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ABSTRACT. The aim of this paper is to study the properties of dual BC'K-algebra
and to prove that the MV-algebra is equvalent to the bounded commutative dual
BCK-algebra.

1 Introduction Let (L, <) be a poset. The greatest element of L is called the top element
of L if it exists. Similarly, the least element of L is called the bottom element of L if it exists.
We denote the top and the bottom element as 1 and 0, respectively. Let S be a subset of L
and u € L. u is called an upper bound of S if s < wu for all s € S, and w is called the join of
S if u is the least upper bound of S. Dually, we defnine a lower bound of S and the meet of
S. A poset L is an upper semilattice if sup{z,y} exists for all z,y € L and a poset L is a
lower semilattice if inf{x, y} exists for all z,y € L and a poset L is a lattice if it is an upper
and lower semilattice. A lattice L is said to be bounded if there exists a bottom 0 and a top
1in L([5, 3]).

BC K-algebras were introduced in 1966 by Iséki [4]. It is an algebraic formulation of
the BCK-propositional calculus system of C. A. Meredith [7], and generalize the notion
of implicative algebras. The notion of MV -algebra, originally introduced by C.C. Chang
[2], is an attempt at developing a theory of algebraic systems that would correspond to the
No-valued propositional calculus; the axioms for this calculus are known as the Lukasiewicz
axioms.

The purpose of this note is to study the relation between the MV -algebra and the dual
concept of BC'K-algebra. we will introduce some properties of dual BC' K-algebras and
MYV-algebras, and prove that the MV-algebra is equvalent to the bounded commutative
dual BCK-algebra.

2 Preliminaries In this section, we introduce the defninitions and some properties of a
BCK-algebra and a MV-algebra.

Definition 2.1. [6] An algebra (X, x,0) of type (2,0) is called a BCK-algebra if it satisfies:

((zxy) * (z % 2)) * (2 y)=0,

02 =0,

for all z,y,z € X.
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From the above defninition, we have the defninition of dual BC' K-algebra as following
defninition.

Definition 2.2. A dual BCK-algebra is an algebra (X, o, 1) of type (2,0) satisfying:

1) (woy)o((yoz)o(woz) =1.

(1)

(2) zo((woy)oy)=1.
(3) zox =1

(4) zoy=1and yox =1 imply z =y,
(5) zol=1.
for all z,y,z € X.

Let (X,0,1) be a dual BCK-algebra. Then we can defnine a binary relation ?<” on X
as the following :
x<y ifand only if zoy =1

for z,y € X, and has the following Lemma form the defninition of dual BC K-algebra.
Lemma 2.3. Let (X,0,1) be a dual BCK-algebra. Then for all z,y,z € X

r <yandy <ximply x =y,
r <1.

Theorem 2.4. Let (X, 0,1) be a dual BCK-algebra. Then for any z,y, z € X the following
hold

(1) z <yimpliesyoz <zoz,
(2) v <yandy < zimply z < z.

Proof. (1) Let x <y. Then 1 =zoy < (yoz)o(zoz)by 2.3 (1). Hence (yoz)o(roz)=1
by 2.3 (5), and yoz <=z o z.

(2) If z <yand y < z, then 1 =y oz < xoz by this lemma (1), hence x 0 z = 1 and
T < z. O

A dual BCK-algebra (X, 0,1) is a poset with the ordering < from 2.3 and 2.4, and the
element 1 in X is the top element with respect to the order relation <.

Theorem 2.5. Let (X,0,1) is a dual BCK-algebra and z,y,z € X. Then
1) zo(yoz)=yo(xroz),
2) x<yozimplyy<zoz,

(1)
(2)
(3) zoy < (z0x)0(20y),
(4)

4) x <yimply zox < zoy,
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(5) y <oy,
(6) lox =u.

Proof. (1) (<) Since y < (yoz)oz by 2.3(2), (yoz)oz)o(xoz) <yo(zroz) by 2.4(1). And
zo(yoz) < ((yoz)oz)o(xroz) by 2.3 (1), hence xo(yoz) <yo(xoz). (>) Interchanging
the role of z and y in (<), we get yo (xoz) <zo(yoz).

(2) Let z <yoz Thenl=zo0(yoz)=yo(xoz) hencey <zooz.

(3) Since zox < (zoy)o(zoy) by 2.3 (1), z0y < (zox)o (z0y) by the above (2).

(4) Let x <y. Then 1 = zoy < (zox)o(zoy) by the above (3), hence (zoz)o(zoy) = 1.
It follows that zoxz < zoy.

(5) From the above (1), yo(xoy)=zo(yoy)=xo0l=1 hencey <zoy.

(6) Since 1 < (1oxz)oxz by 2.3 (2), (1oz)ox = 1, hence 1 oz < x. Conversely,
zo(lox)=1lo(zxox)=101=1, hence z < louz. O

Let (X,0,1) be a dual BCK-algebra. We defnine a binary operation "+” on X as the
following : for any =,y € X

x+y=(roy)oy.

Remark 2.6. 1) Let (X,0,1) be a dual BCK-algebra and z,y € X. Then z + y is an
upper bound of z and y, since < (zoy) oy and y < (zoy) oy by 2.3(2) and 2.5(5).

2) Let (X, 0,1) be a dual BCK-algebra and z € X. Then x4+ 1= (zol)ol=101=1,
l+z=(1lozx)ox=zox=1,andr+2x=(rox)ox=1ox =ux, by 2.2 and 2.5(6).

Lemma 2.7. If (X,0,1) is a dual BC'K-algebra, then (z +y)oy =z oy for all z,y € X.

Proof. (<) Since z < z+vy, (t+y)oy < xoy by 2.4 (1). (>) From 2.3 (2), zoy <
(zoy)oy)oy=(z+y)oy. O

3 Bounded Commutative Dual BC K-algebras and M V-algebras

Definition 3.1. A dual BCK-algebra (X,0,1) is said to be bounded if there exists an
element 0 in X such that oz =1 for all z € X.

The element 0 is the bottom element in X, since 0 < z for all x € X from the defninition
of the order <.

Definition 3.2. Let (X, 0,1,0) be a bounded dual BC K-algebra and z € X. z00 is called
a pseudocomplement of x and we write * = x 0 0 and z** = (2*)*.

Theorem 3.3. Let (X,0,1,0) be a bounded dual BCK-algebra and z,y € X. Then
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Proof. (1) 1* =100 =0 by 2.5(6), and 0* =000 =1 by 2.2(3).

(2) x < (x00)o0=2x"" by 2.3(2).
(3) zoy<(yo0)o(zxo0)=y"ozx* by 2.3(1).
(4) z <y implies y* =yo0 <z o0 =2z* by 2.4 (1).
(5) zoy* =z0(yo0) =yo(ro0)=yoz* by 2.5(1).
(6) *** =((x00)00)o0=(r+0)o0=x00=2z" by 2.7. O
Definition 3.4. An element z in a bounded dual BC'K-algebra X is said to be regular if
T =z
Definition 3.5. A dual BCK-algebra (X, o,1) is said to be commutative if x +y =y + x
for all z,y € X.

Theorem 3.6. Let (X,0,1) be a dual BCK-algebra. Then the following conditions are
equivalent :

(1) z+y<y+zforal z,y € X,
(2) X is commutative,
(3) y <z implies x = (zoy) oy for z,y € X.

Proof. (1) = (2). Interchanging the role of  and y, it is trivial.

(2) = (3). Suppose X is commutative and y < z for z,y € X, then x = 1oz =
(yow)or=y+z=2+y=(woy)ov.

(3) = (1). Suppose that y < z implies x = (zoy) oy for z,y € X. Since y < y + =z,
y+x=((y+xz)oy)oy, hence (z+y)o(y+z) = (x+y)o(((y+z)oy)oy) = (y+
z)oy)o((x+y)oy) = ((y+z)oy)o (zoy) by 2.5(1) and 2.7, and since z < y + =z,
l=zo(y+2) < ((y+z)oy)o(xoy) by 2.3 (1). Hence (x+y)o(y+z) =1 and
z+y<y+z. ([l

Theorem 3.7. A commutative dual BC K-algebra is an upper semilattice.

Proof. Let (X,0,1) be a commutative dual BCK-algebra and z,y € X. Then = + y is
an upper bound of x and y by 2.6(1). We shall show that the x + y is the least upper
bound of z and y. Suppose z is an upper bound of z and y. Then zoz =yoz =1. (i):
z = loz = (z0z)oz = (zox)ox by the commutativity, and (ii): z = loz = (yoz)oz = (zoy)oy.
(iii): 2= (zo0z)ox = (((z0y)oy)ox)ox from (i) and (ii).

Set u = (zoy) oy, then z = (uox)ox from (iii). Since y < u by 2.5(5), uox < youx
by 2.4(1), and then (yoz)ox < (uox)ox =z Hence z+y = (zoy)oy= (yozx)ox < z.
Therefore, x + y is the least upper bound of z and y and X is an upper semilattice with
the join, say x + y, of any two elements x and y. [l

We defnine a binary operation ”-” on a bounded dual BC K-algebra X by the following:
x-y=(z*+y*)* for each x,y € X.

Theorem 3.8. Every element in a bounded commutative dual BC' K-algebra X is a regular.
Proof. Since 0 <z, x = (z00) o0 = z** for all x € X by 3.6(3). O

Theorem 3.9. Let (X, 0, 1,0) be a bounded commutative dual BCK-algebra and z,y € X.
Then

1) 27 -y* = (z+y)",
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(2) " +y* = (x-y)",
(3) y*ox* =xoy.

Proof. (1) z* -y* = (2™ 4+ y**)* = (x +y)* by the defninition of the binary operation - and
3.8.

(2) o* +y* = (x* + y*)** = (2™ - y*™*)* = (z - y)* by the above (1).

(3) y*oz* =xoy™ =z oy from 3.3(5). O

Theorem 3.10. A bounded commutative dual BC K-algebra is a lower semilattice.

Proof. Let (X,0,1,0) be a bounded commutative dual BC' K-algebra and x,y € X. Since
x* 4+ y* is an upper bound of z* and y*, (z* + y*)* < 2™ =z and (z* +y*)* < y*™* =y by
3.3(4). Hence z -y = (z* + y*)* is a lower bound of x and y.

Next, we shall show that = -y = (z* + y*)* is the greatest lower bound of z and y.
Suppose that z is a lower bound of z and y. Then z* < z* and y* < z* by 3.3(4), hence
z* is an upper bound of z* and y*. Since z* 4 y* is the least upper bound of x* and y* by
the proof of 3.7, z* + y* < z*, and then z = (z*)* < (2* + y*)* =z - y. Hence z - y is the
greatest lower bound of  and y and X is a lower semilattice. O

Theorem 3.11. A bounded commutative dual BC K-algebra is a bounded lattice.
Proof. From 3.7 and 3.10, it follows immediately. O

We note that  + y and z - y are the join and the meet, respectively, of any elements x
and y in a bounded commutative dual BC' K-algebra X.

Definition 3.12. [1] An MV-algebra is an algebra (A4, ®,",0) of type (2,1,0) satisfying
the following equations:

(1)

(2) zoy=yeu,

3) 2®0=u,

(4) 2" =u,

(5) @0/ =0,

6) (z'oy)oy=(Y o) s

On a MV-algebra A, we defnine the constant 1 and the operations “®” and “©” as
follows: 1 =0, z0y=("®y) andeoy=xz-y = (' Dy).

Lemma 3.13. [1] For z,y € A, the following conditions are equvalent:
(1) ' oy=1,
(2) z0y =0,
B)y=zo(you),
(4)

there is an element z € A such that z @ z = y.

We defnine the binary relation “<” on a MV-algebra A as follows: z <y if and only if
x and y satisfy one of the equvalent axioms 1) - 4) in the above lemma. The relation < is
a partial ordered relation on A.
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Theorem 3.14. [1] Let A be a MV-algebra and z,y,z € A. Then

(M ze@z=zifz0z ==z,

(8) x <yiffy’ <o,

(9) ifz<y,thenz@z<ydzandz®z<yO z,
(10) f z <y, thenzoz<yozand z6y < zO0«x,
(11) zey<z,zoy<y,

(12) @@yl oz <y,
W) zeoz<yif z<2" ®y,
(14) 2@ydrOy=zy.

Theorem 3.15. A bounded commutative dual BCK-algebra (X, 0,1,0) is a MV-algebra
(X,®,,0) with the operations “@” and “’” defnined as following:

rdy=2"oy and 2’ =2z*
for all z,y € X.

Proof. For any z,y,z € X, we have t @ (y®z) = ax*o(y*oz) = x*o(2*oy) = z*o(az*0oy) =
(*oy)foz=(zQyYy) Dz, @y =a*oy=y or=ydr,2d0=2"00=2a" =z,
=z =zandz®0 =2*00* =2*01=1=0*"=0". Thus we get the properties (1),
(2), (3), (4) and (5) of the defninition of MV-algebra. Next we will prove the property (6
of the MV-algebra. (2’ @y) @y=(zoy)* Py=(zoy)* oy=(yox)ox = (yox) &z =
(X*oy* Y @zr=(yY ®z) ®x. O

Theorem 3.16. A MV-algebra (X,®,’,0) is a bounded commutative dual BCK-algebra

(1P}

with the operation “o” and the top element 1 defnined as following:
zoy=2' @y and 1 =0
for all z,y € X.
Proof. 1) zol=a2'®1=1.2)zox=2'@®x=1. 3)zo((zoy)oy) =" @ ((e'Dy) dy) =

(@oy) @@ dy)=1.4) frzoy=1andyoxr=1,thenz’ ®y=1and ¢y ®z = 1. From
the defninition of the order < in MV-algebra, z <y and y < x, hence x = y.
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5) Let z,y,z € X. Then we have

(zoy)o((yoz)o(zoz))
=(@oy) ®((yoz) @ (roz))
=@oy) ®((y ®z2) @@ @2)
=(@oy)o((y@2)®2)@a)
=@oy' @ ((Fey) oy @z’) (by3.12(6))
=(@oy®((z'oy) @ ©y))
=(zoy) @ ((@y) ®(roy))
=((xoy) @ (xoy) @ (zay)
=10 (' oy
=1.
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