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POWER PROPERTIES OF EMPIRICAL LIKELITHOOD FOR
STATIONARY PROCESSES
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ABSTRACT. In this paper we discuss the second order power properties of empirical
likelihood for stationary processes. The asymptotic distribution of empirical likelihood
ratio statistics under a sequence of local alternatives is given.

1. Introduction. Since its introduction by Owen (1988, 1990), empirical likelihood has
become a useful tool for nonparametric inference. It is well known that the empirical
likelihood ratio statistic inherits a number of properties of the parametric likelihood ratio
statistic. Owen has shown that the empirical likelihood ratio statistic has limiting chi-
squared distribution. Qin and Lawless (1994) connected the theories of empirical likelihood
and general estimating equations. Hence using empirical likelihood ratio statistics it is
possible to obtain tests and confidence regions for a wide range of problems, including
linear models (Owen, 1991). Another property of empirical likelihood which also resembles
that of a parametric likelihood is Bartlett correction; see for example Hall and La Scala
(1990) for the case of the mean parameters, DiCiccio, et al (1991) for the case of smooth
functions of means, Chen (1993, 1994) for linear regression model, Chen and Cui (2006) in
the presence of nuisance parameters.

For dependent data, Monti (1997) applied the empirical likelihood approach to the
derivative of the Whittle likelihood. Kitamura (1997) considered blockwise empirical likeli-
hood ratios based on data blocks rather than individual observations. Recently, Nordman
and Lahiri (2006) introduced a version of empirical likelihood based on the periodogram
and spectral estimating equations. They elucidated the asymptotic properties of frequency
domain empirical likelihood for linear processes exhibiting both short- and long-range de-
pendence.

In this paper we consider the second order power properties of empirical likelihood for
stationary processes. Section 2 provides a survey of frequency domain empirical likelihood
which is due to Nordman and Lahiri (2006). Section 3 gives the asymptotic distribution
of empirical likelihood ratio statistics under a sequence of local alternatives. The proofs of
results are relegated to Section 4.

2. Frequency domain empirical likelihood. Consider inference on a parameter § =
(0',...07) € © C RP based on a time stretch X1,..., X, with spectral density f. We
suppose that information about 6 exists through a system of general estimating equations.
Let

Go(A) = (91.6(N); - gpo(N))"-
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We assume that Gy satisfies the spectral moment condition

T

(1) Goo (A f(A)dA =0,

—T
where 6y is the true parameter of 6.
Example 1. Consider interest in the autocorrelation function p(m) = v(m)/v(0) at lag

m > 0, that is § = p(m). One can select Gy(\) = (/™ + e~¥"}) /2 — § for autocorrelation
inference, because of

s

Go(A)f(N)dX = ~(m) = 0~(0) = 0.

—T

To obtain confidence regions for €, we define
_ max{H my | S w,Go(0)Ea(A) = 0., > 0.3 wy = 1},
Jj=1 j=1 j=1

where \; = 27mj/n and I,(\) = (2mn) >}, X exp(itA)|?. For given 6, a unique maxi-
mum ex1stb if 0 is inside the convex hull of the point Go(A1) L, (A1), ..., Ge(An) L (A\n). An
explicit expression for R, (6) can be derived by a Lagrange multlpher argument. Let

L= Zlog nw;) — nt' ZwﬂG(’ +7(Zw]—1>

where t = (t!,...,t?)" and 7 are Lagrange multipliers. Setting to zero the partial derivative
of £ with respect to w; gives

oL 1

— = — —nt'Go(N\j) (A =0, j=1,...,n.

aijjne()()ﬂw j=1....n
So

" oL
0= i, =
from which v = —n. We may therefore write
1 1

1 i=1.....n
YT T GOy T

The restriction Y77 w;Go(\;)In();) = 0 yields p equations

n

1 (Aj) _
2) n ; 1+ t’Gg L(\) 0,

from which ¢ can be determined in terms of §. Thus the empirical log likelihood ratio for 6
is defined as

(3) log Ry (0) = — > log{1 +t'Ga(A;)1n();)}-

Since analytic solution of equations (2) and (3) can rarely attained, we have to derive
an asymptotic expansion for —2log R,,(0). Henceforth we assume the following condition.
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Assumption 1. (i) {X;} is a real-valued linear process generated by

o)
Xt: E Aj€t—j,
Jj=0

where ¢; are independent identically distributed random variables with Ele:] = 0,
E[e?] = 02 and finite absolute moments.

(i) a; (j =0,%1,...,) satisfy
D (57 ay] < oo,
7=0

for some 0 > 0.
(iii) The functions g;6(A) (j =1,...,p) are even and bounded, that is
95.6(N) = gje(=A),  lgze(N)] < M,
for M > 0.
(iv) gj,6(A) is continuously three times differentiable with respect to 6 for A € [—m, 7).

(v) The (p x p) matrix W (6y) = {W;;(6o)} is positive definite, where

Wiy(0) = — / " 06 (Ng50(N SN dA.

2 J_,

Assumption 1 (ii) ensures that {X;} has the spectral density

1 & .
_ . g
FA) =5 2, @),
j=—o00
where v(j) = E[X;X;;| satisfies
D A+ )G < oo
j=—o00
To simplify the expansions that follow, we define
Vi ]k Zg]h (Ao) - gjkﬁ()‘l)E[In()‘l)kL

Zjyeju (0) = ﬁ Z{gﬁ,ﬁ()‘l) s oA I (M) = Vi, (0)}
=1

Henceforth we use the simpler notations Vj,...;,, Zj,...j., etc. if Vi ... (), Zj,...;,.(0), etc.
are evaluated at § = 6y. Similarly any function evaluated at the point § = 6; will be
distinguished by the addition of a tilde.

Note that

@ B{LOW} = fO0) = 2b(00) +o(n),
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where

=5 Z iy (G)e .

]_—oo

If = 0y + O(n~'/2), then, from (1)

i JOVE{L(A)} = O(1).

%\

Solving (2) gives, using the summation convention,

tt = —V”(Zj + Cj) — —V”Vklek(Zl + Cl)
(5) vn "

1 . .
S VIVIVEY (25 4 C5) (2 + Co) + 0p(n "),

where V% is the (i,j) component of the inverse matrix of {V;;}. Substitution of (5) into
(3) gives

g 1
—2log Ry (0) = VY (Zi + Ci)(Z; + Cj) — ﬁvlkV]lel(Zi +Ci)(Z; + C))
(6)

+ mviavijkCVQbC(Zi + Ci)(Zj + Cj)(Zk + Ck) + Op(n_l/Q).

3. Local power. To elucidate the local power of empirical likelihood, we consider testing
the null hypothesis that H : § = 6, against contiguous alternatives A : 6 = 6, = 6y+n"1/2h,
where h = (ht,..., hP)'.

First, we give the stochastic expansion of —2log R,,(6p) under 0 = 6;.

Lemma 1. The stochastic expansion of —2log R(6y) under 6 = 6; is given by

—21og Rn(ao) = Wij (Z~1 - Ai,aha)(ZNj - Ajvbhb)
D e~ ~ ~ - -
=W Wi o h(Zs = Aiah®)(Z; = Ajuh”)
1 Xrid fad 1 1 c ~ 1 a
+ —nW I(—2Z; ph® + 245 + A pch°hE)(Z; — A; oh®)
- %WikVNVﬂZkl(Z‘ — A;oh®)(Z; — Ajph?)
2 - . - . - -
—WIAWIWEW e (Zi — A ah®)(Zj — Ajuh®) (21 — Ay ch©
+3\/ﬁWWWWb( )N (Z; — Ajph”)(Zr — Ag,ch®)

+ Op(nil/z)v
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where W is the (i,7) component of the inverse matrix of {W;;},

Wiya(0) = = / " 00N Dags 0N F)2N,

2r J_,

Wi (6) = > / " 6 (Ng50 (NN FAA,

2 J_.

Zsa(0) = % " 0900 {Ta(N) — ELL ()]},
=1

T

A0) = Y9000 = 5 [ gsaVBAA
=1 -

1 ™
Aiaray(0) = 5 [ 04,0, 90 N F )N,

—T

and 8 . = 9/00% ... 9%

ay---ap

To describe the second order asymptotic properties of —2log R, (6y) we use the next
lemma.

Lemma 2. (i) cum[Z~i, ija] = VNVij@ +0(n1),
(i) cum[Z;, Zji) = 4Wii + O(n™1).

Let xp,a(z) is the distribution function for a non-central chi-square variate with degree
of freedom p and non-centrality parameter A. The following theorem gives the second-order
asymptotic expansion of the distribution function of —2log R,,(6p) under a sequence of local
alternatives 8 = 6y +n~1/2h.

Theorem 1. The distribution function of —2log R, (p) under a sequence of local alterna-
tives @ = 0y +n~'/2h has the asymptotic expansion

3
Py, yn-1/2p[—2log Rp(60) < 2] = xp,a(2) + n~4/? Z mjxp+2j,a(2) + o(n=1/?),
=0
where
4 1 arpbyc
m3 = §Uijk - gMijk B; o BjyBr,ch*h°hS,
2 1 4 3
mo = <_§Uijk + §Mijk>Bi,aBj,ka,chahth + (gUijj - §Mijj)Bi,ahaa
2 1
my = (_gUijkBi,a — g MijeBia + Ujk,a>Bj,ka,chahth + (Mij; — 2B;)B; o h*,
2 1 apbpc
mo = §UijkBi,aBj,b + EMijkBi,aBj,b +Ujk,aBjb — Brab | Br,ch"h’h

2 1 o
— <§Uijj + 5M¢jj>B¢7ah ,

A = B; o Biyh®h®, and B, 4, Uiji., Myji, etc. are defined in (12) and (14).
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Example 2. To observe power properties, we consider the following AR(1) model:
X;—aX; 1 =¢, la| <1, & ~iid. (0,0%), Elg’]=0.

Similarly as Example 1, we consider interest in the autocorrelation function p(m) = a™ at
lagm > 0, that is @ = p(m). One can select Gg()\) = ("™ +e~™*) /2—0 for autocorrelation

inference. Note that
S alhtm =) = (225) @ (m+ D
Y)Y J 1—a2 1—a2

j=—o0

=q(m) (say),

oo

Z Y1) (G2)v(m = 1 — j2)

J1,j2=—00

2N L (1) 4 L+2a°  1+44a®+at
“\1-a2) “ 2™ Rl (1-a?)?

= q2(m)  (say)

and 377 Go(Aj)f(N) = o(1). It is easily seen that

r(2m) =2 (m) + 546 ) a0},

Wina = =2(5- ) fa(m) - om0}
s =6 ) Lhastom) — 2asom + (3430 ) — (304 )i},
A = —;—; 1m_a:2 +o(1),
2
Ay = —;’—Wﬁ

Hence we obtain

AW (A 1h)?
ms = —

o Wt
g = 2 Wi (A11h)? | 4 Windiah
2 3 W113 3 W112 ?
_ 2 VVlll(Al,lh)3 W1171A1,12h3 AlAl,lh
mp = —— + _9 7
3 W113 W112 W11
mo = 2 Wi (A h)? + Wi A e 2 WinAiah
0 9 W113 W112 3 W112 )
2
A= M.
Wll

Consider the power function

P(ava) =1- P90+n—1/2h[_210g Rn(GO) < za]»
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with m = 1, 02 = 1, h = 1, n = 100, and significance level .. Figure 1 plotted the first
(solid) and the second (dashed) order approximations for the power function P(a,0.05)
with 0 < a < 0.8 given in Theorem 1. From this figure, we observe that the second order
approximation is more powerful than the first order approximation.

Power functions

1.0

0.8

0.6

0.4

0.2

— First order
—=—= Second order (n=100)

Figure 1: The power function P(a,0.05) with 0 < a < 0.8.

Figure 2 plotted the first (solid) and the second (dashed) order approximations for the
power function P(0.3,«) with 0 < o < 0.15. From this figure, we observe that the second
order approximation is more powerful than the first order approximation.

Power functions

0.15 0.20 0.25 0.30 0.35

0.10

— First order
——= Second order (n=100)

Figure 2: The power function P(0.3,«) with 0 < o < 0.15.
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4. Proof.
Proof of Lemma 1. Expanding g; ¢,(A\) in a Taylor series at § = 61, we get

1 1
0aGi 6, (AR + %agbgi,%()\)hahb + O3/,

(7) Gio0(N) = gio,(N) — NG

Since
9i,00 (M [Ln(A) = E{In (M)} = gi0, N[ In(N) = E{In(N)}]

- %aagi,el (WA (N) — E{T. (W)}

+ 50 VBB () = E{L (O] + oy(n ™)
(8) Zi=17; - %Z@ah“ + 0p(n1/?).

From (4) and (7), we have

Ci= = igi,%(Az){f(Az) ~ b0} + o(n™?)

= __Zaagz o (AR f(N) + Zgz 01 (M) { (\) — _b()\l)}
(9) =1

1 n )
MY Z 09,00 AR F(N) + o(n™1/?)

= —A; h® —A —Amhahb —1/2y,
+\/ﬁ —|—2\/— b +o(n )

Also it is easily seen that

~ 1 ~ -
Vij = Wij — —=(Wija + Wjia)h® +O0(n™1h),
(10) J J \/ﬁ J J

Vil = Wijk + O(n_l/Q).
Substituting (8)-(10) into (6), after simple algebra, we obtain Lemma 1.
Proof of Lemma 2. (i) Recalling (1) under 6 = 6, we have

J. 1 <
cum[Zi, Zial == > g, (M,)0ags6 (A, )eum(I, (A, ), In(As,)]

l1,l2=1

- % Z 9i.6:(M)agj 6, A f)?+ 0™

=1
= Wij,a + O(?”L_l).
(ii) Note that

Cum[‘[n ()‘11)7 In()‘l2)2] = Cum[‘[n ()‘11)7 I’ﬂ()‘lz)? I, ()‘12)]
+ 2cum[l,, (N, ), In (A, )Jeum[ I, (Ag,)]-
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From Theorem 4.3.2 in Brillinger (2001) it is seen that

1 n
Cum[Zi7 Z]k] = - Z 9i,0, ()\ll )gjﬂl ()\l2)gk‘,91 ()‘lz)cum[jn()‘ll)vIn()‘lz)Q]

l1,l2=1

% > gi0,(A)gj0. (M) gre, (M) F ()P +O0(n™)

=1

4 -
= §Wijk + O(n_l).

O

Proof of Theorem 1. Since the actual calculation procedure is formidable, we give a sketch
of the derivation. First, we evaluate the characteristic function of —2log R,,(6o),

(11) ¢n(§,h) = E[exp{_2t IOan(GO)}]a

where t = (—1)Y/2¢. Let D(0) = {D;;(6)} be the unique lower triangular matrix with
positive diagonal such that W (6) = D(0)D(#)’. We consider the transformation
Y;(0) = DY(0)Z;(0),  Yia(0) = DY(0)Zja(0), Yig(6) = D™ (6)D"(0) Zas(0),
(12)  Bi(0) = DY (0)A;(0), Bia(0) = DV(0)4;a(0), Bian(0) = D7 (0)A;.a6(0),

(

0) = D™ (0) D7 (0)Wi1,a(0),  Uiji(6) = D™ (0)D*(0)D*(0) Wape (),

where D% (f) is the (i,7) component of the inverse matrix of D(#). Then the stochastic
expansion of —2log R,,(fy) can be rewritten as

—2log R, (60) = (Y; — Bi.ah®)(Y; — B;yh?)

- %Uij,chcm — B oh®)(Y; — B, yh%)
L (CoFi b+ 2B + By hE) (Vi — Brah®)
(13) Ul )
- ﬁym‘( i = Biah)(Y; — Bjph”)
+ %ffi]k(ﬁ B;uh®) (Y = Bjph")(Yy — By, ch°)
+ 0,(n71/?)

The asymptotic moments (cumulants) of Y; are evaluated as follows:

cum[Y;, Y;] = ;5 4+ o(n~1/?),
(14) SR 1 /4~ - _
cuml[Y;,Y;, Yy] = %(gUijk + Mijk) +o(n 1/2),
where

M;j1(8) = D*(6) D7 (6) D*(6) Nape (6),

Nijr(0) = 4% / 9i.0(N)gj.0(1)gr.0 (A + ) f3(A, 1) f3(—= A, —p)dAdps,

—Tr
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and f3(A, p) is the third order cumulant spectral density of {X;}.

We now evaluate the characteristic function (11) using the stochastic expansion (13).
We take the expectation in two steps. First we consider the conditional expectation given
}71, - ,17,, and then we evaluate the expectation with respect to }71, . ,}7,,. Relevant con-
ditional expectations (see Takemura and Kuriki, 1996) are

Thus we can carry out the calculation of the conditional expectation of the characteristic
function.

(€ h) = E [exp

—

HYi = Biah®)(Vi - Bish") }

2 = (v > a\(vy >
x {1 + Ui (Vi = Biah) (Y - Bjoh?)

1 7 ¥, > ® [AYAY, > a
+ %(—wﬂ,bhbyj +2B; + B pch"h®)(Y; — B; oh®)
4 e s
- ﬁUijkYk(Yi — Bioh®)(Y; — Bjyh")
2 - ¥ B, a\ (Vv B, ¥ B, c —
+ mUijk(Yi = By.ah®)(Y; — Bjuh")(Ye — Br.ch )}} +o(n /%),

From (14) and the Edgeworth expansion of Yi,...,Y, (see Section 4.1 in Taniguchi and
Kakizawa, 2000), we obtain

B; oBi phoh? - 1< » -
(15) b (6.6) = exp( P2 ) (1 - 20 W{H%;m;(l—zt) A otara,

where
3 5 1y 3 R 5 apbyc
mg = §U1]k - g ik Bi,aBj,ka,ch hhe,
5 25 1y B 1 » apbyc e 3~ ~ o
my = —gUzgk + EMijk B; o BjyBr,ch"h’he + gUijj _ §Mijj B;ohe,
2~ o~ - 1~ - ~ ) ) i
mj = (—gUijkBi,aBj,b - §MijkBi,aBj,b +2U;1.aBj b — Br.ab | Br.ch®hPhe
+ (Mij; — 2B:)B; oh",

2 - 1 - L .
mi = (_Uijk + EMijk) (Bi,o By Bi,ch*h°h¢ — 3B; 4h6y).

We expand the right hand side of (15) in a Taylor series at 8 = 6y, and then inverting (15)
by Fourier inverse transform we can prove Theorem 1. O
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