|S| \mid V^* \\ &= WV^*V \mid |T|V|S| \mid V^* = WV^* \mid |T||S^*| \mid. \end{split}$$

[Claim 1] WV^* is a partial isometry.

Let Vx = 0. Then |S|x = 0. Hence |T|V|S|x = 0 and Wx = 0. Then ker $V^*V = \ker V \subset \ker W = \ker W^*W$ and $[\operatorname{ran} W^*W] \subset [\operatorname{ran} V^*V]$. Hence $V^*VW^*W = W^*W$. Therefore $WV^*(WV^*)^*WV^* = W(V^*VW^*W)V^* = WW^*WV^* = WV^*$.

[Claim 2] ker $WV^* = \ker ||T||S^*||$.

618

$$\begin{aligned} x \in \ker WV^* &\iff V^* x \in \ker W = \ker ||T|V|S| |\\ &\iff ||T||S^*| |x = V| |T|V|S| |V^* x = 0\\ &\iff x \in \ker ||T||S^*||. \end{aligned}$$

Theorem 4.2. Let T = U|T|, S = V|S| and |T|V|S| = W||T|V|S|| be the polar decompositions of T, S and |T|V|S|, respectively. Then TS = UW|TS| is the polar decomposition of TS.

Proof. It is clear that TS = U|T|V|S| = UW|TS|.

[Claim 1] UW is a partial isometry.

Let Ux = 0. Then $|S|V^*|T|x = 0$ and $W^*x = 0$. Hence $[\operatorname{ran} WW^*] \subset [\operatorname{ran} U^*U]$ and $U^*UWW^* = WW^*$. Then

$$UW(UW)^*UW = UWW^*U^*UW = UWW^*W = UW.$$

[Claim 2] ker $UW = \ker |TS|$.

Let $x \in \ker UW$. Then $Wx \in \ker |T|$ and $(|T|V|S|)^*Wx = 0$. Hence $W^*Wx = 0$ and Wx = 0. Then |T|V|S|x = 0 and TSx = 0. Hence |TS|x = 0. Conversely, if |TS|x = 0, then TSx = 0. Hence |T|V|S|x = 0 and Wx = 0. Thus $x \in \ker UW$.

Theorem 4.3. Let T be a class A operator and T = U|T| and $|T||T^*| = W||T||T^*||$ be the polar decompositions of T and $|T||T^*|$. Then UW is a quasinormal partial isometry.

Proof. As shown in the proof of Theorem 1.2 of [7], T(1,1) = |T|U|T| is semi-hyponormal with the polar decomposition $U^*UWU \mid |T|U|T|$ |. Then ker $|T|U|T| \subset \text{ker } |T|U^*|T|$ or ker $U^*UWU \subset \text{ker } U^*W^*U^*U$. Let $U^*UWUx = 0$. Then $U^*W^*U^*Ux = 0$ and so $UU^*W^*U^*Ux = 0$. Since ker $UU^* \subset \text{ker } |T||T^*| = \text{ker } W$, $WW^*U^*Ux = 0$ and so $W^*U^*Ux = 0$. Then $0 = |T^*||T|U^*Ux = |T^*||T|x$ and $W^*x = 0$. Thus ker $U^*UWU \subset \text{ker } W^*$ or [ran $(WW^*)] \subset [\text{ran } U^*W^*U^*UWU]$. Then $U^*W^*U^*UWUWW^* = WW^*$ and so $U^*W^*U^*UWUW = W$. Since ker $UU^* \subset \text{ker } W^*W$, $UU^*W^*W = W^*W$ and so $UU^*W^* = W^*$. Hence

$$UW = UU^*W^*U^*UWUW$$
$$= W^*U^*UWUW = (UW)^*(UW)^2.$$

If Ux = 0, then $|T^*||T|x = 0$ or $W^*x = 0$. Therefore $[\operatorname{ran} WW^*] \subset [\operatorname{ran} U^*U]$. This implies $U^*UWW^* = WW^*$ and so $U^*UW = W$. Hence $UW(UW)^*UW = UWW^*U^*UW = UWW^*W = UW$. This completes the proof.

Theorem 4.4. Let T = U|T| be binormal, i.e., |T| commutes with $|T^*|$, and ker $T = \ker T(s,t)$. Then T(s,t) has the polar decomposition given by T(s,t) = U|T(s,t)|.

Proof. Since T is binormal, an application of Theorem 2.3 of [10] shows that $T(s,t) = U^*U^2|T(s,t)|$ is the polar decomposition of T(s,t). Consequently, U^*U^2 is a partial isometry and so U^2 turns out to be a partial isometry. If $U^2x = 0$ then $U^*U^2x = 0$ and therefore T(s,t)x = 0. That Ux = 0 follows from the kernel condition. Hence ker $U^2 = \ker U$. Thus

we have two projections U^*U and $U^{*2}U^2$ acting on the same range space. This means $U^*U = U^{*2}U^2$. Since U is a contraction, we see that for all $x \in \mathcal{H}$,

$$\begin{aligned} \|U^*U^2x - Ux\|^2 &= \langle U^*U^2x, U^*U^2x \rangle - 2\langle U^2x, U^2x \rangle + \langle Ux, Ux \rangle \\ &\leq \|Ux\|^2 - \|U^2x\|^2 = 0. \end{aligned}$$

Hence $U^*U^2 = U$. Therefore T(s,t) = U|T(s,t)|. Since ker $T = \ker |T(s,t)|$, the result follows.

Theorem 4.5. Let T = U|T| and |T|U|T| = V||T|U|T|| be the polar decompositions of T and |T|U|T|, respectively. Then (T^*) has the polar decomposition given by (T^*) = $UV^*U^*||T^*|U^*|T^*||^{1/2}$.

Proof. In view of Theorem 2.1, it is enough to show that the operator $|T^*|U^*|T^*|$ has the polar decomposition given by $|T^*|U^*|T^*| = UV^*U^*||T^*|U^*|T^*||$. Now

$$\begin{split} |T^*|U^*|T^*| &= U|T|U^*|T|U^* = U(||T|U|T|||V^*)U^* \\ &= UV^*(V||T|U|T||V^*)U^* = UV^*||T|U^*|T||U^* \\ &= UV^*U^*[U(|T|U|T|^2U^*|T|)^{1/2}U^*] \\ &= UV^*U^*[U|T|U|T|^2U^*|T|U^*]^{1/2} \\ &= UV^*U^*|T^{*2}| = UV^*U^*||T^*|U^*|T^*||. \end{split}$$

Next we show that UV^*U^* is a partial isometry. Since ker $U \subset$ ker V and ker $U \subset$ ker V^* , one can show that $U^*UV = V$ and $U^*UV^* = V^*$. Therefore $(UV^*U^*)(UV^*U^*)^*(UV^*U^*) = UV^*VV^*U^* = UV^*U^*$. This means that UV^*U^* is a partial isometry. Finally,

$$\begin{split} UV^*U^*x &= 0 \Longleftrightarrow U^*UV^*U^*x = 0 \\ & \Longleftrightarrow V^*U^*x = 0 \\ & \Leftrightarrow |T|U^*|T|U^*x = 0 \\ & \Leftrightarrow |T^{*2}|^2x = 0. \end{split}$$

Thus we have shown that $\ker UV^*U^* = \ker |T^{*2}|$, which finishes the proof.

Acknowledgement. The authors would like to express their sincere thanks to the referee for many helpful comments.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integr. Equat. Oper. Th.,**13**(1990), 307–315.
- [2] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123 (1995) 2435-2440.
- [3] M. Chō and T. Yamazaki, An operator transform from Class A to the class of hyponormal operators and its applications, Integr. Equat. Oper. Th., 53 (2005) 497–508.
- [4] M. Fujii, S. Izumino and R. Nakamoto, Class of operators determined by the Heinz-Kato-Furuta inequality and Holder-MaCarthy inequality, Nihonkai Math. J., 5 (1994) 61–67.
- [5] M. Fujii, D. Jung, S.H. Lee, M.Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japonica, 51 (2000) 395–402.
- [6] T. Furuta, On the class of paranormal operators, Proc. Japan Acad., 43 (1967) 594–598.

- [7] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Mathematics, 1(1999), 149–165.
- [8] M. Ito, Several properties on class A including p-hyponormal and log-hyponormal operators, Math. Inequalities and Appl., 2(1999), 569–578.
- [9] M. Ito and T. Yamazaki, Relations between two operator inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their applications, Integr. Equat. Oper. Th., 44(2002), 442–450.
- [10] M. Ito, T. Yamazaki, and M. Yanagida, On the polar decomposition of the product of two operators and its applications, Integr. Equat. Oper. Th., 49(2004), 461–472.
- [11] S. M. Patel, A note on p-hyponormal operators for 0 , Integral Equations and Operator Theory,**21**(1995), 498–503.
- [12] S.M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Quasi-normality and Fuglede-Putnam theorem for A(s,t) operators, Nihonkai Math. J., **17**(2006), 49–67.
- [13] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z., 116(1970), 323–330.
- [14] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Th., 48(2004), 103–114.
- [15] A. Uchiyama, Weyl's theorem for class A operators, Mathematical Inequalities and Applications, 1(2001), 143–140.
- [16] A. Uchiyama, K. Tanahashi and J.I. Lee, Spectrum of class A(s,t) operators, Acta Sci. Math. (Szeged), 70(2004), 279–287.

Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558 Japan

E-mail; tanahasi@tohoku-pharm.ac.jp