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Abstract. Let T = U |T | be the polar decomposition of a bounded linear operator on
a complex Hilbert space H. T is called a class A operator if |T |2 ≤ |T 2|. Recently, M.
Chō and T. Yamazaki found an interesting operator transform from a class A operator
T to a hyponormal operator T̂ . In this paper we obtain a more suitable form for T̂ , and
prove Putnam’s inequality for a class A operator, i.e., ‖ |T 2| − |T |2 ‖ ≤ ‖ |T (1, 1)| −
|T (1, 1)∗| ‖ ≤ 1

π
meas (σ(T )) where T (1,1) = |T |U |T | denotes the generalized Aluthge

transform. Also, we study related results.

1 Introduction Let H be a complex Hilbert space and B(H) be the algebra of all
bounded linear operators on H. Let T = U |T | be the polar decomposition of T ∈ B(H). In
this paper, we consider following classes of operators.

(1) p-hyponormal : (TT ∗)p ≤ (T ∗T )p, where p > 0.
(2) class A : |T |2 ≤ |T 2|.
(3) class A(s, t) : |T ∗|2t ≤ (|T ∗|t|T |2s|T ∗|t) t

s+t , where s, t > 0.
(4) paranormal : ‖Tx‖2 ≤ ‖T 2x‖‖x‖ for x ∈ H.
(5) normaloid : ‖T ‖ = r(T ) (spectral radius of T ).
For p = 1 and p = 1/2, p-hyponormal operator turns out to be hyponormal and semihy-

ponormal, respectively. It is well known that every p-hyponormal operator is a class A(s, t)
operator for any 0 < s, t, a class A(s, t) operator is class A(s′, t′) if s ≤ s′, t ≤ t′, the class A
coincides with A(1, 1) and a class A operator is paranormal. (see ([5], [6], [7], [8], [9], [12].)

The well known operator transform T̃ = |T |1/2U |T |1/2 introduced by A. Aluthge [1] is
now known as the Aluthge transform in the literature. A further extension of T̃ called the
generalized Aluthge transform is defined as T (s, t) = |T |sU |T |t. (We remark class A(s, t)
can be definded as |T |2t ≤ |T (s, t)| t

s+t .) These transforms have wide variety of applications
for p-hyponormal operators as well as the detailed investigation of several classes of non-
hyponormal operators. On the other hand M. Chō and T. Yamazaki [3] revealed some
spectral properties of class A operators with the help of the new operator transform as
follows:

DEFINITION. Let T = U |T | and |T ||T ∗| = W | |T ||T ∗| | be the polar decompositions
of T and |T ||T ∗|. The operator transform T̂ of T is defined as T̂ = WU |T 2|1/2.

This transform T̂ may seem complicated, but it is very interesting. By using this trans-
form, M. Chō and T. Yamazaki [3] proved that a class A operator has Bishop’s property
(β), and also proved the following.

Theorem A [3]. Let T be a class A operator. Then the following assertions hold.
(i) T̂ is hyponormal.
(ii) σ(T ) = σ(T̂ ).
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(iii) For µ ∈ C and a sequence {xn} of unit vectors,

(T − µ)xn → 0 ⇐⇒ (T̂ − µ)xn → 0.

In Section 2 we prove this transform has a close relation to the generalized Aluthge
transform T (1, 1) = |T |U |T | and we obtain a more suitable form for T̂ . Also we consider
the normality condition on T̂ .

Putnam’s inequality [13] is famous in operator theory. It means that if T is hyponormal,
i.e., T ∗T − TT ∗ ≥ 0, then

‖T ∗T − TT ∗‖ ≤ 1
π

meas (σ(T )).

This inequality was extended for p-hyponormal operators by M. Chō and M. Itoh [2], and
for log-hyponormal operator by Tanahashi [14]. In Section 3 we prove Putnam’s inequality
for class A operator T , i.e.,

‖ |T 2| − |T |2 ‖ ≤ ‖ |T (1, 1)| − |T (1, 1)∗| ‖ ≤ 1
π

meas (σ(T ))

where T (1, 1) = |T |U |T | denotes the generalized Aluthge transform. Also, we prove Put-
nam’s inequality for class A(s, t) operators for 0 < s, t ≤ 1.

Section 4 is mainly concerned with the polar decomposition of the product of two opera-
tors. M. Ito, T. Yamazaki and M. Yanagida [10] proved an interesting polar decomposition
of the product of two operators and obtained characterizations of binormal operator T (i.e.,
|T | commutes with |T ∗|). In this section, we rewrite the polar decomposition of the product
of two operators and prove related results.

2 Normality First we make a simple formula of the operator transform defined by M.
Chō and T. Yamazaki [3]. Let T ∈ B(H) and [ran T ] be the closure of the range of T .

Theorem 2.1. Let T = U |T | and T (1, 1) = |T |U |T | = V |T (1, 1)| be the polar decomposi-
tions of T and T (1, 1). Then T̂ has the polar decomposition given by T̂ = V |T (1, 1)|1/2.

Proof. As noted in (2.5) of [3],

T̂ |T (1, 1)|1/2 = T̂ |T 2|1/2 = |T |T = |T |U |T | = V |T (1, 1)|.
Then T̂ y = V |T (1, 1)|1/2y for y ∈ [ran |T (1, 1)|1/2]. On the other hand, T̂ x = WU |T (1, 1)|1/2x
= 0 and V |T (1, 1)|1/2x = 0 for x ∈ ker |T (1, 1)|1/2. This implies T̂ = V |T (1, 1)|1/2 and

ker T̂ = ker |T (1, 1)|1/2 = ker |T (1, 1)| = kerV.

This completes the proof.

In [11], the first author established that a p-hyponormal operator is normal if its Aluthge
transform is normal. Various extensions of this result can be found in [14], [15]; among the
recent ones, we quote the following from [12].

Theorem B [12]. Let T be a class A(s, t) operator. Then the following assertions hold.
(i) T is quasinormal ⇐⇒ T (s, t) is quasinormal.
(ii) T is normal ⇐⇒ T (s, t) is normal.

We consider the analogous situations for T̂ .



PUTNAM’S INEQUALITY FOR CLASS A OPERATORS 615

Theorem 2.2. Let T be a class A operator. Then the following assertions hold.
(i) T is quasinormal ⇐⇒ T̂ is quasinormal.
(ii) T is normal ⇐⇒ T̂ is normal.

Proof. (i) (=⇒) Let T be quasinormal. Then T (1, 1) = |T |U |T | = U |T |2. Hence T̂ =
V |T (1, 1)|1/2 = U |T | = T .

(⇐=) Let T̂ = V |T (1, 1)|1/2 be quasinormal. Then V commutes with |T (1, 1)|1/2.
Hence V commutes with |T (1, 1)| and this implies T (1, 1) is quasinormal. Thus T is quasi-
normal by Theorem B.

(ii) (=⇒) (i) implies T = T̂ .
(⇐=) T is quasinormal by (i). Since T̂ is normal,

|T (1, 1)| = V |T (1, 1)|V ∗ = |T (1, 1)∗|.
T (1, 1) is quasinormal by Theorem A and kerT (1, 1) = kerT (1, 1)∗. Hence T (1, 1) is normal
and this implies T is normal by Theorem B.

We know that an operator T is quasinormal if and only if T = T̃ . This prompts the
corresponding result for T̂ .

Theorem 2.3. T = T̂ if and only if T is quasinormal.

Proof. (⇐=) T = T̂ by Theorem 2.2.
(=⇒) By the assumption, V |T (1, 1)|1/2 = U |T |. Then the uniqueness of the polar

decomposition shows that V = U and |T (1, 1)|1/2 = |T |. Since

|T |V |T (1, 1)|1/2 = |T |U |T | = V |T (1, 1)|,
we have |T |V y = V |T (1, 1)|1/2y for y ∈ [ran |T (1, 1)|1/2]. On the otherhand |T |V x = 0 and
V |T (1, 1)|1/2x = 0 for x ∈ ker |T (1, 1)|1/2 = kerV . Hence |T |V = V |T (1, 1)|1/2 = V |T |.

M. Fujii, S. Izumino and R. Nakamoto [4] showed the following characterization of
normaloid operators via the Aluthge transform T̃ = |T |1/2U |T |1/2 as follows:

Theorem C [4]. An operator T is normaloid if and only if T̃ is normaloid and ‖T ‖ =
‖T̃‖.

The following theorem shows that analogus result holds for T̂ .

Theorem 2.4. An operator T is normaloid if and only if T̂ is normaloid and ‖T ‖ = ‖T̂‖.
Proof. Suppose T is normaloid. Let T = U |T | and T (1, 1) = |T |U |T | = V | |T |U |T | |
be the polar decompositions of T and T (1, 1). Then ‖T ‖ = r for some reiθ ∈ σ(T ).
Select a sequence {xn} of unit vectors such that (|T | − r)xn → 0 and (U − eiθ)xn →
0. Then (U − eiθ)∗xn → 0. Hence (T (1, 1) − r2eiθ)xn = (|T |U |T | − r2eiθ)xn → 0 and
(T (1, 1)∗ − r2e−iθ)xn → 0, and so (|T (1, 1)| − r2)xn → 0 and (V − eiθ)xn → 0. Hence
reiθ ∈ σ(T̂ ). In particular, ‖T ‖ ≤ r(T̂ ) ≤ ‖T̂‖. Since

‖T̂‖ = ‖V |T (1, 1)|1/2‖ ≤ ‖ | |T |U |T | | 12 ‖
≤ ‖ |T | ‖ = ‖T ‖,

it follows that r(T̂ ) = ‖T̂‖ = ‖T ‖.
Now assume the converse. Choose reiθ ∈ σ(T̂ ) such that r = ‖T̂‖ = ‖T ‖. Then there

exists a sequence {xn} of unit vectors for which (|T (1, 1)|1/2−r)xn → 0 and (V −eiθ)xn → 0.
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This clearly implies (T (1, 1) − r2eiθ)xn → 0. Therefore r2eiθ ∈ σ(U |T |2) and hence r2 ≤
‖U |T |2‖ ≤ ‖T ‖2 = ‖T̂‖2 = r2. This shows that U |T |2 is normaloid. Choose a sequence
{yn} of unit vectors such that (U − eiθ)yn → 0 and (|T |2 − r2)yn → 0. Consequently
(T − reiθ)yn → 0 and so reiθ ∈ σ(T ). Since ‖T ‖ = r, we conclude that T is normaloid.

Theorem 2.5. Let T be a class A(s, t) operator with kerT ⊂ kerT ∗. If T̂ is normal, then
so is T .

Proof. Assume s ≥ t. The normality of T̂ implies that | |T |U |T | | commutes with V
and kerV = kerV ∗. Since |T |U |T | = V | |T |U |T | |, it is clear that |T |U |T | is normal or
|T |U∗|T |2U |T | = |T |U |T |2U∗|T |. Then UU∗|T |2UU∗ = U2|T |2U∗2 and hence U∗|T |2U =
U∗U2|T |2U∗2U . Since kerU = kerT ⊂ kerT ∗ = kerU∗, we have [ran UU∗] ⊂ [ran U∗U ].
Hence U∗UUU∗ = UU∗, and so U∗U2 = U . Therefore

U∗|T |2U = U |T |2U∗.(2.1)

If U∗x = 0, then (2.1) gives |T |Ux = 0 and U2x = 0. Hence Ux ∈ kerU ⊂ kerU∗. This
implies U∗Ux = and so Ux = 0. Thus we see ker U = kerU∗. Hence U is normal. This
fact along with (2.1) shows that U∗|T |2sU = U |T |2sU∗ and therefore T (s, s) = |T |sU |T |s
is normal. Since s ≥ t, T is a class A(s, s) operator. Now the normality of T follows from
Theorem B.

Theorem 2.6. Let T be a class A(s, t) operator. If T̂ is selfadjoint, then so is T .

Proof. Assume s ≥ t. Then T is both a class A(s, s) operator and a class A(2s, 2s) operator.
Equivalently, both U |T |s and U |T |2s are class A operators. Let z = reiθ be a non-zero
complex number in Bdry σ(U |T |2s). Then there exists a sequence {xn} of unit vectors
such that (U |T |2s − z)xn → 0. Since U |T |2s is a class A operator, (U |T |2s − z)∗xn →
0 by [15]. Therefore (U − eiθ)xn → 0 and (|T |2s − r)xn → 0. In turn, this implies
(|T |U |T | − r1/seiθ)xn → 0. Since T̂ is selfadjoint, |T |U |T | = V | |T |U |T | | = V |T (1, 1)| is
quasinormal. Then (|T (1, 1)|−r1/s)xn → 0 and (V −eiθ)xn → 0 imply (T̂−r1/2seiθ)xn → 0.
Since T̂ is selfadjoint, r1/2seiθ and hence z is real. Thus σ(T (s, s)) = σ(U |T |2s) ⊂ R. Since
T is a class A(s, s) operator, it follows that T (s, s) is selfadjoint, and T is normal by Theorem
B. Consequently, T = T̂ by Theorem 2.3.

Corollary 2.7. Let T be a class A(s, t) operator with real spectrum. Then T is self-adjoint.

Proof. Let s ≥ t. Then the operator S = U |T |s is of class A. Let z = reiθ be a non-zero
complex number in the boundary of σ(S). Then there exists a sequence {xn} of unit vectors
such that (|T |s − r)xn → 0 and (U − eiθ)xn → 0 and therefore (T − r1/seiθ)xn → 0. Since
σ(T ) ⊂ R, r1/seiθ and hence reiθ is real. Thus σ(S) ⊂ R. Since Ŝ is hyponormal and
σ(Ŝ) = σ(S) ⊂ R by Theorem A, it follows that Ŝ is selfadjoint by [2]. Then Theorem 2.6
implies that S is self-adjoint. Thus T is self-adjoint.

3 Putnam’s inequality In this section, we extend Putnam’s inequality for class A and
A(s, t) operators for 0 < s, t ≤ 1. The following result due to M. Ito and T. Yamazaki [9]
is essential.

Theorem D [9]. Let 0 ≤ A,B ∈ B(H) and 0 < p, r ∈ R. Then

Br ≤ (B
r
2 ApB

r
2 )

r
p+r

implies
Ap ≥ (A

p
2 BrA

p
2 )

p
p+r .
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Theorem 3.1. Let T be a class A(s, t) operator for 0 < s, t ≤ 1 and T (s, t) = |T |sU |T |t.
Then

‖ |T (s, t)| 2min{s,t}
s+t − |T |2min{s,t} ‖ ≤ ‖ |T (s, t)| 2min{s,t}

s+t − |T (s, t)∗| 2 min{s,t}
s+t ‖

≤ min{s, t}
π

∫∫
σ(T )

r2 min{s,t}−1drdθ.

Moreover, if meas (σ(T )) = 0, then T is normal.

Proof. Assume 0 < t ≤ s. Since T is class A(s, t), we have

|T ∗|2t ≤ (|T ∗|t|T |2s|T ∗|t) t
s+t

and
|T |2s ≥ (|T |s|T ∗|2t|T |s) s

s+t = |T (s, t)∗| 2s
s+t

by Theorem D. Also, we have

U |T |2tU∗ ≤ (
U |T |tU∗|T |2sU |T |tU∗) t

s+t

= U
(|T |tU∗|T |2sU |T |t) t

s+t U∗

and
|T |2t ≤ (|T |tU∗|T |2sU |T |t) t

s+t = |T (s, t)| 2t
s+t .

Hence
|T (s, t)∗| 2t

s+t ≤ |T |2t ≤ |T (s, t)| 2t
s+t

by Löwner-Heinz’s inequality. This implies that T (s, t) is t
s+t -hyponormal. Hence

‖ |T (s, t)| 2t
s+t − |T |2t ‖ ≤ ‖ |T (s, t)| 2t

s+t − |T (s, t)∗| 2t
s+t ‖

≤ t

π(s + t)

∫∫
σ(T (s,t))

ρ
2t

s+t−1dρdθ

by [2]. Since 0 < s, t ≤ 1, T is class A. Hence we have

σ(T (s, t)) = {rs+teiθ|reiθ ∈ σ(T ) }

by [16, Theorem 5]. By taking rs+teiθ = ρeiθ ∈ σ(T (s, t)), we have

t

π(s + t)

∫∫
σ(T (s,t))

ρ
2t

s+t−1dρdθ =
t

π

∫∫
σ(T )

r2t−1drdθ.

The proof of the case 0 < s ≤ t is similar.
If meas (σ(T )) = 0, then |T (s, t)| = |T (s, t)∗|. Hence T (s, t) is normal. Thus T is normal

by Theorem B.

Corollary 3.2. Let T be a class A operator. Then

‖ |T 2| − |T |2 ‖ ≤ ‖ |T (1, 1)| − |T (1, 1)∗| ‖ ≤ 1
π

meas (σ(T )).

Moreover, if meas (σ(T )) = 0, then T is normal.
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Proof. Since T is class A(1, 1), we have

|T |2 ≤ |T 2| = (T ∗T ∗TT )1/2

=
(|T |U∗|T |2U |T |)1/2

= |T (1, 1)|.

Hence

‖ |T 2| − |T |2 ‖ ≤ ‖ |T (1, 1)| − |T (1, 1)∗| ‖
≤ 1

π

∫∫
σ(T )

rdrdθ =
1
π

meas (σ(T )).

by Theorem 3.1.

Remark. It seems an interesting problem whether Putnam’s inequality holds for the
case 1 < s or 1 < t. If 0 < s, t ≤ 1, a class A(s, t) operator T = U |T | is class A, so
(T − λ)xn → 0(λ 	= 0, ‖xn‖ = 1) implies (T − λ)∗xn → 0 by [16, Lemma 2]. Hence we have
σ(T (s, t)) = σ(U |T |s+t) = {rs+teiθ : reiθ ∈ σ(T )} by [16, Theorem 5]. However it is an
open problem that a class A(s, t) operator T with 1 < s or 1 < t has such property.

4 Polar decomposition M. Ito, T. Yamazaki and M. Yanagida [10] obtained an inter-
esting polar decomposition of the product of two operators as follows:

Theorem E [10]. Let T = U |T |, S = V |S| and |T ||S∗| = W | |T ||S∗| | be the polar
decompositions. Then TS = UWV |TS| is also the polar decomposition.

In this section we consider another form of the polar decomposition of the products of
two operators and prove related results.

Theorem 4.1. Let T = U |T |, S = V |S| and |T |V |S| = W | |T |V |S| | be the polar decom-
positions of T, S and |T |V |S|, respectively. Then |T ||S∗| = WV ∗ | |T ||S∗| | is the polar
decomposition of |T ||S∗|.
Proof. Since

|T ||S∗| = |T |V |S|V ∗ = W | |T |V |S| |V ∗,

we have

(|T ||S∗|)∗(|T ||S∗|) = V | |T |V |S| |W ∗W | |T |V |S| |V ∗

= V | |T |V |S| |2 V ∗.

Hence | |T ||S∗| | = V | |T |V |S| |V ∗ and

|T ||S∗| = W | |T |V |S| |V ∗

= WV ∗V | |T |V |S| |V ∗ = WV ∗ | |T ||S∗| | .

[Claim 1] WV ∗ is a partial isometry.
Let V x = 0. Then |S|x = 0. Hence |T |V |S|x = 0 and Wx = 0. Then kerV ∗V =

kerV ⊂ kerW = kerW ∗W and [ran W ∗W ] ⊂ [ran V ∗V ]. Hence V ∗V W ∗W = W ∗W .
Therefore WV ∗(WV ∗)∗WV ∗ = W (V ∗V W ∗W )V ∗ = WW ∗WV ∗ = WV ∗.

[Claim 2] kerWV ∗ = ker | |T ||S∗| |.
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x ∈ kerWV ∗ ⇐⇒ V ∗x ∈ kerW = ker | |T |V |S| |
⇐⇒ | |T ||S∗| |x = V | |T |V |S| |V ∗x = 0
⇐⇒ x ∈ ker | |T ||S∗| | .

Theorem 4.2. Let T = U |T |, S = V |S| and |T |V |S| = W | |T |V |S| | be the polar decom-
positions of T, S and |T |V |S|, respectively. Then TS = UW |TS| is the polar decomposition
of TS.

Proof. It is clear that TS = U |T |V |S| = UW |TS|.
[Claim 1] UW is a partial isometry.
Let Ux = 0. Then |S|V ∗|T |x = 0 and W ∗x = 0. Hence [ran WW ∗] ⊂ [ran U∗U ] and

U∗UWW ∗ = WW ∗. Then

UW (UW )∗UW = UWW ∗U∗UW = UWW ∗W = UW.

[Claim 2] kerUW = ker |TS|.
Let x ∈ kerUW . Then Wx ∈ ker |T | and (|T |V |S|)∗Wx = 0. Hence W ∗Wx = 0 and

Wx = 0. Then |T |V |S|x = 0 and TSx = 0. Hence |TS|x = 0. Conversely, if |TS|x = 0,
then TSx = 0. Hence |T |V |S|x = 0 and Wx = 0. Thus x ∈ kerUW .

Theorem 4.3. Let T be a class A operator and T = U |T | and |T ||T ∗| = W | |T ||T ∗| | be
the polar decompositions of T and |T ||T ∗|. Then UW is a quasinormal partial isometry.

Proof. As shown in the proof of Theorem 1.2 of [7], T (1, 1) = |T |U |T | is semi-hyponormal
with the polar decomposition U∗UWU | |T |U |T | |. Then ker |T |U |T | ⊂ ker |T |U∗|T | or
kerU∗UWU ⊂ kerU∗W ∗U∗U . Let U∗UWUx = 0. Then U∗W ∗U∗Ux = 0 and so
UU∗W ∗U∗Ux = 0. Since kerUU∗ ⊂ ker | |T ||T ∗| | = kerW , WW ∗U∗Ux = 0 and so
W ∗U∗Ux = 0. Then 0 = |T ∗||T |U∗Ux = |T ∗||T |x and W ∗x = 0. Thus kerU∗UWU ⊂
kerW ∗ or [ran (WW ∗)] ⊂ [ran U∗W ∗U∗UWU ]. Then U∗W ∗U∗UWUWW ∗ = WW ∗

and so U∗W ∗U∗UWUW = W . Since kerUU∗ ⊂ kerW ∗W , UU∗W ∗W = W ∗W and so
UU∗W ∗ = W ∗. Hence

UW = UU∗W ∗U∗UWUW

= W ∗U∗UWUW = (UW )∗(UW )2.

If Ux = 0, then |T ∗||T |x = 0 or W ∗x = 0. Therefore [ran WW ∗] ⊂ [ran U∗U ]. This implies
U∗UWW ∗ = WW ∗ and so U∗UW = W . Hence UW (UW )∗UW = UWW ∗U∗UW =
UWW ∗W = UW . This completes the proof.

Theorem 4.4. Let T = U |T | be binormal, i.e., |T | commutes with |T ∗|, and kerT =
kerT (s, t). Then T (s, t) has the polar decomposition given by T (s, t) = U |T (s, t)|.
Proof. Since T is binormal, an application of Theorem 2.3 of [10] shows that T (s, t) =
U∗U2|T (s, t)| is the polar decomposition of T (s, t). Consequently, U∗U2 is a partial isometry
and so U2 turns out to be a partial isometry. If U2x = 0 then U∗U2x = 0 and therefore
T (s, t)x = 0. That Ux = 0 follows from the kernel condition. Hence kerU2 = kerU . Thus
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we have two projections U∗U and U∗2U2 acting on the same range space. This means
U∗U = U∗2U2. Since U is a contraction, we see that for all x ∈ H,

‖U∗U2x − Ux‖2 = 〈U∗U2x,U∗U2x〉 − 2〈U2x,U2x〉 + 〈Ux,Ux〉
≤ ‖Ux‖2 − ‖U2x‖2 = 0.

Hence U∗U2 = U . Therefore T (s, t) = U |T (s, t)|. Since kerT = ker |T (s, t)|, the result
follows.

Theorem 4.5. Let T = U |T | and |T |U |T | = V | |T |U |T | | be the polar decompositions of
T and |T |U |T |, respectively. Then (T ∗) ˆ has the polar decomposition given by (T ∗) ˆ =
UV ∗U∗| |T ∗|U∗|T ∗| |1/2.

Proof. In view of Theorem 2.1, it is enough to show that the operator |T ∗|U∗|T ∗| has the
polar decomposition given by |T ∗|U∗|T ∗| = UV ∗U∗| |T ∗|U∗|T ∗| |. Now

|T ∗|U∗|T ∗| = U |T |U∗|T |U∗ = U(| |T |U |T | |V ∗)U∗

= UV ∗(V | |T |U |T | |V ∗)U∗ = UV ∗| |T |U∗|T | |U∗

= UV ∗U∗[U(|T |U |T |2U∗|T |)1/2U∗]

= UV ∗U∗[U |T |U |T |2U∗|T |U∗]1/2

= UV ∗U∗|T ∗2| = UV ∗U∗| |T ∗|U∗|T ∗| |.

Next we show that UV ∗U∗ is a partial isometry. Since kerU ⊂ kerV and kerU ⊂ kerV ∗,
one can show that U∗UV = V and U∗UV ∗ = V ∗. Therefore (UV ∗U∗)(UV ∗U∗)∗(UV ∗U∗) =
UV ∗V V ∗U∗ = UV ∗U∗. This means that UV ∗U∗ is a partial isometry. Finally,

UV ∗U∗x = 0 ⇐⇒ U∗UV ∗U∗x = 0
⇐⇒ V ∗U∗x = 0
⇐⇒ |T |U∗|T |U∗x = 0

⇐⇒ |T ∗2|2x = 0.

Thus we have shown that kerUV ∗U∗ = ker |T ∗2|, which finishes the proof.
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[3] M. Chō and T. Yamazaki, An operator transform from Class A to the class of hyponormal
operators and its applications, Integr. Equat. Oper. Th., 53 (2005) 497–508.

[4] M. Fujii, S. Izumino and R. Nakamoto, Class of operators determined by the Heinz-Kato-Furuta
inequality and Holder-MaCarthy inequality, Nihonkai Math. J., 5 (1994) 61–67.

[5] M. Fujii, D. Jung, S.H. Lee, M.Y. Lee and R. Nakamoto, Some classes of operators related to
paranormal and log-hyponormal operators, Math. Japonica, 51 (2000) 395–402.

[6] T. Furuta, On the class of paranormal operators, Proc. Japan Acad., 43 (1967) 594–598.



PUTNAM’S INEQUALITY FOR CLASS A OPERATORS 621

[7] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J.
Mathematics, 1(1999), 149–165.

[8] M. Ito, Several properties on class A including p-hyponormal and log-hyponormal operators,
Math. Inequalities and Appl., 2(1999), 569–578.

[9] M. Ito and T. Yamazaki, Relations between two operator inequalities (B
r
2 ApB

r
2 )

r
p+r ≥ Br and

Ap ≥ (A
p
2 BrA

p
2 )

p
p+r and their applications, Integr. Equat. Oper. Th., 44(2002), 442–450.

[10] M. Ito, T. Yamazaki, and M. Yanagida, On the polar decomposition of the product of two
operators and its applications, Integr. Equat. Oper. Th., 49(2004), 461–472.

[11] S. M. Patel, A note on p-hyponormal operators for 0 < p < 1, Integral Equations and Operator
Theory, 21(1995), 498–503.

[12] S.M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Quasi-normality and Fuglede-
Putnam theorem for A(s, t) operators, Nihonkai Math. J., 17(2006), 49–67.

[13] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z., 116(1970), 323–330.

[14] K. Tanahashi, Putnam’s inequality for log-hyponormal operators, Integr. Equat. Oper. Th.,
48(2004), 103–114.

[15] A. Uchiyama, Weyl’s theorem for class A operators, Mathematical Inequalities and Applica-
tions, 1(2001), 143–140.

[16] A. Uchiyama, K. Tanahashi and J.I. Lee, Spectrum of class A(s, t) operators, Acta Sci. Math.
(Szeged), 70(2004), 279–287.

Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558
Japan

E-mail ; tanahasi@tohoku-pharm.ac.jp


