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Abstract. In this paper, we characterize the class of ω1-strongly countable-dimensional
metrizable spaces by a special metric. A characterization of locally finite-dimensional
metrizable spaces is also obtained.

1 Introduction If every finite open cover of a metrizable space X has a finite open
refinement of order ≤ n + 1, then X has covering dimension ≤ n, dimX ≤ n. For ε > 0,
we let Sε(x) denote the ε-ball {y ∈ X | ρ(x, y) < ε} about x.

In [5], [6] and [7], J. Nagata gave a characterization of metrizable spaces of dim ≤ n by
a special metric.

Theorem 1.1 (J. Nagata [5], [6], [7]) The following conditions are equivarent for a metriz-
able space X:

(1) dimX ≤ n.
(2) There is an admissible metric ρ satisfying the following condition: for every ε > 0,

every point x of X and every n + 2 many points y1, ..., yn+2 of X with ρ(Sε/2(x), yi) < ε
for each i = 1, ..., n + 2, there are distinct natural numbers i and j such that ρ(yi, yj) < ε.

(3) There is an admissible metric ρ satisfying the following condition: for every point x
of X and every n+2 many points y1, ..., yn+2 of X, there are ditinct natural numbers i and
j such that ρ(yi, yj) ≤ ρ(x, yj).

For the case of the separable metrizable spaces, J. de Groot [2] gave the following
characterization.

Theorem 1.2 (J. de Groot [2]) A separable metrizable space X has dimX ≤ n if and only
if X can introduce an admissible totally bounded metric satisfying the following condition:

For every point x of X and every n + 2 many points y1, ..., yn+2 of X, there are natural
numbers i, j and k such that i �= j and ρ(yi, yj) ≤ ρ(x, yk).

A metrizable space X is strongly countable-dimensional if X can be represented as a
countable union of closed finite-dimensional subspaces. Let N denote the set of all natural
numbers.

In [8], J. Nagata extended Theorems 1.1 and 1.2 to strongly countable-dimensional
metrizable spaces.

Theorem 1.3 (J. Nagata [8]) The following conditions are equivarent for a metrizable
space X:

(1) X is strongly countable-dimensional.
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(2) There is an admissible metric ρ satisfying the following condition: for every point x
of X, there is an n(x) ∈ N such that for every n(x) + 2 many points y1, ..., yn(x)+2 of X,
there are ditinct natural numbers i and j such that ρ(yi, yj) ≤ ρ(x, yj).

(3) There is an admissible metric ρ satisfying the following condition: for every point x
of X, there is an n(x) ∈ N such that for every n(x) + 2 many points y1, ..., yn(x)+2 of X,
there are natural numbers i, j and k such that i �= j and ρ(yi, yj) ≤ ρ(x, yk).

In [3], Y. Hattori characterized the class of strongly countable-dimensional spaces by
extending the condition (2) of Theorem 1.1.

Theorem 1.4 (Y. Hattori [3]) A metrizable space X is strongly countable-dimensional if
and only if X can introduce an admissible metric ρ satisfying the following condition:

For every point x of X, there is an n(x) ∈ N such that for every ε > 0, and every n + 2
many points y1, ..., yn(x)+2 of X with ρ(Sε/2(x), yi) < ε for each i = 1, ..., n(x) + 2, there
are distinct natural numbers i and j such that ρ(yi, yj) < ε.

2 ω1-strongly countable-dimensional spaces In this section, we characterize the
class of ω1-strongly countable-dimensional metrizable spaces by a special metric. A char-
acterization of locally finite-dimensional metrizable spaces is also obtained.

Definition 2.1 A metrizable space X is locally finite-dimensional if for every point x ∈
X there exists an open subspace U of X such that x ∈ U and dimU < ∞.

The first infinite ordinal number is denoted by ω and ω1 is the first uncountable ordinal
number.

Definition 2.2 A metrizable space X is called an ω1-strongly countable-dimensional
space if X =

⋃{Pξ | 0 ≤ ξ < ξ0}, ξ0 < ω1, where Pξ is an open subset of X − ⋃{Pη | 0 ≤
η < ξ} and dimPξ < ∞.

For a metrizable space X and a non-negative integer n, we put

Pn(X) =
⋃

{U | U is an open subspace of X and dimU ≤ n}.

We notice that for each ordinal number α, we can put α = λ(α) + n(α), where λ(α) is a
limit ordinal number or 0 and n(α) is a non-negative integer.

Definition 2.3 Let X be a metrizable space and α either an ordinal number ≥ 0 or the
integer −1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sind X = −1 if and only if X = ∅.
(2) sind X ≤ α if X is expressed in the form X =

⋃{Pξ | ξ < α}, where Pξ = Pn(ξ)(X −⋃{Pη | η < λ(ξ)}).
Furthermore, if sindX is defined, we say that X has strong small transfinite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sindX ≤ ω (R.
Engelking [1]). And X is ω1-strongly countable-dimensional if and only if there is a ξ0 < ω1

such that sind X ≤ ξ0.
Theorem 2.9 is a main theorem. Thus we characterize the class of ω1-strongly countable-

dimensional metrizable spaces by a special metric. To prove this theorem, we need Theorem
2.4.
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Theorem 2.4 Let α be an ordinal number with α < ω1 and let n be a non-negative integer.
The following conditions are equivarent for a metrizable space X:

(a) sind X ≤ ωα + n.
(b) There are an admissible metric ρ for X and a family {Xβ | 0 ≤ β ≤ α} of closed

sets of X satisfing the following conditions: (b-1) X0 = X, Xβ ⊃ Xβ′ for β ≤ β′ ≤ α,
Xβ =

⋂{Xβ′ | β′ < β} if β is a limit, and Xα = ∅ if n = 0. (b-2) For every point x of
X there are an open neighborhood U(x) of x in Xβ(x), where β(x) = max{β | x ∈ Xβ},
and an n(x) ∈ Nβ(x) such that for every ε > 0, every point x′ of U(x) and every n(x) + 2
many points y1, ..., yn(x)+2 of X with ρ(Sε/2(x′), yi) < ε for each i = 1, ..., n(x) + 2, there
are distinct natural numbers i and j such that ρ(yi, yj) < ε, where

Nβ(x) =
{

N, if β(x) < α,
{n − 1}, if β(x) = α.

(c) There are an admissible metric ρ for X and a family {Xβ | 0 ≤ β ≤ α} of closed sets
of X satisfing the following conditions: (c-1) X0 = X, Xβ ⊃ Xβ′ for β ≤ β′ ≤ α, Xβ =⋂{Xβ′ | β′ < β} if β is a limit, and Xα = ∅ if n = 0. (c-2) For every point x of X there are
an open neighborhood U(x) of x in Xβ(x), where β(x) = max{β | x ∈ Xβ}, and an n(x) ∈
Nβ(x) such that for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of
X, there are distinct natural numbers i and j such that ρ(yi, yj) ≤ ρ(x′, yj), where

Nβ(x) =
{

N, if β(x) < α,
{n − 1}, if β(x) = α.

Remark 2.5 Let {Xβ | 0 ≤ β ≤ α} be a family of closed sets of X satisfing the condition
(b-1). Then we shall show that for every point x of X , there is a maximum element β(x)
of {β | x ∈ Xβ}. Indeed, if x ∈ Xλ(α), then β(x) = max{β | x ∈ Xβ , λ(α) ≤ β ≤ α}. Now,
we suppose that x ∈ Xλ(α), there is a minimum element β0 > 0 of {β | x /∈ Xβ}. Assume
that β0 is limit. By the condition (b-1), x ∈ ⋂{Xβ | β < β0} = Xβ0 . This contradicts the
definition of β0. Therefore β0 is not limit and hence β(x) = β0 − 1.

To prove this theorem, we need the following lemmas. Essentially, the following lemma
is the same as [3; Lemma 1.5]. By a minor modification in the proof of [3; Lemma 1.5], we
obtain the following lemma.

Lemma 2.6 ([3; Lemma 2.5], [8; Lemma 1]) Let n be a non-negative integer and let {Fm | m =
0, 1, ...} be a closed cover of a metrizable space X such that dim Fm ≤ (n − 1) + m,
Fm ⊂ Fm+1 for m = 0, 1, .... Then for every open cover U of X, there are a sequence V1,
V2, ... of discrete families of open sets of X and an open cover W of X which satisfy the
following conditions:

(1)
⋃{Vk | k ∈ N} is a cover of X.

(2)
⋃{Vk | k ∈ N} refines U .

(3) If W ∈ W satisfies W ∩ Fm �= ∅, then W meets at most one member of Vk for k ≤
(n+0)+(n+1)+...+(n+m) and meets no member of Vk for k > (n+0)+(n+1)+...+(n+m).

Let Q∗ denote the set of all rational numbers of the form 2−m1 + ... + 2−mt , where
m1,...,mt are natural numbers satisfying 1 ≤ m1 < ... < mt.

Essentially, the following lemma is the same as [3; Lemma 1.6]. By a minor modification
in the proof of [3; Lemma 1.6], we obtain the following lemma.

Lemma 2.7 ([3; Lemma 2.6], [8; Lemma 3]) Let n be a non-negative integer and let {Fm | m =
0, 1, ...} be a closed cover of a metrizable space X such that dim Fm ≤ (n − 1) + m,
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Fm ⊂ Fm+1 for m = 0, 1, .... Then for every q ∈ Q∗, there is an open cover S(q) which
satisfies the following conditions:

(1) S(q) =
⋃∞

i=1 Si(q), where each Si(q) is discrete in X.
(2) {St(x,S(q)) | q ∈ Q∗} is a neighborhood base at x ∈ X.
(3) Let p, q ∈ Q∗ and p < q. Then S(p) refines S(q).
(4) Let p, q ∈ Q∗ and p < q. If S1 ∈ Si(p) and S2 ∈ Si(q), then S1∩S2 = ∅ or S1 ⊂ S2.
(5) Let p, q ∈ Q∗ and p + q < 1. Let S1 ∈ S(p), S2 ∈ S(q) and S1 ∩S2 �= ∅. Then there

is an S3 ∈ S(p + q) such that S1 ∪ S2 ⊂ S3.
(6) For every q ∈ Q∗ and every S ∈ ⋃{Si(q) | i > (n + 0) + (n + 1) + ... + (n + m)},

S ∩ Fm = ∅.

For a cover U of a set X , we denote U∗ = {St(U,U) | U ∈ U} and U∗∗ = (U∗)∗, where
St(U,U) =

⋃{V ∈ U | U ∩ V �= ∅}.

Proof of Theorem 2.4. We prove the implication (a) ⇒ (c). Let sind X ≤ ωα + n. We
put

Yγ = X − ⋃{Pξ | ξ < γ} for γ ≤ ωα + n
and

Xβ = Yωβ for β ≤ α.

Clearly, the family of closed sets {Xβ | 0 ≤ β ≤ α} satisfies the condition (c-1). Note
that Xβ is a closed set of X and Pωβ+m is an open set of Xβ such that Pωβ+m ⊂ Pωβ+(m+1)

for m = 0, 1, .... Also Pωα+(n−1) is a closed set of X . Hence for each β ≤ α there is a family
{Wωβ+m | m = 0, 1, ...} of open sets of Xβ such that

(1) Wωβ+m ⊂ Pωβ+m,

(2) Wωβ+m ⊂ Wωβ+(m+1),

(3)
⋃∞

m=0 Wωβ+m =
⋃∞

m=0 Pωβ+m.

Since {β | 0 ≤ β < α} is countable, there is a mapping f from N onto {β | 0 ≤ β < α}.
For each m = 0, 1, ..., we put

V0 = Pωα+(n−1),

V1 = Pωα+(n−1) ∪ Wωf(1)+(n−1)+1,

V2 = Pωα+(n−1) ∪ Wωf(1)+(n−1)+2 ∪ Wωf(2)+(n−1)+2,
...

Vm = Pωα+(n−1) ∪ Wωf(1)+(n−1)+m ∪ Wωf(2)+(n−1)+m ∪ ... ∪ Wωf(m)+(n−1)+m,
...

Then V0, V1, ... are subsets of X satisfing the following conditions:

(4) Vm ⊂ Vm+1.

(5) dimVm ≤ (n − 1) + m.

(6) X =
⋃∞

m=0 Vm.

The latter half of the proof is similar to the proof of [3; Theorem 1.4]. By Lemma 2.7,
for every q ∈ Q∗, there is an open cover S(q) which satisfies the following conditions:

(7) S(q) =
⋃∞

i=1 Si(q), where each Si(q) is discrete in X .
(8) {St(x,S(q)) | q ∈ Q∗} is a neighborhood base at x ∈ X .
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(9) Let p, q ∈ Q∗ and p < q. Then S(p) refines S(q).
(10) Let p, q ∈ Q∗ and p < q. If S1 ∈ Si(p) and S2 ∈ Si(q), then S1∩S2 = ∅ or S1 ⊂ S2.
(11) Let p, q ∈ Q∗ and p + q < 1. Let S1 ∈ S(p), S2 ∈ S(q) and S1 ∩ S2 �= ∅. Then

there is an S3 ∈ S(p + q) such that S1 ∪ S2 ⊂ S3.
(12) For every q ∈ Q∗ and every S ∈ ⋃{Si(q) | i > (n + 0) + (n + 1) + ... + (n + m)},

S ∩ Vm = ∅.
We define a function ρ : X × X → [0, 1] as follows: For x, y ∈ X ,

ρ(x, y) =
{

1, if y /∈ St(x, S(q)) for every q ∈ Q∗,
inf{q ∈ Q∗ | y ∈ St(x, S(q))}, otherwise.

It follows that ρ is an admissible metric for X by the proof of [9; Ch. 5.3, (D)]. To prove that
the metric ρ and the family of closed sets {Xβ | 0 ≤ β ≤ α} satisfy the condition (c-2), let x
be a point of X . Put n0 = min{m | x ∈ Vm} and n(x) = (n+0)+(n+1)+ ...+(n+n0)−1.
Clearly, if n0 = 0 then x ∈ V0 = Pωα+(n−1) ⊂ Xα.

Now we shall show that if n0 > 0, then x ∈ Wωβ(x)+(n−1)+n0 ⊂ Xβ(x). By the definition
of n0, x ∈ Vn0 = Pωα+(n−1) ∪Wωf(1)+(n−1)+n0 ∪Wωf(2)+(n−1)+n0 ∪ ... ∪Wωf(n0)+(n−1)+n0 .
Since x /∈ Pωα+(n−1) by n0 > 0, there is a natural number i such that x ∈ Wωf(i)+(n−1)+n0 .
Hence x ∈ Wωf(i)+(n−1)+n0 ⊂ Pωf(i)+(n−1)+n0 ⊂ Xf(i) − Xf(i)+1. Also since β(x) =
max{β | x ∈ Xβ} < α, x ∈ Xβ(x) − Xβ(x)+1. Hence f(i) = β(x) and hence x ∈
Wωβ(x)+(n−1)+n0 ⊂ Xβ(x).

We put

U(x) =
{

Pωα+(n−1), if n0 = 0,
Wωβ(x)+(n−1)+n0 , if n0 > 0.

Then U(x) is an open neighborhood of x in Xβ(x). Let x′ be a point of U(x) and y1, ..., yn(x)+2

be points of X . We can assume that ρ(x′, yj) < 1 for each j = 1, ..., n(x) + 2. Let ε > 0
be given. For each j = 1, ..., n(x) + 2, there is a q(j) ∈ Q∗ such that ρ(x′, yj) ≤ q(j) <
ρ(x′, yj) + ε. Then, by the definition of ρ, there is an Sj ∈ S(q(j)) such that x′, yj ∈ Sj .
Let Sj ∈ Si(j)(q(j)). Then, by (12), there are distinct natural numbers j and k such that
i(j) = i(k). Assume that q(j) ≤ q(k). By (10), we obtain Sj ⊂ Sk. Hence yj, yk ∈ Sk and
hence ρ(yj , yk) ≤ q(k) < ρ(x′, yk)+ ε. Therefore, there are distinct natural numbers j and
k such that ρ(yj , yk) < ρ(x′, yk) + 1/m for each m ∈ N and hence ρ(yj, yk) ≤ ρ(x′, yk).
This completes the proof of the implication (a) ⇒ (c).

Next, we prove the implication (a) ⇒ (b). The proof is similar to the proof of [3;
Theorem 1.1]. We use the above notations. By Lemma 2.6, there is a sequence U1,U2, ... of
open covers of X which satisfies the following conditions.

(13) U∗∗
k+1 refines Uk for each k ∈ N.

(14) {St(x,Uk) | k ∈ N} is a neighborhood base at x ∈ X .
(15) For each x ∈ Vm and each k ∈ N, St2(x,U∗

k+1) meets at most (n + 0) + (n + 1) +
... + (n + m) members of Uk.

For each q = 2−m1 + ... + 2−mt ∈ Q∗ and each U ∈ Um1 , we put

S(U ; m1) = U ,
S(U ; m1, ...,mk) =St2(S(U ; m1, ...,mk−1), Umk

) for 2 ≤ k ≤ t,
S(U ; q) = S(U ; m1, ...,mt)

and
S(q) = {S(U ; q) | U ∈ Um1}.
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We define a function ρ : X × X → [0, 1] as follows: For x, y ∈ X ,

ρ(x, y) =
{

1, if y /∈ St(x, S(q)) for every q ∈ Q∗,
inf{q ∈ Q∗ | y ∈ St(x, S(q))}, otherwise.

It follows that ρ is an admissible metric for X (see the proof of [9; Ch. 5.3,(D)]). To prove
that the metric ρ and the family of closed sets {Xβ | 0 ≤ β ≤ α} satisfy the condition (b-2),
let x be a point of X . Put n0 = min{m | x ∈ Vm} and n(x) = (n+0)+(n+1)+...+(n+n0)−1.
We put

U(x) =
{

Pωα+(n−1), if n0 = 0,
Wωβ(x)+(n−1)+n0 , if n0 > 0.

Then U(x) is an open neighborhood of x in Xβ(x). Let x′ ∈ U(x), ε > 0 and y1, ..., yn(x)+2 ∈
X with ρ(Sε/2(x′), yi) < ε for each i = 1, ..., n(x) + 2. For each i = 1, ..., n(x) + 2, let xi be
a point of X such that ρ(x′, xi) < ε/2 and ρ(xi, yi) < ε. Put

δi = max{2ρ(x′, xi), ρ(xi, yi)}
and δ = max{δ | i = 1, ..., n(x) + 2}. Then there is a q = 2−m1 + ... + 2−mt ∈ Q∗ such
that δ < q < ε. Since ρ(x′, xi) < 2−(m1+1) + ... + 2−(mt+1), there is a Ui ∈ Um1+1 such
that x′, xi ∈ S(Ui; m1 + 1, ...,mt + 1). Hence xi ∈St(x′,U∗

m1+1). On the other hand, there
is a U ′

i ∈ Um1 such that xi, yi ∈ S(U ′
i ; m1, ...,mt). Therefore St(xi,Um1+1) ∩ U ′

i �= ∅ and
hence St2(x,U∗

m1+1)∩U ′
i �= ∅. By (15), there are distinct natural numbers i and j such that

U ′
i = U ′

j . Then yi, yj ∈ S(U ′
i ; m1, ...,mt) = S(U ′

j; m1, ...,mt). Therefore, ρ(yi, yj) ≤ q < ε.
This completes the proof of the implication (a) ⇒ (b).

Next, we prove the implication (c) ⇒ (a). Let ρ be an admissible metric for X and
{Xβ | 0 ≤ β ≤ α} be a family of closed sets of X which satisfy the conditions (c-1) and
(c-2).

We shall show that for every β ≤ α

(16) X −
⋃

{Pξ | ξ < ωβ} ⊂ Xβ.

The validity of (16) is clear for β = 0. To prove (16) by transfinite induction we assume
(16) for γ < β.

Let x /∈ Xβ . Then there are an open neighborhood U(x) of x in Xβ(x) and an n(x) ∈
Nβ(x) such that for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2

of X , there are distinct natural numbers i and j such that ρ(yi, yj) ≤ ρ(x′, yj). Since
x /∈ Xβ, β(x) < β.

If x ∈ ⋃{Pξ | ξ < ωβ(x)}, then x ∈ ⋃{Pξ | ξ < ωβ} by β(x) < β.

We shall also show that if x ∈ X −⋃{Pξ | ξ < ωβ(x)}, then x ∈ ⋃{Pξ | ξ < ωβ}. Since
U(x) is an open neighborhood of x in Xβ(x), by the induction hypothesis

V (x) = U(x) ∩ (X −
⋃

{Pξ | ξ < ωβ(x)})

is an open neighborhood of x in X−⋃{Pξ | ξ < ωβ(x)}. Also dimV (x) ≤ dimU(x) ≤ n(x)
by Theorem 1.1. Hence,

x ∈ V (x) ⊂ Pn(x)(X −
⋃

{Pξ | ξ < ωβ(x)})

= Pωβ(x)+n(x) ⊂
⋃

{Pξ | ξ < ω(β(x) + 1)}
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⊂
⋃

{Pξ | ξ < ωβ}.
Therefore for every β ≤ α, (16) holds. In particular,

(17) X −
⋃

{Pξ | ξ < ωα} ⊂ Xα.

We shall show that

X −
⋃

{Pξ | ξ < ωα} ⊂
⋃

{Pξ | ωα ≤ ξ < ωα + n}.

If n = 0 then Xα = ∅, and hence

X −
⋃

{Pξ | ξ < ωα} = ∅

by (17).
Assume that n > 0. Let x ∈ X −⋃{Pξ | ξ < ωα}. Then there is an open neighborhood

U(x) of x in Xβ(x) such that there is an n(x) ∈ Nβ(x) such that for every point x′ of U(x)
and every n(x) + 2 many points y1, ..., yn(x)+2 of X , there are distinct natural numbers i
and j such that ρ(yi, yj) ≤ ρ(x′, yj). Since x ∈ Xα by (17), β(x) = α. Hence U(x) is an
open neighborhood of x in Xα. By (17)

V (x) = U(x) ∩ (X −
⋃

{Pξ | ξ < ωα})

is an open neighborhood of x in X − ⋃{Pξ | ξ < ωα}. Also dim V (x) ≤ dim U(x) ≤ n(x)
by Theorem 1.1. Furthermore n(x) < n by n(x) ∈ Nα = {n − 1}. Hence,

x ∈ V (x) ⊂ Pn(x)(X −
⋃

{Pξ | ξ < ωα})

= Pωα+n(x) ⊂
⋃

{Pξ | ωα ≤ ξ ≤ ωα + n(x)}
⊂

⋃
{Pξ | ωα ≤ ξ < ωα + n}.

Therefore X =
⋃{Pξ | 0 ≤ ξ < ωα+n} and hence sindX ≤ ωα+n. This completes the

proof of the implication (c) ⇒ (a).

Fainally, the proof of the implication (b) ⇒ (a) is the same as the proof of the implication
(c) ⇒ (a). �

By Theorems 1.2 and 2.4, we obtain the following theorem.

Theorem 2.8 Let α be an ordinal number with α < ω1 and let n be a non-negative integer.
The following conditions are equivarent for a compact metrizable space X:

(a) sind X ≤ ωα + n.
(d) There are an admissible totally bounded metric ρ for X and a family {Xβ | 0 ≤

β ≤ α} of closed sets of X satisfing the following conditions: (d-1) X0 = X, Xβ ⊃ Xβ′

for β ≤ β′ ≤ α, Xβ =
⋂{Xβ′ | β′ < β} if β is a limit, and Xα = ∅ if n = 0. (d-

2) For every point x of X there are an open neighborhood U(x) of x in Xβ(x), where
β(x) = max{β | x ∈ Xβ}, and an n(x) ∈ Nβ(x) such that for every point x′ of U(x) and
every n(x) + 2 many points y1, ..., yn(x)+2 of X, there are natural numbers i, j and k such
that i �= j and ρ(yi, yj) ≤ ρ(x′, yk), where

Nβ(x) =
{

N, if β(x) < α,
{n − 1}, if β(x) = α.



504 M. MATSUMOTO

Proof. The implication (a) ⇒ (d) is obvious by the implication (a) ⇒ (c) of Theorem
2.4.

We prove the implication (d) ⇒ (a). Let ρ be an admissible metric for X and {Xβ | 0 ≤
β ≤ α} be a family of closed sets of X which satisfy the conditions (d-1) and (d-2). Let x
be a point of X . There are an open neighborhood U(x) of x in Xβ(x) and an n(x) ∈ Nβ(x)

such that for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of X ,
there are natural numbers i, j and k such that i �= j and ρ(yi, yj) ≤ ρ(x′, yk). Then
dimU(x) ≤ n(x) by Theorem 1.2. Hence the implication (d) ⇒ (a) follows from the proof
of the implication (c) ⇒ (a) of Theorem 2.4. �

By Theorem 2.4, we obtain the Main Theorem 2.9 and Theorem 2.10.

Theorem 2.9 The following conditions are equivalent for a metrizable space X:
(a) X is an ω1-strongly countable-dimensional space.
(b) There are an admissible metric ρ for X, an ordinal number α < ω1 and a family

{Xβ | 0 ≤ β ≤ α} of closed sets of X satisfing the following conditions: (b-1) X0 = X,
Xβ ⊃ Xβ′ for β ≤ β′ ≤ α and Xβ =

⋂{Xβ′ | β′ < β} if β is a limit. (b-2) For every point
x of X there are an open neighborhood U(x) of x in Xβ(x), where β(x) = max{β | x ∈ Xβ},
and an n(x) ∈ N such that for every ε > 0, every point x′ of U(x) and every n(x) + 2
many points y1, ..., yn(x)+2 of X with ρ(Sε/2(x′), yi) < ε for each i = 1, ..., n(x) + 2, there
are distinct natural numbers i and j such that ρ(yi, yj) < ε.

(c) There are an admissible metric ρ for X, an ordinal number α < ω1 and a family
{Xβ | 0 ≤ β ≤ α} of closed sets of X satisfing the following conditions: (c-1) X0 = X, Xβ ⊃
Xβ′ for β ≤ β′ ≤ α and Xβ =

⋂{Xβ′ | β′ < β} if β is a limit. (c-2) For every point x of X
there are an open neighborhood U(x) of x in Xβ(x), where β(x) = max{β | x ∈ Xβ}, and an
n(x) ∈ N such that for every point x′ of U(x) and every n(x)+2 many points y1, ..., yn(x)+2

of X, there are distinct natural numbers i and j such that ρ(yi, yj) ≤ ρ(x′, yj).
(d) There are an admissible metric ρ for X, an ordinal number α < ω1 and a family

{Xβ | 0 ≤ β ≤ α} of closed sets of X satisfing the following conditions: (d-1) X0 = X,
Xβ ⊃ Xβ′ for β ≤ β′ ≤ α and Xβ =

⋂{Xβ′ | β′ < β} if β is a limit. (d-2) For every point
x of X there are an open neighborhood U(x) of x in Xβ(x), where β(x) = max{β | x ∈ Xβ},
and an n(x) ∈ N such that for every point x′ of U(x) and every n(x) + 2 many points
y1, ..., yn(x)+2 of X, there are natural numbers i, j and k such that i �= j and ρ(yi, yj) ≤
ρ(x′, yk).

Proof. The conditions (a), (b) and (c) are equivalent by Theorem 2.4. The implication
(c) ⇒ (d) is obvious.

We prove the implication (d) ⇒ (a). Let ρ be an admissible metric for X and {Xβ | 0 ≤
β ≤ α} be a family of closed sets of X which satisfy the conditions (d-1) and (d-2). Let
x be a point of X . There are an open neighborhood U(x) of x in Xβ(x) and an n(x) ∈ N

such that for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of X ,
there are natural numbers i, j and k such that i �= j and ρ(yi, yj) ≤ ρ(x′, yk). Then
µ dimU(x) ≤ n(x), where µ dim denotes the metric dimension, by [8; p. 500]. By M.
Katětov’s theorem [4] and J. Nagata [9; p. 93],

dimU(x) ≤ 2µ dimU(x) ≤ 2n(x).

Therefore sind X ≤ ωα + ω by the proof of the implication (c) ⇒ (a) of Theorem 2.4, and
hence X is an ω1-strongly countable-dimensional space. �

Theorem 2.10 The following conditions are equivalent for a metrizable space X:
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(a) X is a locally finite-dimensional space.
(b) There is an admissible metric ρ for X satisfing the following conditions: For every

point x of X, there are an n(x) ∈ N and an open neighborhood U(x) of x in X such that
for every ε > 0, every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of X
with ρ(Sε/2(x′), yi) < ε for each i = 1, ..., n(x) + 2, there are distinct natural numbers i and
j such that ρ(yi, yj) < ε.

(c) There is an admissible metric ρ for X satisfing the following conditions: For every
point x of X, there are an n(x) ∈ N and an open neighborhood U(x) of x in X such that
for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of X, there are
distinct natural numbers i and j such that ρ(yi, yj) ≤ ρ(x′, yj).

(d) There is an admissible metric ρ for X satisfing the following conditions: For every
point x of X, there are an n(x) ∈ N and an open neighborhood U(x) of x in X such that
for every point x′ of U(x) and every n(x) + 2 many points y1, ..., yn(x)+2 of X, there are
natural numbers i, j and k such that i �= j and ρ(yi, yj) ≤ ρ(x′, yk).
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