393

DUAL BCK-ALGEBRA AND MV-ALGEBRA

KYUNG HO KIM AND YONG HO YON

Received March 23, 2007

ABSTRACT. The aim of this paper is to study the properties of dual BCK-algebra and to prove that the MV-algebra is equivalent to the bounded commutative dual BCK-algebra.

1 Introduction Let (L, \leq) be a *poset*. The greatest element of L is called the *top* element of L if it exists. Similarly, the least element of L is called the *bottom* element of L if it exists. We denote the top and the bottom element as 1 and 0, respectively. Let S be a subset of L and $u \in L$. u is called an *upper bound* of S if $s \leq u$ for all $s \in S$, and u is called the *join* of S if u is the least upper bound of S. Dually, we definine a *lower bound* of S and the *meet* of S. A poset L is an *upper semilattice* if $\sup\{x, y\}$ exists for all $x, y \in L$ and a poset L is a *lower semilattice* if x, y exists for all $x, y \in L$ and a poset L is an upper and lower semilattice. A lattice L is said to be *bounded* if there exists a bottom 0 and a top 1 in L([5, 3]).

BCK-algebras were introduced in 1966 by Iséki [4]. It is an algebraic formulation of the BCK-propositional calculus system of C. A. Meredith [7], and generalize the notion of implicative algebras. The notion of MV-algebra, originally introduced by C.C. Chang [2], is an attempt at developing a theory of algebraic systems that would correspond to the \aleph_0 -valued propositional calculus; the axioms for this calculus are known as the Łukasiewicz axioms.

The purpose of this note is to study the relation between the MV-algebra and the dual concept of BCK-algebra. we will introduce some properties of dual BCK-algebras and MV-algebras, and prove that the MV-algebra is equivalent to the bounded commutative dual BCK-algebra.

2 Preliminaries In this section, we introduce the definitions and some properties of a *BCK*-algebra and a *MV*-algebra.

Definition 2.1. [6] An algebra (X, *, 0) of type (2, 0) is called a *BCK-algebra* if it satisfies:

- (1) ((x*y)*(x*z))*(z*y)=0,
- (2) (x * (x * y)) * y = 0,
- (3) x * x = 0,
- (4) x * y = 0 and y * x = 0 imply x = y,
- (5) 0 * x = 0,

for all $x, y, z \in X$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 06D35, 03G25.

Key words and phrases. BCK-algebra, bounded commutative BCK-algebra, MV-algebra.

From the above definition, we have the definition of dual BCK-algebra as following definition.

Definition 2.2. A dual BCK-algebra is an algebra $(X, \circ, 1)$ of type (2, 0) satisfying:

- (1) (x ∘ y) ∘ ((y ∘ z) ∘ (x ∘ z)) = 1.
 (2) x ∘ ((x ∘ y) ∘ y) = 1.
 (3) x ∘ x = 1.
 (4) x ∘ y = 1 and y ∘ x = 1 imply x = y,
- (5) $x \circ 1 = 1$.

for all $x, y, z \in X$.

Let $(X, \circ, 1)$ be a dual BCK-algebra. Then we can define a binary relation " \leq " on X as the following :

 $x \leq y$ if and only if $x \circ y = 1$

for $x, y \in X$, and has the following Lemma form the definition of dual *BCK*-algebra.

Lemma 2.3. Let $(X, \circ, 1)$ be a dual BCK-algebra. Then for all $x, y, z \in X$,

(1) $x \circ y \leq (y \circ z) \circ (x \circ z)$, (2) $x \leq (x \circ y) \circ y$, (3) $x \leq x$, (4) $x \leq y$ and $y \leq x$ imply x = y, (5) $x \leq 1$.

Theorem 2.4. Let $(X, \circ, 1)$ be a dual BCK-algebra. Then for any $x, y, z \in X$ the following hold

- (1) $x \leq y$ implies $y \circ z \leq x \circ z$,
- (2) $x \le y$ and $y \le z$ imply $x \le z$.

Proof. (1) Let $x \leq y$. Then $1 = x \circ y \leq (y \circ z) \circ (x \circ z)$ by 2.3 (1). Hence $(y \circ z) \circ (x \circ z) = 1$ by 2.3 (5), and $y \circ z \leq x \circ z$.

(2) If $x \le y$ and $y \le z$, then $1 = y \circ z \le x \circ z$ by this lemma (1), hence $x \circ z = 1$ and $x \le z$.

A dual BCK-algebra $(X, \circ, 1)$ is a poset with the ordering \leq from 2.3 and 2.4, and the element 1 in X is the top element with respect to the order relation \leq .

Theorem 2.5. Let $(X, \circ, 1)$ is a dual *BCK*-algebra and $x, y, z \in X$. Then

- (1) $x \circ (y \circ z) = y \circ (x \circ z),$
- (2) $x \leq y \circ z$ imply $y \leq x \circ z$,
- (3) $x \circ y \leq (z \circ x) \circ (z \circ y),$
- (4) $x \leq y$ imply $z \circ x \leq z \circ y$,

- (5) $y \leq x \circ y$,
- (6) $1 \circ x = x$.

Proof. (1) (\leq) Since $y \leq (y \circ z) \circ z$ by 2.3(2), $((y \circ z) \circ z) \circ (x \circ z) \leq y \circ (x \circ z)$ by 2.4(1). And $x \circ (y \circ z) \leq ((y \circ z) \circ z) \circ (x \circ z)$ by 2.3 (1), hence $x \circ (y \circ z) \leq y \circ (x \circ z)$. (\geq) Interchanging the role of x and y in (\leq), we get $y \circ (x \circ z) \leq x \circ (y \circ z)$.

(2) Let $x \leq y \circ z$. Then $1 = x \circ (y \circ z) = y \circ (x \circ z)$, hence $y \leq x \circ z$.

(3) Since $z \circ x \leq (x \circ y) \circ (z \circ y)$ by 2.3 (1), $x \circ y \leq (z \circ x) \circ (z \circ y)$ by the above (2).

(4) Let $x \leq y$. Then $1 = x \circ y \leq (z \circ x) \circ (z \circ y)$ by the above (3), hence $(z \circ x) \circ (z \circ y) = 1$. It follows that $z \circ x \leq z \circ y$.

(5) From the above (1), $y \circ (x \circ y) = x \circ (y \circ y) = x \circ 1 = 1$, hence $y \le x \circ y$.

(6) Since $1 \leq (1 \circ x) \circ x$ by 2.3 (2), $(1 \circ x) \circ x = 1$, hence $1 \circ x \leq x$. Conversely, $x \circ (1 \circ x) = 1 \circ (x \circ x) = 1 \circ 1 = 1$, hence $x \leq 1 \circ x$.

Let $(X, \circ, 1)$ be a dual *BCK*-algebra. We define a binary operation "+" on X as the following : for any $x, y \in X$

$$x + y = (x \circ y) \circ y.$$

Remark 2.6. 1) Let $(X, \circ, 1)$ be a dual *BCK*-algebra and $x, y \in X$. Then x + y is an upper bound of x and y, since $x \leq (x \circ y) \circ y$ and $y \leq (x \circ y) \circ y$ by 2.3(2) and 2.5(5).

2) Let $(X, \circ, 1)$ be a dual *BCK*-algebra and $x \in X$. Then $x + 1 = (x \circ 1) \circ 1 = 1 \circ 1 = 1$, $1 + x = (1 \circ x) \circ x = x \circ x = 1$, and $x + x = (x \circ x) \circ x = 1 \circ x = x$, by 2.2 and 2.5(6).

Lemma 2.7. If $(X, \circ, 1)$ is a dual *BCK*-algebra, then $(x + y) \circ y = x \circ y$ for all $x, y \in X$.

Proof. (\leq) Since $x \leq x + y$, $(x + y) \circ y \leq x \circ y$ by 2.4 (1). (\geq) From 2.3 (2), $x \circ y \leq ((x \circ y) \circ y) \circ y = (x + y) \circ y$.

3 Bounded Commutative Dual *BCK*-algebras and *MV*-algebras

Definition 3.1. A dual *BCK*-algebra $(X, \circ, 1)$ is said to be *bounded* if there exists an element 0 in X such that $0 \circ x = 1$ for all $x \in X$.

The element 0 is the bottom element in X, since $0 \le x$ for all $x \in X$ from the definition of the order \le .

Definition 3.2. Let $(X, \circ, 1, 0)$ be a bounded dual *BCK*-algebra and $x \in X$. $x \circ 0$ is called a *pseudocomplement* of x and we write $x^* = x \circ 0$ and $x^{**} = (x^*)^*$.

Theorem 3.3. Let $(X, \circ, 1, 0)$ be a bounded dual *BCK*-algebra and $x, y \in X$. Then

- (1) $1^* = 0$ and $0^* = 1$,
- (2) $x \le x^{**}$,
- (3) $x \circ y \leq y^* \circ x^*$,
- (4) $x \le y$ implies $y^* \le x^*$,
- (5) $x \circ y^* = y \circ x^*$,
- (6) $x^{***} = x^*$.

Proof. (1) $1^* = 1 \circ 0 = 0$ by 2.5(6), and $0^* = 0 \circ 0 = 1$ by 2.2(3). (2) $x \le (x \circ 0) \circ 0 = x^{**}$ by 2.3(2). (3) $x \circ y \le (y \circ 0) \circ (x \circ 0) = y^* \circ x^*$ by 2.3(1). (4) $x \le y$ implies $y^* = y \circ 0 \le x \circ 0 = x^*$ by 2.4 (1). (5) $x \circ y^* = x \circ (y \circ 0) = y \circ (x \circ 0) = y \circ x^*$ by 2.5(1). (6) $x^{***} = ((x \circ 0) \circ 0) \circ 0 = (x + 0) \circ 0 = x \circ 0 = x^*$ by 2.7.

Definition 3.4. An element x in a bounded dual *BCK*-algebra X is said to be *regular* if $x^{**} = x$.

Definition 3.5. A dual *BCK*-algebra $(X, \circ, 1)$ is said to be *commutative* if x + y = y + x for all $x, y \in X$.

Theorem 3.6. Let $(X, \circ, 1)$ be a dual *BCK*-algebra. Then the following conditions are equivalent :

- (1) $x + y \le y + x$ for all $x, y \in X$,
- (2) X is commutative,
- (3) $y \le x$ implies $x = (x \circ y) \circ y$ for $x, y \in X$.

Proof. $(1) \Rightarrow (2)$. Interchanging the role of x and y, it is trivial.

(2) \Rightarrow (3). Suppose X is commutative and $y \leq x$ for $x, y \in X$, then $x = 1 \circ x = (y \circ x) \circ x = y + x = x + y = (x \circ y) \circ y$.

 $\begin{array}{ll} (3) \Rightarrow (1). \text{ Suppose that } y \leq x \text{ implies } x = (x \circ y) \circ y \text{ for } x, y \in X. \text{ Since } y \leq y + x, \\ y + x = ((y + x) \circ y) \circ y, \text{ hence } (x + y) \circ (y + x) = (x + y) \circ (((y + x) \circ y) \circ y) = ((y + x) \circ y) \circ ((x + y) \circ y) = ((y + x) \circ y) \circ (x \circ y) \text{ by } 2.5(1) \text{ and } 2.7, \text{ and since } x \leq y + x, \\ 1 = x \circ (y + x) \leq ((y + x) \circ y) \circ (x \circ y) \text{ by } 2.3(1). \text{ Hence } (x + y) \circ (y + x) = 1 \text{ and } \\ x + y \leq y + x. \end{array}$

Theorem 3.7. A commutative dual *BCK*-algebra is an upper semilattice.

Proof. Let $(X, \circ, 1)$ be a commutative dual *BCK*-algebra and $x, y \in X$. Then x + y is an upper bound of x and y by 2.6(1). We shall show that the x + y is the least upper bound of x and y. Suppose z is an upper bound of x and y. Then $x \circ z = y \circ z = 1$. (i): $z = 1 \circ z = (x \circ z) \circ z = (z \circ x) \circ x$ by the commutativity, and (ii): $z = 1 \circ z = (y \circ z) \circ z = (z \circ y) \circ y$. (iii): $z = (z \circ x) \circ x = (((z \circ y) \circ y) \circ x) \circ x$ from (i) and (ii).

Set $u = (z \circ y) \circ y$, then $z = (u \circ x) \circ x$ from (iii). Since $y \leq u$ by 2.5(5), $u \circ x \leq y \circ x$ by 2.4(1), and then $(y \circ x) \circ x \leq (u \circ x) \circ x = z$. Hence $x + y = (x \circ y) \circ y = (y \circ x) \circ x \leq z$. Therefore, x + y is the least upper bound of x and y and X is an upper semilattice with the join, say x + y, of any two elements x and y.

We define a binary operation "." on a bounded dual *BCK*-algebra X by the following: $x \cdot y = (x^* + y^*)^*$ for each $x, y \in X$.

Theorem 3.8. Every element in a bounded commutative dual BCK-algebra X is a regular.

Proof. Since
$$0 \le x$$
, $x = (x \circ 0) \circ 0 = x^{**}$ for all $x \in X$ by 3.6(3).

Theorem 3.9. Let $(X, \circ, 1, 0)$ be a bounded commutative dual *BCK*-algebra and $x, y \in X$. Then

(1) $x^* \cdot y^* = (x+y)^*$,

- (2) $x^* + y^* = (x \cdot y)^*$,
- $(3) \ y^* \circ x^* = x \circ y.$

Proof. (1) $x^* \cdot y^* = (x^{**} + y^{**})^* = (x + y)^*$ by the definition of the binary operation \cdot and 3.8.

(2) $x^* + y^* = (x^* + y^*)^{**} = (x^{**} \cdot y^{**})^* = (x \cdot y)^*$ by the above (1). (3) $y^* \circ x^* = x \circ y^{**} = x \circ y$ from 3.3(5).

Theorem 3.10. A bounded commutative dual *BCK*-algebra is a lower semilattice.

Proof. Let $(X, \circ, 1, 0)$ be a bounded commutative dual *BCK*-algebra and $x, y \in X$. Since $x^* + y^*$ is an upper bound of x^* and y^* , $(x^* + y^*)^* \leq x^{**} = x$ and $(x^* + y^*)^* \leq y^{**} = y$ by 3.3(4). Hence $x \cdot y = (x^* + y^*)^*$ is a lower bound of x and y.

Next, we shall show that $x \cdot y = (x^* + y^*)^*$ is the greatest lower bound of x and y. Suppose that z is a lower bound of x and y. Then $x^* \leq z^*$ and $y^* \leq z^*$ by 3.3(4), hence z^* is an upper bound of x^* and y^* . Since $x^* + y^*$ is the least upper bound of x^* and y^* by the proof of 3.7, $x^* + y^* \leq z^*$, and then $z = (z^*)^* \leq (x^* + y^*)^* = x \cdot y$. Hence $x \cdot y$ is the greatest lower bound of x and y and X is a lower semilattice.

Theorem 3.11. A bounded commutative dual *BCK*-algebra is a bounded lattice.

Proof. From 3.7 and 3.10, it follows immediately.

We note that x + y and $x \cdot y$ are the join and the meet, respectively, of any elements x and y in a bounded commutative dual *BCK*-algebra X.

Definition 3.12. [1] An *MV*-algebra is an algebra $(A, \oplus, ', 0)$ of type (2, 1, 0) satisfying the following equations:

- (1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$,
- (2) $x \oplus y = y \oplus x$,
- (3) $x \oplus 0 = x$,
- (4) x'' = x,
- (5) $x \oplus 0' = 0'$,
- (6) $(x' \oplus y)' \oplus y = (y' \oplus x)' \oplus x.$

On a *MV*-algebra *A*, we define the constant 1 and the operations " \odot " and " \ominus " as follows: $1 = 0', x \odot y = (x' \oplus y')'$ and $x \ominus y = x \cdot y' = (x' \oplus y)'$.

Lemma 3.13. [1] For $x, y \in A$, the following conditions are equivalent:

- (1) $x' \oplus y = 1$,
- (2) $x \odot y' = 0$,
- (3) $y = x \oplus (y \ominus x)$,
- (4) there is an element $z \in A$ such that $x \oplus z = y$.

We define the binary relation " \leq " on a MV-algebra A as follows: $x \leq y$ if and only if x and y satisfy one of the equivalent axioms 1) - 4) in the above lemma. The relation \leq is a partial ordered relation on A.

Theorem 3.14. [1] Let A be a MV-algebra and $x, y, z \in A$. Then

(1) 1' = 0, (2) $x \oplus y = (x' \odot y')'$, (3) $x \oplus 1 = 1$, (4) $(x \ominus y) \oplus y = (y \ominus x) \oplus x$, (5) $x \oplus x' = 1$, (6) $x \ominus 0 = x, 0 \ominus x = 0, x \ominus x = 0, 1 \ominus x = x', x \ominus 1 = 0$, (7) $x \oplus x = x$ iff $x \odot x = x$, (8) $x \le y$ iff $y' \le x'$, (9) if $x \le y$, then $x \oplus z \le y \oplus z$ and $x \odot z \le y \odot z$, (10) if $x \le y$, then $x \oplus z \le y \ominus z$ and $z \ominus y \le z \ominus x$, (11) $x \ominus y \le x, x \ominus y \le y'$, (12) $(x \oplus y) \ominus x \le y$, (13) $x \odot z \le y$ iff $z \le x' \oplus y$, (14) $x \oplus y \oplus x \odot y = x \oplus y$.

Theorem 3.15. A bounded commutative dual BCK-algebra $(X, \circ, 1, 0)$ is a MV-algebra $(X, \oplus, ', 0)$ with the operations " \oplus " and "'" definited as following:

$$x \oplus y = x^* \circ y$$
 and $x' = x^*$

for all $x, y \in X$.

Proof. For any $x, y, z \in X$, we have $x \oplus (y \oplus z) = x^* \circ (y^* \circ z) = x^* \circ (z^* \circ y) = z^* \circ (x^* \circ y) = (x^* \circ y)^* \circ z = (x \oplus y) \oplus z$, $x \oplus y = x^* \circ y = y^* \circ x = y \oplus x$, $x \oplus 0 = x^* \circ 0 = x^{**} = x$, $x'' = x^{**} = x$ and $x \oplus 0' = x^* \circ 0^* = x^* \circ 1 = 1 = 0^* = 0'$. Thus we get the properties (1), (2), (3), (4) and (5) of the definition of MV-algebra. Next we will prove the property (6) of the MV-algebra. $(x' \oplus y)' \oplus y = (x \circ y)^* \oplus y = (x \circ y)^{**} \circ y = (y \circ x) \circ x = (y \circ x)^* \oplus x = (X^* \circ y^*)^* \oplus x = (y' \oplus x)' \oplus x$.

Theorem 3.16. A *MV*-algebra $(X, \oplus, ', 0)$ is a bounded commutative dual BCK-algebra with the operation " \circ " and the top element 1 definited as following:

$$x \circ y = x' \oplus y$$
 and $1 = 0'$

for all $x, y \in X$.

Proof. 1) $x \circ 1 = x' \oplus 1 = 1$. 2) $x \circ x = x' \oplus x = 1$. 3) $x \circ ((x \circ y) \circ y) = x' \oplus ((x' \oplus y)' \oplus y) = (x' \oplus y)' \oplus (x' \oplus y) = 1$. 4) If $x \circ y = 1$ and $y \circ x = 1$, then $x' \oplus y = 1$ and $y' \oplus x = 1$. From the definition of the order \leq in MV-algebra, $x \leq y$ and $y \leq x$, hence x = y.

5) Let $x, y, z \in X$. Then we have

$$\begin{aligned} (x \circ y) \circ ((y \circ z) \circ (x \circ z)) \\ &= (x \circ y)' \oplus ((y \circ z)' \oplus (x \circ z)) \\ &= (x \circ y)' \oplus ((y' \oplus z)' \oplus (x' \oplus z)) \\ &= (x \circ y)' \oplus (((y' \oplus z)' \oplus z) \oplus x') \\ &= (x \circ y)' \oplus (((z' \oplus y)' \oplus y) \oplus x') \quad \text{(by 3.12(6))} \\ &= (x \circ y)' \oplus ((z' \oplus y)' \oplus (x' \oplus y)) \\ &= (x \circ y)' \oplus ((z' \oplus y)' \oplus (x \circ y)) \\ &= ((x \circ y)' \oplus (x \circ y)) \oplus (z' \oplus y)' \\ &= 1 \oplus (z' \oplus y)' \\ &= 1. \end{aligned}$$

References

- D. Buşneag and D. Piciu, On the lattice of ideals of an MV-algebra, Scientiae Mathematicae Japonicae Online, 6 (2002), 221–226
- [2] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467–490.
- [3] B. A. Davey and H. A. Priestley, Introduction to lattices and order, Cambridge University Press, Cambridge (1990)
- [4] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad., 42 (1966), 26–29.
- [5] G. Grätzer, General lattice theory Academic press, inc. New York (1978)
- [6] J. Meng and Y. B. Jun, BCK-algebra, Kyung Moon Sa, Seoul (1994)
- [7] Formal logics, Oxford, 2nd ed. (1962)

* Department of Mathematics, Chungju National University, Chungju 380-702, Korea e-mail : ghkim@cjnu.ac.kr

**Department of Mathematics, Chungbuk National University, Cheongju 361-763, KoreaE-mail address : yhyonkr@hanmail.net