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Abstract. An objective of the competitive facility location problems is mainly to
maximize customers using her/his facilities. This paper proposes a new multiobjec-
tive competitive facility location problem by adding another new objective about the
convenience for customers. A solution algorithm based upon the goal programming is
proposed for the formulated multiobjective problem. It is shown the result of apply-
ing the solution algorithm to numerical examples for the multiobjective competitive
facility location problem.

1 Introduction A competitive facility location problem (CFLP) is one of the optimal
location problems for competitive facilities, e.g. shops and supermarkets, and an objective
for CFLPs is mainly to capture as many customers as possible. Mathematical studies
on CFLPs are originated by Hotelling [9]. He considered a CFLP that each of decision
makers (DMs) can locate on a line segment and move her/his facility at any times under
the conditions that customers are uniformly distributed on the line segment and only use
the nearest facility. CFLPs on a plain were studied by Eaton and Lipsey [5], Okabe and
Suzuki [15], etc. As extension of Hotelling’s CFLP, Wendell and McKelvey [20] assumed
that there exist customers on a finite number of points, called “demand points” (DPs), and
they considered a CFLP on a network whose nodes are DPs. Hakimi [8] considered a CFLP
on the network under the conditions that the DM locates her/his facilities on a network
that competitive facilities were already located. Drezner [4] extended Hakimi’s CFLP to a
CFLP on a plane that there are DPs and competitive facilities. In the studies of CFLPs
including the above CFLPs, it is assumed that customers only use the nearest facility from
them. Karkazis [13] extended Hakimi’s CFLP by separately considering both the distance
between customers and facilities and the quality level of facilities, e.g., scale of facilities and
quality of service provided by facilities. Uno and Sakawa [18] extended Drezner’s CFLP
by simultaneously considering both the distance and the quality by introducing the Huff’s
attractive function [10, 11].

The objective of the above CFLPs is only to maximize the number of customers using
her/his facilities. However, their optimal locations are often inconvenient for customers; e.g.
for Hotelling’s CFLP with two facilities, both of their optimal sites are at the middle point
of the line segment, and such a location is inconvenient for many customers, especially
customers on the edge of the line segment. In this paper, we propose a new multiob-
jective CFLP by considering another objective function about convenience for customers.
Weber [19] proposed an optimal location problem without competitiveness, called “Weber
problem”, whose objective is to optimize the convenience for customers. References to the
Weber problem were written by many researchers up to the present [2, 6]. Then, by intro-
ducing the objective function of the Weber problem to the CFLPs, the CFLPs are extended
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to multiobjective CFLPs with the two objective functions. From the point of view of the
DM, the former objective generally takes precedence over the latter. The goal programming
is one of the methods to deal with multiobjective programming problems under the assump-
tion that the DM specifies goals or aspiration levels for the objective functions; for details
of the goal programming, the reader can refer to the studies of Charnes and Cooper [3],
Ignizio [12], and Sakawa [17]. We propose a solution algorithm for the multiobjective CFLP
based upon the goal programming.

The remainder of this paper is organized as follows. In Section 2, we formulate multiob-
jective CFLP by introducing the Huff’s attractive function and extending Drezner’s CFLP.
In order to solve the multiobjective CFLP, we propose the solution algorithm based upon
the goal programming in Section 3. In Section 4, we illustrate the solution algorithm by nu-
merical examples for the multiobjective CFLP. Finally, in Section 5, concluding comments
and future studies are summarized.

2 Formulation of multiobjective CFLP In the following CFLPs, we assume that
all customers only exist on demand points (DPs) in plain R2. For convenience sake, by
aggregating all customers on the same DP, we regard one DP as one customer.

First, we formulate the CFLP suggested by Uno and Sakawa [18]. There are n DPs on
the plane R2, and let I = {1, . . . , n} be a set of indices of the DPs. In R2, there exists a
competitive facility, which is indicated by A, and the DM locates a new facility, which is
indicated by B.

In this CFLP, the Huff’s attractive function [10, 11] plays an important role. We first
introduce the Huff’s attractive function, which depends upon the distance between the
customers and the facilities and the quality of the facilities. Let vi ∈ R2 be the site of
DP i ∈ I, and let xA and xB ∈ R2 be the sites of the competitive and the new facility,
respectively. Then, the distances between DP i and the competitive and the new facility
are denoted by ||xA−vi|| and ||uB −vi||, respectively, where || · || is the Euclid norm in R2.
On the other hand, let lA and lB ∈ {1, . . . , L} be the level of qualities of the competitive
and the new facility, respectively, where, L is the maximal quality level of these facilities.
Then, we represent the quality of the facility whose level is l by using the function q(l)
which is satisfied that 1 = q(1) < · · · < q(L) < ∞. Then, for representing the attractive
power of the facility whose site and level is x and l for DP i, the Huff’s attractive function
is represented as follows:

ai(x, l) :=

⎧⎪⎨
⎪⎩

q(l)
||vi − x||2 , if ||vi − x|| > ε,

q(l)
ε2

, if ||vi − x|| ≤ ε,

(1)

where ε > 0 is an upper limit of the distance that customers can move without any trouble.
It is assumed that DP i uses the new facility if ai(xB, lB) ≥ ai(xA, lA) + ε, where ε is a

sufficiently small positive number. Let aA
i := ai(xA, lA)+ ε. Then, the set of the DPs using

the new facility is represented as follows:

NB(xB, lB) := {i | ai(xB, lB) ≥ aA
i }.(2)

Let wi > 0 be the number of customers on DP i. It is assumed that sales of the new facility
increase in proportion to the number of customers who use facilities. Let α > 0 be the
coefficient to represent the sales per a customer. An objective of the DM is maximizing the
sales of the new facility without increasing the building cost of the new facility, denoted by
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c(lB), which is satisfied that 0 < c(1) < · · · < c(L) < ∞. Then, we represent an objective
function of the CFLP by using the following profit function:

f1(xB , lB) := α
∑

i∈NB(xB ,lB)

wi − c(lB).(3)

Then, the CFLP is formulated as the following profit maximizing problem:

maximize f1(xB, lB)
subject to xB ∈ R2, lB ∈ {1, . . . , L}.(4)

Next, we introduce another objective function about the convenience for the customers,
and then extend the CFLP (3) to a multiobjective CFLP. The objective of the original
Weber problem [19] is represented as minimizing the sum of the distances between the
customer and the facilities. On the other hand, it is desirable for the customers that the
quality of the facilities is higher. Then, we represent the other objective function of the
CFLP by using the following convenience function:

f2(xB, lB) :=
1

q(lB)

∑
i∈NB(xB ,lB)

wi||vi − xB||.(5)

Note that the DM only needs to consider the customers who use the new facility. Therefore,
our proposing multiobjective CFLP is formulated as follows:

maximize f1(xB, lB)
minimize f2(xB, lB)

subject to xB ∈ R2, lB ∈ {1, . . . , L}.
(6)

3 Solution algorithm for multiobjective CFLP

3.1 Goal Programming The term goal programming first appeared in a text by
Charnes et al [3] to deal with multiobjective linear programming problems under the as-
sumption that the DM specifies goals or aspiration levels for the objective functions. The
key idea behind goal programming is to minimize the deviations from goals or aspiration
levels set by the DM. For details of the goal programming, the reader can refer to the stud-
ies of Charnes and Cooper [3], Ignizio [12], and Sakawa [17]. In this section, we propose a
solution algorithm for the multiobjective CFLP (6) based upon the goal programming.

At the goal programming, the DM first sets a goal for each objective, and next finds
the solution to minimize the deviations from their goals. Let f̂1 and f̂2 be the goals of the
first and second objective functions of (6), respectively. Then, we represent the deviations
about the first and the second objective functions as follows, respectively:

d1(xB, lB) :=
{

f̂1 − f1(xB, lB), if f1(xB, lB) < f̂1,
0, otherwise,

(7)

d2(xB, lB) :=
{

f2(xB, lB) − f̂2, if f2(xB) > f̂2,
0, otherwise.

(8)

Let λ1 and λ2 be the nonnegative weights to the first and the second objective function,
respectively. Then, the goal programming problem for (6) is formulated as follows:

minimize λ1d1(xB, lB) + λ2d2(xB, lB)
subject to xB ∈ R2, lB ∈ {1, . . . , L}.(9)
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For the most multiobjective CFLPs, the DM regards the first objective value as more
important than that of the second objective. The DM thus sets λ1 and λ2 such that
λ1 >> λ2.

The process to solve the goal programming problem is divided into the following two
stages. At the first stage, we try to achieve the goal about the first objective function. At
the second stage, we try to satisfy the goal about the second objective function, keeping the
attained goal about the first objective function. In the next two subsections, we propose
the solution algorithm at each of the two stages.

3.2 Solution algorithm at the first stage At the first stage of the goal programming,
we need to solve the following problem:

minimize d1(xB, lB)
subject to xB ∈ R2, lB ∈ {1, . . . , L}.(10)

Since (10) is a nonlinear and nonconvex programming problem, it is difficult to find
its optimal solution directly. Then we reformulate (10) to a combinational optimization
problem.

For a subset of DPs D ⊆ I, let (xB , lB) be satisfied the following inequation:

ai(xB, lB) ≥ aA
i , ∀i ∈ D.(11)

Then, from (2), the new facility can capture customers on all DPs in D. In order to examine
whether the location satisfied (11) exists or not, we solve the following problem for a given
l̄B ∈ {1, . . . , L} with an auxiliary variable γ:

minimize γ2

subject to ai(xB, l̄B) ≥ γ · aA
i , ∀i ∈ D,

xB ∈ R2, γ ≥ 0.
(12)

Let (γ(D,l̄B), x
(D,l̄B)
B ) be the optimal solution of (12). Then, (x(D,l̄B)

B , l̄B) is satisfied (11) if
γ(D,l̄B) ≤ 1.

We can find an optimal solution of (10) by examining whether the location satisfied (11)
exists or not for all subsets in I and all levels in {1, . . . , L}. Then (10) can be reformulated
to the following combinational optimization problem:

minimize d1(x
(D,l̄B)
B , l̄B)

subject to γ(D,l̄B) ≤ 1,
l̄B ∈ {1, . . . , L}, D ⊆ I.

(13)

Since there are 2n subsets of I, we would like to decrease the number of times of solving
(12). Let I3 be the family of sets which have at most three DPs in I. Then, the following
theorem is useful to decrease the number of the times.

Theorem 1 An optimal solution of (13) can be found by solving (12) for all sets in I3.

Proof: For any D ∈ I and l̄B ∈ {1, . . . , L}, we prove the theorem by dividing the following
three cases (i)-(iii) in (12).

(i) Cases that one constraint is active for (x(D,l̄B)
B , l̄B): It only occurs that D is a

singleton, which is included in I3.
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(ii) Cases that just two constraints are active for (x(D,l̄B)
B , l̄B): Let i and j be the DPs

in D whose constraints are active. Then, it follows that

γ(D,l̄B) =
ai(x

(D,l̄B)
B , l̄B)
aA

i

=
aj(x

(D,l̄B)
B , l̄B)
aA

j

.(14)

By transforming (14), x
(D,l̄B)
B satisfies the following equation:

||vi − x
(D,l̄B)
B ||

||vj − x
(D,l̄B)
B ||

=

√
aA

j

aA
i

.(15)

Equation (15) represents a bisector between vi and vj if its right side is 1 and a circle
otherwise. Moreover, from the optimality of (12), x

(D,l̄B)
B minimizes the sum of the distances

to these two DPs. This means that x
(D,l̄B)
B is in the line segment between vi and vj. From

the line segment and equation (15), we can find x
(D,l̄B)
B such that

x
(D,l̄B)
B =

√
aA

i vi +
√

aA
j vj√

aA
i +

√
aA

j

.(16)

Note that x
(D,l̄B)
B is only dependent on the sites of the competitive facility and these two

DPs. This means that the solution of (12) for D is equivalent to that for {i, j}, which is
included in I3.

(iii) Cases that more than three constraints are active for (x(D,l̄B)
B , l̄B): Let i, j, and k

be the DPs in D whose constraints are active. Then, it follows that

γ(D,l̄B) =
ai(x

(D,l̄B)
B , l̄B)
aA

i

=
aj(x

(D,l̄B)
B , l̄B)
aA

j

=
ak(x(D,l̄B)

B , l̄B)
aA

k

.(17)

By transforming (17), x
(D,l̄B)
B satisfies the following two equations:

||vi − x
(D,l̄B)
B ||

||vj − x
(D,l̄B)
B ||

=

√
aA

j

aA
i

,
||vj − x

(D,l̄B)
B ||

||vk − x
(D,l̄B)
B ||

=

√
aA

k

aA
j

.(18)

As (15), each of the equations in (18) represents a bisector or a circle. Then, there are at
most two intersection points for the two equations, and x

(D,l̄B)
B is uniquely decided because

γ(D,l̄B) is the minimum of the objective value of (12) for D. Note that x
(D,l̄B)
B is only

dependent on the sites of the competitive facility and these three DPs. This means that the
solution of (12) for D is equivalent to that for {i, j, k}, which is included in I3.

Therefore, the set of solutions of (12) for all subsets in I is equivalent to that for all
subsets in I3. This means that an optimal solution of (13) can be found by solving (12) for
all sets in I3.

Moreover, from the proof of Theorem 1, the following useful corollary is obtained.

Corollary 2 The site x
(D,l̄B)
B is independent of l̄B.

Proof: For Case (i), let D := {i}. Then, one of the optimal solutions of problem (12) for
D is obviously (vi, 0), which is independent of l̄B. For Case (ii) and (iii), (16) and (18) do
not include l̄B. Therefore, x

(D,l̄B)
B is independent of l̄B.
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Let (D∗, l∗B) be the optimal solution of (13). From Corollary 2, x
(D∗,l∗B+1)
B = x

(D∗,l∗B)
B

and γ(D∗,l∗B+1) ≤ γ(D∗,l∗B) ≤ 1. Because of the building cost, d1(x
(D∗,l∗B)
B , l∗B) ≤

d1(x
(D∗,l∗B+1)
B , l∗B + 1). Moreover, from the optimality of (D∗, l∗B), γ(D∗,l∗B−1) > 1. Then, l∗B

is the minimum of the level satisfied γ(D∗,l∗B) ≤ 1.
Let lDB be the minimum of the level satisfied γ(D,lDB ) ≤ 1, where we set lDB = L if

there is no level satisfied γ(D,lDB ) ≤ 1. From Corollary 2, we denote x
(D,l̄B)
B by xD

B simply.
Then, from Theorem 1 and Corollary 2, (13) can be reduced to the following combinational
optimization problem:

minimize d1(xD
B , lDB )

subject to D ∈ I3.
(19)

We can find an optimal solution of (19) by solving (12) at (n +n C2 +n C3) times.

3.3 Solving method at the second stage At the second stage of the goal program-
ming, we need to solve the following problem:

minimize d2(xB, lB)
subject to d1(xB, lB) ≤ β

xB ∈ R2, lB ∈ {1, . . . , L},
(20)

where β is an aspiration level for the first objective.
The set of the solutions which are given at the first stage and satisfied the aspiration

level is denoted by follows:

X̄∗ := {(xD
B , lDB ) | D ∈ I3, d1(xD

B , lDB ) ≤ β}.(21)

At the second stage, we move the new facility from each location in X∗ so as to maximize the
second objective value, with keeping the first objective value. Then, (20) can be divided into
the problems for all solutions in X∗. The problem for solution (xD

B , lDB ) ∈ X∗ is formulated
as follows:

minimize d2(xB, lDB )
subject to ai(xB, lDB ) ≥ aA

i , ∀i ∈ D,
xB ∈ R2.

(22)

Note that the first objective value is equal or more than d2(xD
B , lDB ) if the constraints of

(22) is satisfied.
Next we consider the method for solving (22). The first constraints of (22) is translated

as follows:

max{||xB − vi||, ε} ≤
√

q(lDB )
aA

i

, ∀i ∈ D.(23)

Because the right side of (23) is constant, the constraint of (22) is convex. Moreover,
from (5) and (8), the objective function of (22) is also convex. Therefore, (22) is a convex
programming problem. We can solve (22) by using the solution algorithms for convex pro-
gramming problems, such as successive quadratic programming (SQP) method; for details
of the SQP method, the reader can refer to the book of Nocedal and Wright [14].
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Table 1: Distribution of customers

i vi wi

1 (0.00, 2.00) 300
2 (2.00, 5.00) 300
3 (4.00, 0.00) 200
4 (5.00, 3.00) 400
5 (8.00, 5.00) 100
6 (9.00, 2.00) 200

Figure 1: Sites of the DPs and the competitive facility

4 Numerical Example In this section, we illustrate the solution algorithm described in
Section 3 by applying it to a numerical example of the CFLP. In the example, the numbers
of customers on DPs and their sites are given in Table 1, and one competitive facility has
already been located on v4 and its level lA = 2. Then, the sites of the six DPs and the
competitive facility is shown in Fig. 1.

In the plane shown in Fig. 1, the DM can locate one new facility whose quality level is
high or low, that is L = 2. The quality and cost of building for each level are given in Table
2. For (1) and the criterion of customers, we set ε = 10−4 and ε = 10−4.

Table 2: Quality and cost of building

l q(l) c(l)
1 1.00 100
2 2.00 200

For the above example, we solve the multiobjective CFLP (6). For (9) in Section 3.1,
the DM sets her/his goals such that f̂1 = 1000 and f̂2 = 0.

At the first stage of the goal programming, we solve (19) for finding an optimal solution
of (10). If α ≥ 1/2, then the optimal solution of (19) (D∗, l∗B) = ({2, 3}, 2), and xD∗

B =
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(3.07, 2.66) in the line segment between v2 and v3. Then the new facility can capture the
customers on DPs 1 to 3, and its objective value is 800α − 200. If 1/6 < α ≤ 1/2, then the
optimal solution of (19) (D∗, l∗B) = ({1, 2}, 1), and xD∗

B = (1.17, 3.76) in the line segment
between v1 and v2. Then the new facility can capture the customers on DPs 1 and 2, and
its objective value is 600α−100. If α ≤ 1/6, the DM does not locate her/his facility because
the objective value is equal or less than 0 for any location. Fig. 2 shows the sites of the
new facility at the first stage of the goal programming.

Figure 2: Sites of the new facility at the first stage of the goal programming

At the second stage of the goal programming, we solve (20). If α ≥ 1/2, the optimal
solution of (20) is x∗

B = (1.72, 2.19), and its objective value is 9.99×102, which is improved
from the solution given at the first stage whose objective value is 1.15 × 103. If 1/6 < α <
1/2, the optimal solution of (20) is x∗

B = (1.17, 3.76). Moreover, points in the line segment
between v1 and v2 are optimal sites for (20) because w1 = w2. Then its objective value
is 1.08 × 103. Fig. 3 shows the sites of the new facility at the second stage of the goal
programming.

From the result in cases that α ≥ 1/2, the DM can improve the convenience for customers
without decreasing her/his profit. Then, the solution algorithm can find a good location
from the view of points of both the profit and the convenience for customers.

5 Conclusions and future studies In this paper, we have extended a CFLP with the
single objective function to a multiobjective CFLP by introducing an objective about the
convenience for customers. For the formulated multiobjective CFLP, we have proposed the
solution algorithm based upon the goal programming. We have illustrated the solution
algorithm by applying it to numerical examples of the CFLP. Then, it is shown that the
solution algorithm can find a good location from the view of points of both the profit and
the convenience for customers.

This multiobjective CFLP deals with the location of one facility. If there are many
facilities to locate simultaneously, it is expected that finding a strict optimal solution of
the multiobjective CFLP is difficult. It is a future study to propose an efficient solution
algorithm based upon heuristic algorithms, like the genetic algorithm [7] and the tabu
search [16]. Moreover, in the real CFLPs, customers subjectively decide the demand and the
convenience of the facilities. This means that the data of the demand and the convenience
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Figure 3: Sites of the new facility at the second stage of the goal programming

include vagueness. In another future study, we are going to introduce the fuzzy theory [1]
to the multiobjective CFLPs and extend it to a fuzzy multiobjective CFLP.
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