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ABSTRACT. In this paper, we characterize the class of wi-strongly countable-dimensional
metrizable spaces by a special metric. A characterization of locally finite-dimensional
metrizable spaces is also obtained.

1 Introduction If every finite open cover of a metrizable space X has a finite open
refinement of order < n + 1, then X has covering dimension < n, dim X <n. For € > 0,
we let Sc(z) denote the e-ball {y € X | p(x,y) < €} about z.

In [5], [6] and [7], J. Nagata gave a characterization of metrizable spaces of dim < n by
a special metric.

Theorem 1.1 (J. Nagata [5], [6], [7]) The following conditions are equivarent for a metriz-
able space X :

(1) dim X < n.

(2) There is an admissible metric p satisfying the following condition: for every e > 0,
every point x of X and every n + 2 many points yi,...,Yyny2 of X with p(Se/2(x),ys) < €
for each i =1,...,n+ 2, there are distinct natural numbers i and j such that p(y;, y;) < €.

(3) There is an admissible metric p satisfying the following condition: for every point x
of X and every n+ 2 many points yi, ..., Ynt+2 of X, there are ditinct natural numbers i and

j such that p(yi, y;) < p(@, y;)-

For the case of the separable metrizable spaces, J. de Groot [2] gave the following
characterization.

Theorem 1.2 (J. de Groot [2]) A separable metrizable space X has dim X < n if and only
if X can introduce an admissible totally bounded metric satisfying the following condition:

For every point x of X and every n+ 2 many points Y1, ...,Ynt2 of X, there are natural
numbers i, j and k such that i # j and p(yi, y;) < p(x, yr).

A metrizable space X is strongly countable-dimensional if X can be represented as a
countable union of closed finite-dimensional subspaces. Let N denote the set of all natural
numbers.

In [8], J. Nagata extended Theorems 1.1 and 1.2 to strongly countable-dimensional
metrizable spaces.

Theorem 1.3 (J. Nagata [8]) The following conditions are equivarent for a metrizable
space X :
(1) X is strongly countable-dimensional.
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(2) There is an admissible metric p satisfying the following condition: for every point x
of X, there is an n(x) € N such that for every n(x) + 2 many points yi, ..., Yn(z)+2 of X,
there are ditinct natural numbers i and j such that p(yi, y;) < p(z, y;).

(3) There is an admissible metric p satisfying the following condition: for every point x
of X, there is an n(xz) € N such that for every n(x) + 2 many points yi, ..., Yn(z)+2 of X,
there are natural numbers i, j and k such that i # j and p(y;, y;) < p(x, Yk)-

In [3], Y. Hattori characterized the class of strongly countable-dimensional spaces by
extending the condition (2) of Theorem 1.1.

Theorem 1.4 (Y. Hattori [3]) A metrizable space X is strongly countable-dimensional if
and only if X can introduce an admissible metric p satisfying the following condition:

For every point x of X, there is an n(x) € N such that for every e > 0, and every n + 2
many points Y, ..., Yn(x)+2 of X with p(Se/2(x),y:) < € for each i = 1,...,n(x) + 2, there
are distinct natural numbers i and j such that p(y;, y;) < €.

2 wp-strongly countable-dimensional spaces In this section, we characterize the
class of wi-strongly countable-dimensional metrizable spaces by a special metric. A char-
acterization of locally finite-dimensional metrizable spaces is also obtained.

Definition 2.1 A metrizable space X is locally finite-dimensional if for every point x €
X there exists an open subspace U of X such that x € U and dim U < oo.

The first infinite ordinal number is denoted by w and w; is the first uncountable ordinal
number.

Definition 2.2 A metrizable space X is called an wi-strongly countable-dimensional
space if X = J{P: | 0 <& <&}, & < wr, where P: is an open subset of X — [ J{P, | 0 <
n < &} and dim Py < .

For a metrizable space X and a non-negative integer n, we put
P,(X)= U{U | U is an open subspace of X and dimU < n}.

We notice that for each ordinal number «, we can put o = A(«) + n(«), where A(«) is a
limit ordinal number or 0 and n(«) is a non-negative integer.

Definition 2.3 Let X be a metrizable space and « either an ordinal number > 0 or the
integer —1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sind X = —1 if and only if X = 0.

(2) sind X < «vif X is expressed in the form X = (J{F¢ | £ < a}, where Pz = P, ¢)(X —
U{Ey [ 0 < A&}

Furthermore, if sind X is defined, we say that X has strong small transfinite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sind X < w (R.
Engelking [1]). And X is w;-strongly countable-dimensional if and only if there is a £y < wy
such that sind X < &.

Theorem 2.9 is a main theorem. Thus we characterize the class of wy-strongly countable-
dimensional metrizable spaces by a special metric. To prove this theorem, we need Theorem
2.4.
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Theorem 2.4 Let « be an ordinal number with a < wy and let n be a non-negative integer.
The following conditions are equivarent for a metrizable space X :

(a) sind X < wa + n.

(b) There are an admissible metric p for X and a family {Xg | 0 < 8 < a} of closed
sets of X satisfing the following conditions: (b-1) Xo = X, Xg D Xp for f < (' < a,
Xg=(WXp | 8/ < B} if Bis alimit, and X, = 0 if n = 0. (b-2) For every point x of
X there are an open neighborhood U(x) of x in Xg(y), where f(x) = max{f | v € Xg},
and an n(x) € Ny such that for every € > 0, every point x' of U(x) and every n(x) + 2
many points yi, ..., Yn(x)+2 of X with p(S./2(2"),yi) < € for each i = 1,...,n(x) + 2, there
are distinct natural numbers i and j such that p(y;, y;) < €, where

N [N, ifpB(x) <a,
P@ = {n—1}, ifBz) =«

(¢) There are an admissible metric p for X and a family {Xz | 0 < 8 < a} of closed sets
of X satisfing the following conditions: (c-1) Xo = X, X3 D Xg for < 3 < a, X =
(W Xgs | 8 < B}ifBis alimit, and Xo =0 if n = 0. (c-2) For every point x of X there are
an open neighborhood U(x) of x in Xg(,), where B(x) = max{B | x € Xz}, and an n(z) €
Np(zy such that for every point x' of U(x) and every n(x) 42 many points yi, ..., Yn(z)+2 of
X, there are distinct natural numbers i and j such that p(yi, y;) < p(z’, y;), where

N [N, ifpB(x) <a,
0 =\ fn—1}, i A@) = o

Remark 2.5 Let {Xg | 0 < 8 < a} be a family of closed sets of X satisfing the condition
(b-1). Then we shall show that for every point z of X, there is a maximum element §(x)
of {8 ]z € Xp}. Indeed, if x € X (), then 3(x) = max{3 | x € X3, Aa) <3 < a}. Now,
we suppose that 2 € X(4), there is a minimum element 3y > 0 of {8 | ¢ Xg}. Assume
that Gy is limit. By the condition (b-1), z € ({X3 | 8 < Bo} = Xg,. This contradicts the
definition of . Therefore Gy is not limit and hence 8(x) = Gy — 1.

To prove this theorem, we need the following lemmas. Essentially, the following lemma
is the same as [3; Lemma 1.5]. By a minor modification in the proof of [3; Lemma 1.5], we
obtain the following lemma.

Lemma 2.6 ([3; Lemma 2.5], [8; Lemma 1]) Let n be a non-negative integer and let { Fy, | m =
0, 1,...} be a closed cover of a metrizable space X such that dimF,, < (n — 1) + m,
Fp, C Foq1 form =0, 1,.... Then for every open cover U of X, there are a sequence Vi,
Vs, ... of discrete families of open sets of X and an open cover W of X which satisfy the
following conditions:

(1) U{V« | k € N} is a cover of X.

(2) U{Vk | k € N} refines U.

(3) If W € W satisfies W N F,, # 0, then W meets at most one member of Vi, for k <
(n4+0)+(n+1)+...4+(n+m) and meets no member of Vi, for k > (n+0)+(n+1)+...4+(n+m).

Let @Q* denote the set of all rational numbers of the form 2™ + ... + 2™t where
my,...,m¢ are natural numbers satisfying 1 < my < ... < my.

Essentially, the following lemma is the same as [3; Lemma 1.6]. By a minor modification
in the proof of [3; Lemma 1.6], we obtain the following lemma.

Lemma 2.7 ([3; Lemma 2.6], [8; Lemma 3]) Let n be a non-negative integer and let { Fy, | m =
0, 1,...} be a closed cover of a metrizable space X such that dimF,,, < (n — 1) + m,
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F,, C Fy1 form =0, 1,.... Then for every q € Q*, there is an open cover S(q) which
satisfies the following conditions:
(1) S(q) = U;2, S'(q), where each S*(q) is discrete in X.
(2) {St(x,5(q)) | ¢ € Q*} is a neighborhood base at x € X.
(3) Letp, g € Q* and p < q. Then S(p) refines S(q).
(4) Letp, ¢ € Q* andp < q. If S1 € S'(p) and Sy € S'(q), then S1NSy =0 or S; C Ss.
(5) Letp, g€ Q* andp+q<1. Let S1 € S(p), S2 € S(q) and S1 NSz # 0. Then there
is an S3 € S(p+ q) such that S1 U Sy C Ss.

(6) For every q € Q* and every S € J{S(q) | i > (n+0)+(n+1)+ ...+ (n+m)},
SNF, =0.

For a cover U of a set X, we denote U* = {St(U,U) | U € U} and U** = (U*)*, where
St((UU) =V eU |UNV #0}.

Proof of Theorem 2.4. We prove the implication (a) = (c). Let sind X < wa +n. We
put

Y,=X-U{P: | (<}t for y<wa+n
and

Xg=Y,3 for pg<a.

Clearly, the family of closed sets {Xz | 0 < 8 < a} satisfies the condition (c-1). Note
that Xpg is a closed set of X and F, 5, is an open set of Xz such that P,s1m C P,g4(m+1)
for m =0,1,.... Also P,q4(n—1) is a closed set of X. Hence for each 3 < a there is a family
{Weptm | m =0, 1,...} of open sets of X3 such that

(1) Weptm C Poptm,
(2) WwﬁJr’m C Wwﬂ—i—(m-‘rl)a
(3) Uizo Ww{Hm = Uizo Pwﬂ+m-

Since {8 | 0 < B < a} is countable, there is a mapping f from N onto {5 | 0 < 8 < a}.
For each m = 0,1, ..., we put

Vo = Pwa+(n71)7
1= Pwa+(n—1) U Wwf(1)+(n—1)+17
Vo = Poatm-1) UWer)+m—1)+2 Y Wor@)+(n-1)+2

Vin = wa+(n—1) U Wwf(1)+(n—1)+m U Wwf(2)+(n—1)+m U...U Wwf(m)+(7L—1)+ma

Then Vg, V1, ... are subsets of X satisfing the following conditions:
(4) Vi C Vi

(5) dim V;,, < (n— 1) +m.

(6) X =Unm=o Vin-

The latter half of the proof is similar to the proof of [3; Theorem 1.4]. By Lemma 2.7,
for every ¢ € Q*, there is an open cover S(gq) which satisfies the following conditions:

(7) S(q) = U;=, S'(q), where each S¥(q) is discrete in X.
(8) {St(x,S(q)) | ¢ € Q*} is a neighborhood base at x € X.
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(9) Let p, ¢ € Q* and p < gq. Then S(p) refines S(q).

(10) Let p, ¢ € Q* and p < ¢. If S1 € S¥(p) and Sy € S?(q), then S1NSy =P or S; C Ss.

(11) Let p, ¢ € Q* and p+q < 1. Let S; € S(p), S2 € S(q) and S1 NSy # §. Then
there is an S3 € S(p + q) such that Sy U Sy C Ss.

(12) For every ¢ € Q* and every S € U{S'(q) [ i > (n+0) + (n+ 1) + ... + (n + m)},
SNV, =0.

We define a function p: X x X — [0, 1] as follows: For z, y € X,

(@, y) = 1, ify ¢ St(z, S(q)) for every q € Q*,
T Y) = inf{qg € Q* | y € St(z, S(¢))}, otherwise.

It follows that p is an admissible metric for X by the proof of [9; Ch. 5.3, (D)]. To prove that
the metric p and the family of closed sets {X3 | 0 < 8 < a} satisfy the condition (c-2), let =
be a point of X. Put ng = min{m |z € V,,} and n(z) = (n+0)+(n+1)+...+(n+ng) — 1.
Clearly, if ng = 0 then x € Vo = P a4 (n-1) C Xa-

Now we shall show that if ng > 0, then x € W,g(2)+(n—1)4no C Xg(x)- By the definition
of ng, x € Vpy = wat(n—1) Y Wwf(1)+(n—1)+no U Wwf(2)+(n—1)+no u..u Wwf(no)+(n—1)+no~
Since x ¢ P, (n—1) by no > 0, there is a natural number ¢ such that x € W, ()4 (n—1)+no-
Hence © € Wy ri)+(m—1)4n0 C Puf@)+(n-1)4no C Xp@) — Xp@y41. Also since f(z) =
max{3 | v € X} < o, v € Xgu) — Xpg@)+1- Hence f(i) = [(x) and hence z €
WoB(@)+(n-1)4+no € Xp(2):

We put

P, _ if ng=0
Ulz) = wa+(n—1)> 0 D
( ) { Wwﬁ(ﬂc)—&-(n—l)—i—vmv if ng > 0.

Then U (x) is an open neighborhood of 2 in X 3(,). Let 2’ be a point of U(x) and y1, ..., Yn(z)+2
be points of X. We can assume that p(z’, y;) < 1 for each j =1,...,n(z) +2. Let ¢ > 0
be given. For each j = 1,...,n(z) + 2, there is a ¢(j) € Q* such that p(2’, y;) < ¢(j) <
p(z’, y;) +e. Then, by the definition of p, there is an S; € S(¢(j)) such that 2/, y; € S;.
Let S; € S'U)(q(j)). Then, by (12), there are distinct natural numbers j and k such that
i(j) = i(k). Assume that ¢(j) < ¢(k). By (10), we obtain S; C S. Hence y;, yr € Sk and
hence p(y;, yx) < q(k) < p(z’, yx)+e. Therefore, there are distinct natural numbers j and
k such that p(y;, yx) < p(z', yx) + 1/m for each m € N and hence p(y;, yx) < p(z’, yx).
This completes the proof of the implication (a) = (c).

Next, we prove the implication (a) = (b). The proof is similar to the proof of [3;
Theorem 1.1]. We use the above notations. By Lemma 2.6, there is a sequence Uy, Ua, ... of
open covers of X which satisfies the following conditions.

(13) Uy, refines Uy, for each k € N.

(14) {St(z,Uy) | k € N} is a neighborhood base at z € X.

(15) For each z € Vp, and each k € N, St?(z,U;, ;) meets at most (n +0) + (n+ 1) +
... + (n + m) members of Uy.

For each ¢ =27 + ... +27™ € @* and each U € U,,,, we put
S(U;m1) = U,
S(U;ma, ..., mp) =St2(S(U;m1, ... mp_1), U, ) for 2 <k <,
S(U;q) = S(U;mq,...,my)

and

S(q) ={SWU;q) | U € Up, }.
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We define a function p: X x X — [0, 1] as follows: For z, y € X

( )= 1, ify ¢ St(z, S(q)) for every q € Q*,
T Y= inf{qg € Q* | y € St(z, S(¢))}, otherwise.

It follows that p is an admissible metric for X (see the proof of [9; Ch. 5.3,(D)]). To prove
that the metric p and the family of closed sets {X3 | 0 < 3 < a} satisfy the condition (b-2),
let « be a point of X. Put ng = min{m | x € V,,,} and n(z) = (n+0)+(n+1)+...4+(n+ng)—1.
We put
U(l‘) _ { Pwa-l—(n—l); if ng :_ 0,
Wwﬂ(r)+(n—1)+nov if ng > 0.

Then U(x) is an open neighborhood of x in X ;). Let 2’ € U(x), e > 0and y1, ..., Yn(z)+2 €
X with p(S./2(2'),y:) < e for each i = 1,...,n(x) + 2. For each i = 1, ...,n(z) + 2, let z; be
a point of X such that p(2’, x;) < /2 and p(z;,y;) < e. Put

0; = max{2p(ax’, z;), p(xi,yi) }

and 0 = max{d | i = 1,...,n(z) + 2}. Then there is a ¢ = 27™ + ... +27™ € Q* such
that 6 < ¢ < e. Since p(z',2;) < 270m+D) 4 2=+ " there is a U; € Uy, 11 such
that o/, z; € S(Ui;mi + 1,...,my + 1). Hence x; €St(a',U,;, 1). On the other hand, there
is a U] € Uy, such that z;,y; € S(U/;ma,...,m;). Therefore St(x;,Upm,+1) N U} # 0 and
hence St?(z, U}, 1) NU} # 0. By (15), there are distinct natural numbers i and j such that
U} = Uj. Then y;,y; € S(U/;my,...,m¢) = S(Uj;ma, ..., my). Therefore, p(yi,y;) < q <e.
This completes the proof of the implication (a) = (b).

Next, we prove the implication (¢) = (a). Let p be an admissible metric for X and
{Xs |0 <8 < a} be a family of closed sets of X which satisfy the conditions (c-1) and
(c-2).

We shall show that for every g < «

(16) X —|J{P | € <wB) C X5

The validity of (16) is clear for 5 = 0. To prove (16) by transfinite induction we assume
(16) for v < 5.

Let © ¢ X3. Then there are an open neighborhood U(z) of x in Xg(,) and an n(z) €
Np(z)y such that for every point 2’ of U(z) and every n(x) + 2 many points yi, ..., Yn(z)+2
of X, there are distinct natural numbers ¢ and j such that p(y;, y;) < p(z’, y;). Since

x ¢ Xg, B(z) < pB.
fo € U{P: | € <wB@)}, then z € U{P | € < wB} by B(a) < 6.

We shall also show that if z € X —[J{P: | £ <wf(x)}, then x € J{P: | £ < wB}. Since
U(x) is an open neighborhood of = in Xg(,), by the induction hypothesis

V(z) = Ux) N (X = | {Pe | € <wB()})

is an open neighborhood of x in X — | J{ P | £ < wf(x)}. Also dimV(z) < dimU(z) < n(z)
by Theorem 1.1. Hence,

2 € V(z) C Poay(X — | J{Pe | € <wB(2)})

= Lwp(z)+n(z) C U{P§ | f < w(ﬂ(m) + 1)}
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c (P | € <wpl.
Therefore for every 5 < «, (16) holds. In particular,

(17) X = J{P: | € <wa} C X,
We shall show that
X_U{P§ | &€ <wa} CU{PE | wa <€ < wa+n}.

If n = 0 then X, = 0, and hence

X—U{Pg|£<wa}=@

by (17).

Assume that n > 0. Let z € X — | J{P¢ | £ <wa}. Then there is an open neighborhood
U(z) of x in Xp(,) such that there is an n(x) € Ng(,) such that for every point 2’ of U(x)
and every n(x) 4 2 many points y1, ..., Yn(z)+2 of X, there are distinct natural numbers i
and j such that p(y;, y;) < p(2’, y;). Since € X, by (17), B(z) = a. Hence U(zx) is an
open neighborhood of x in X,. By (17)

V(z) =U@) N (X = J{P: | ¢ <wa})

is an open neighborhood of z in X — | J{F¢ | £ < wa}. Also dimV(z) < dimU(z) < n(z)
by Theorem 1.1. Furthermore n(z) < n by n(z) € Ny = {n — 1}. Hence,

zeV(z)C Pn(x)(X_U{P§ | € <wa})

= Foatn(z) C U{P€ |Wa §§§wa+n(m)}
CU{P5 | wa <€ <wa+n}.

Therefore X = [J{P: | 0 < { < wa+n} and hence sindX < wa +n. This completes the
proof of the implication (c) = (a).

Fainally, the proof of the implication (b) = (a) is the same as the proof of the implication
(c)=(a). O

By Theorems 1.2 and 2.4, we obtain the following theorem.

Theorem 2.8 Let o be an ordinal number with o < w1 and let n be a non-negative integer.
The following conditions are equivarent for a compact metrizable space X :

(a) sind X <wa + n.

(d) There are an admissible totally bounded metric p for X and a family {Xz | 0 <
B < a} of closed sets of X satisfing the following conditions: (d-1) Xo = X, Xg D Xg
for B < B < a, Xg=({Xg | B < B} if Bis a limit, and Xo = 0 if n = 0. (d-
2) For every point x of X there are an open neighborhood U(x) of x in Xg(y), where
B(x) = max{f3 | = € Xg}, and an n(x) € Na() such that for every point x’ of U(x) and
every n(z) + 2 many points Y1, ..., Yn(x)+2 of X, there are natural numbers i, j and k such
that i # j and plys, u) < p(a’s ye), where

N [N, ifpB(x) <a,
P@ = {n—1}, ifBz) =«
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Proof. The implication (a) = (d) is obvious by the implication (a) = (c¢) of Theorem
2.4.

We prove the implication (d) = (a). Let p be an admissible metric for X and {X3 | 0 <
B < a} be a family of closed sets of X which satisfy the conditions (d-1) and (d-2). Let x
be a point of X. There are an open neighborhood U (z) of  in X3, and an n(zx) € Ng(y)
such that for every point 2’ of U(x) and every n(z) + 2 many points yi, ..., Yn(s)42 of X,
there are natural numbers ¢, j and k such that ¢ # j and p(ys;, y;) < p(2’, yx). Then
dimU(x) < n(x) by Theorem 1.2. Hence the implication (d) = (a) follows from the proof
of the implication (¢) = (a) of Theorem 2.4. O

By Theorem 2.4, we obtain the Main Theorem 2.9 and Theorem 2.10.

Theorem 2.9 The following conditions are equivalent for a metrizable space X :

(a) X is an wy-strongly countable-dimensional space.

(b) There are an admissible metric p for X, an ordinal number o < w1 and a family
{Xs | 0 <8< a} of closed sets of X satisfing the following conditions: (b-1) Xo = X,
XD Xp for < <aand Xg=({Xp | 8 <8} if B is a limit. (b-2) For every point
x of X there are an open neighborhood U(x) of x in Xy, where B(x) = max{f3 | x € Xz},
and an n(z) € N such that for every e > 0, every point &' of U(z) and every n(zx) + 2
many points Y1, ..., Yn(x)+2 of X with p(S.2(2'),y;) < € for each i = 1,...,n(x) + 2, there
are distinct natural numbers i and j such that p(y;, y;) < €.

(¢) There are an admissible metric p for X, an ordinal number o < wy and a family
{X3]0< 6 <a} of closed sets of X satisfing the following conditions: (¢-1) Xo = X, X3 D
Xg for <03 <aand Xg=({Xp | B < B} if B is alimit. (c-2) For every point x of X
there are an open neighborhood U(x) of x in X5, where 3(x) = max{f3 | v € X3}, and an
n(x) € N such that for every point 2’ of U(x) and every n(x)+2 many points yi, ..., Yn(z)+2
of X, there are distinct natural numbers i and j such that p(y;, y;) < p(z’, y;).

(d) There are an admissible metric p for X, an ordinal number o < w1 and a family
{X35 | 0 < B < a} of closed sets of X satisfing the following conditions: (d-1) Xo = X,
XD Xp for 0< ' <aand Xg=({Xp | 8/ < B} if B is a limit. (d-2) For every point
x of X there are an open neighborhood U(x) of x in X (s, where (z) = max{f3 | z € Xz},
and an n(z) € N such that for every point ' of U(x) and every n(x) + 2 many points
Y1, - Un(x)+2 of X, there are natural numbers i, j and k such that i # j and p(y;, y;) <

p(xlv yk)

Proof. The conditions (a), (b) and (c) are equivalent by Theorem 2.4. The implication
(¢) = (d) is obvious.

We prove the implication (d) = (a). Let p be an admissible metric for X and {Xg | 0 <
8 < a} be a family of closed sets of X which satisfy the conditions (d-1) and (d-2). Let
x be a point of X. There are an open neighborhood U(x) of  in Xg(,) and an n(z) € N
such that for every point ' of U(x) and every n(z) + 2 many points yi, ..., Yn(z)42 of X,
there are natural numbers ¢, j and k such that ¢ # j and p(y;, y;) < p(z, yx). Then
pdimU(z) < n(z), where pdim denotes the metric dimension, by [8; p. 500]. By M.
Katétov’s theorem [4] and J. Nagata [9; p. 93],

dimU(z) < 2pdimU(z) < 2n(x).

Therefore sind X < wa + w by the proof of the implication (¢) = (a) of Theorem 2.4, and
hence X is an w-strongly countable-dimensional space. O

Theorem 2.10 The following conditions are equivalent for a metrizable space X :
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(a) X is a locally finite-dimensional space.

(b) There is an admissible metric p for X satisfing the following conditions: For every
point x of X, there are an n(x) € N and an open neighborhood U(x) of x in X such that
for every e > 0, every point 2’ of U(x) and every n(x) + 2 many points yi, ..., Yn(z)+2 of X
with p(Se2(x'),ys) < € for each i =1,...,n(x) +2, there are distinct natural numbers i and
J such that p(yi, y;) <e.

(¢) There is an admissible metric p for X satisfing the following conditions: For every
point x of X, there are an n(x) € N and an open neighborhood U(x) of x in X such that
for every point x' of U(x) and every n(x) + 2 many points yi, ..., Yn(x)+2 of X, there are
distinct natural numbers i and j such that p(yi, y;) < p(a’, y;).

(d) There is an admissible metric p for X satisfing the following conditions: For every
point x of X, there are an n(x) € N and an open neighborhood U(x) of x in X such that
for every point x' of U(x) and every n(x) + 2 many points yi, ..., Yn(x)+2 of X, there are
natural numbers i, j and k such that i # j and p(yi, y;) < p(z’, yx).
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