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Abstract. The aim of this paper is to study the properties of dual BCK-algebra
and to prove that the MV -algebra is equvalent to the bounded commutative dual
BCK-algebra.

1 Introduction Let (L,≤) be a poset. The greatest element of L is called the top element
of L if it exists. Similarly, the least element of L is called the bottom element of L if it exists.
We denote the top and the bottom element as 1 and 0, respectively. Let S be a subset of L
and u ∈ L. u is called an upper bound of S if s ≤ u for all s ∈ S, and u is called the join of
S if u is the least upper bound of S. Dually, we defnine a lower bound of S and the meet of
S. A poset L is an upper semilattice if sup{x, y} exists for all x, y ∈ L and a poset L is a
lower semilattice if inf{x, y} exists for all x, y ∈ L and a poset L is a lattice if it is an upper
and lower semilattice. A lattice L is said to be bounded if there exists a bottom 0 and a top
1 in L([5, 3]).

BCK-algebras were introduced in 1966 by Iséki [4]. It is an algebraic formulation of
the BCK-propositional calculus system of C. A. Meredith [7], and generalize the notion
of implicative algebras. The notion of MV -algebra, originally introduced by C.C. Chang
[2], is an attempt at developing a theory of algebraic systems that would correspond to the
ℵ0-valued propositional calculus; the axioms for this calculus are known as the �Lukasiewicz
axioms.

The purpose of this note is to study the relation between the MV -algebra and the dual
concept of BCK-algebra. we will introduce some properties of dual BCK-algebras and
MV -algebras, and prove that the MV -algebra is equvalent to the bounded commutative
dual BCK-algebra.

2 Preliminaries In this section, we introduce the defninitions and some properties of a
BCK-algebra and a MV -algebra.

Definition 2.1. [6] An algebra (X, ∗, 0) of type (2, 0) is called a BCK-algebra if it satisfies:

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)=0,

(2) (x ∗ (x ∗ y)) ∗ y = 0,

(3) x ∗ x = 0,

(4) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(5) 0 ∗ x = 0,

for all x, y, z ∈ X .
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From the above defninition, we have the defninition of dual BCK-algebra as following
defninition.

Definition 2.2. A dual BCK-algebra is an algebra (X, ◦, 1) of type (2, 0) satisfying:

(1) (x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) = 1.

(2) x ◦ ((x ◦ y) ◦ y) = 1.

(3) x ◦ x = 1.

(4) x ◦ y = 1 and y ◦ x = 1 imply x = y,

(5) x ◦ 1 = 1.

for all x, y, z ∈ X .

Let (X, ◦, 1) be a dual BCK-algebra. Then we can defnine a binary relation ”≤” on X
as the following :

x ≤ y if and only if x ◦ y = 1

for x, y ∈ X , and has the following Lemma form the defninition of dual BCK-algebra.

Lemma 2.3. Let (X, ◦, 1) be a dual BCK-algebra. Then for all x, y, z ∈ X ,

(1) x ◦ y ≤ (y ◦ z) ◦ (x ◦ z),

(2) x ≤ (x ◦ y) ◦ y,

(3) x ≤ x,

(4) x ≤ y and y ≤ x imply x = y,

(5) x ≤ 1.

Theorem 2.4. Let (X, ◦, 1) be a dual BCK-algebra. Then for any x, y, z ∈ X the following
hold

(1) x ≤ y implies y ◦ z ≤ x ◦ z,

(2) x ≤ y and y ≤ z imply x ≤ z.

Proof. (1) Let x ≤ y. Then 1 = x ◦ y ≤ (y ◦ z) ◦ (x ◦ z) by 2.3 (1). Hence (y ◦ z) ◦ (x ◦ z) = 1
by 2.3 (5), and y ◦ z ≤ x ◦ z.

(2) If x ≤ y and y ≤ z, then 1 = y ◦ z ≤ x ◦ z by this lemma (1), hence x ◦ z = 1 and
x ≤ z.

A dual BCK-algebra (X, ◦, 1) is a poset with the ordering ≤ from 2.3 and 2.4, and the
element 1 in X is the top element with respect to the order relation ≤.

Theorem 2.5. Let (X, ◦, 1) is a dual BCK-algebra and x, y, z ∈ X . Then

(1) x ◦ (y ◦ z) = y ◦ (x ◦ z),

(2) x ≤ y ◦ z imply y ≤ x ◦ z,

(3) x ◦ y ≤ (z ◦ x) ◦ (z ◦ y),

(4) x ≤ y imply z ◦ x ≤ z ◦ y,
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(5) y ≤ x ◦ y,

(6) 1 ◦ x = x.

Proof. (1) (≤) Since y ≤ (y ◦z)◦z by 2.3(2), ((y ◦z)◦z)◦ (x◦z) ≤ y ◦ (x◦z) by 2.4(1). And
x ◦ (y ◦ z) ≤ ((y ◦ z) ◦ z) ◦ (x ◦ z) by 2.3 (1), hence x ◦ (y ◦ z) ≤ y ◦ (x ◦ z). (≥) Interchanging
the role of x and y in (≤), we get y ◦ (x ◦ z) ≤ x ◦ (y ◦ z).

(2) Let x ≤ y ◦ z. Then 1 = x ◦ (y ◦ z) = y ◦ (x ◦ z), hence y ≤ x ◦ z.
(3) Since z ◦ x ≤ (x ◦ y) ◦ (z ◦ y) by 2.3 (1), x ◦ y ≤ (z ◦ x) ◦ (z ◦ y) by the above (2).
(4) Let x ≤ y. Then 1 = x◦y ≤ (z◦x)◦(z◦y) by the above (3), hence (z◦x)◦(z◦y) = 1.

It follows that z ◦ x ≤ z ◦ y.
(5) From the above (1), y ◦ (x ◦ y) = x ◦ (y ◦ y) = x ◦ 1 = 1, hence y ≤ x ◦ y.
(6) Since 1 ≤ (1 ◦ x) ◦ x by 2.3 (2), (1 ◦ x) ◦ x = 1, hence 1 ◦ x ≤ x. Conversely,

x ◦ (1 ◦ x) = 1 ◦ (x ◦ x) = 1 ◦ 1 = 1, hence x ≤ 1 ◦ x.

Let (X, ◦, 1) be a dual BCK-algebra. We defnine a binary operation ”+” on X as the
following : for any x, y ∈ X

x + y = (x ◦ y) ◦ y.

Remark 2.6. 1) Let (X, ◦, 1) be a dual BCK-algebra and x, y ∈ X . Then x + y is an
upper bound of x and y, since x ≤ (x ◦ y) ◦ y and y ≤ (x ◦ y) ◦ y by 2.3(2) and 2.5(5).

2) Let (X, ◦, 1) be a dual BCK-algebra and x ∈ X . Then x+ 1 = (x◦ 1) ◦ 1 = 1 ◦ 1 = 1,
1 + x = (1 ◦ x) ◦ x = x ◦ x = 1, and x + x = (x ◦ x) ◦ x = 1 ◦ x = x, by 2.2 and 2.5(6).

Lemma 2.7. If (X, ◦, 1) is a dual BCK-algebra, then (x + y) ◦ y = x ◦ y for all x, y ∈ X .

Proof. (≤) Since x ≤ x + y, (x + y) ◦ y ≤ x ◦ y by 2.4 (1). (≥) From 2.3 (2), x ◦ y ≤
((x ◦ y) ◦ y) ◦ y = (x + y) ◦ y.

3 Bounded Commutative Dual BCK-algebras and MV -algebras

Definition 3.1. A dual BCK-algebra (X, ◦, 1) is said to be bounded if there exists an
element 0 in X such that 0 ◦ x = 1 for all x ∈ X .

The element 0 is the bottom element in X , since 0 ≤ x for all x ∈ X from the defninition
of the order ≤.

Definition 3.2. Let (X, ◦, 1, 0) be a bounded dual BCK-algebra and x ∈ X . x◦0 is called
a pseudocomplement of x and we write x∗ = x ◦ 0 and x∗∗ = (x∗)∗.

Theorem 3.3. Let (X, ◦, 1, 0) be a bounded dual BCK-algebra and x, y ∈ X . Then

(1) 1∗ = 0 and 0∗ = 1,

(2) x ≤ x∗∗,

(3) x ◦ y ≤ y∗ ◦ x∗,

(4) x ≤ y implies y∗ ≤ x∗,

(5) x ◦ y∗ = y ◦ x∗,

(6) x∗∗∗ = x∗.
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Proof. (1) 1∗ = 1 ◦ 0 = 0 by 2.5(6), and 0∗ = 0 ◦ 0 = 1 by 2.2(3).
(2) x ≤ (x ◦ 0) ◦ 0 = x∗∗ by 2.3(2).
(3) x ◦ y ≤ (y ◦ 0) ◦ (x ◦ 0) = y∗ ◦ x∗ by 2.3(1).
(4) x ≤ y implies y∗ = y ◦ 0 ≤ x ◦ 0 = x∗ by 2.4 (1).
(5) x ◦ y∗ = x ◦ (y ◦ 0) = y ◦ (x ◦ 0) = y ◦ x∗ by 2.5(1).
(6) x∗∗∗ = ((x ◦ 0) ◦ 0) ◦ 0 = (x + 0) ◦ 0 = x ◦ 0 = x∗ by 2.7.

Definition 3.4. An element x in a bounded dual BCK-algebra X is said to be regular if
x∗∗ = x.

Definition 3.5. A dual BCK-algebra (X, ◦, 1) is said to be commutative if x + y = y + x
for all x, y ∈ X .

Theorem 3.6. Let (X, ◦, 1) be a dual BCK-algebra. Then the following conditions are
equivalent :

(1) x + y ≤ y + x for all x, y ∈ X ,

(2) X is commutative,

(3) y ≤ x implies x = (x ◦ y) ◦ y for x, y ∈ X .

Proof. (1) ⇒ (2). Interchanging the role of x and y, it is trivial.
(2) ⇒ (3). Suppose X is commutative and y ≤ x for x, y ∈ X , then x = 1 ◦ x =

(y ◦ x) ◦ x = y + x = x + y = (x ◦ y) ◦ y.
(3) ⇒ (1). Suppose that y ≤ x implies x = (x ◦ y) ◦ y for x, y ∈ X . Since y ≤ y + x,

y + x = ((y + x) ◦ y) ◦ y, hence (x + y) ◦ (y + x) = (x + y) ◦ (((y + x) ◦ y) ◦ y) = ((y +
x) ◦ y) ◦ ((x + y) ◦ y) = ((y + x) ◦ y) ◦ (x ◦ y) by 2.5(1) and 2.7, and since x ≤ y + x,
1 = x ◦ (y + x) ≤ ((y + x) ◦ y) ◦ (x ◦ y) by 2.3 (1). Hence (x + y) ◦ (y + x) = 1 and
x + y ≤ y + x.

Theorem 3.7. A commutative dual BCK-algebra is an upper semilattice.

Proof. Let (X, ◦, 1) be a commutative dual BCK-algebra and x, y ∈ X . Then x + y is
an upper bound of x and y by 2.6(1). We shall show that the x + y is the least upper
bound of x and y. Suppose z is an upper bound of x and y. Then x ◦ z = y ◦ z = 1. (i):
z = 1◦z = (x◦z)◦z = (z◦x)◦x by the commutativity, and (ii): z = 1◦z = (y◦z)◦z = (z◦y)◦y.
(iii): z = (z ◦ x) ◦ x = (((z ◦ y) ◦ y) ◦ x) ◦ x from (i) and (ii).

Set u = (z ◦ y) ◦ y, then z = (u ◦ x) ◦ x from (iii). Since y ≤ u by 2.5(5), u ◦ x ≤ y ◦ x
by 2.4(1), and then (y ◦ x) ◦ x ≤ (u ◦ x) ◦ x = z. Hence x + y = (x ◦ y) ◦ y = (y ◦ x) ◦ x ≤ z.
Therefore, x + y is the least upper bound of x and y and X is an upper semilattice with
the join, say x + y, of any two elements x and y.

We defnine a binary operation ”·” on a bounded dual BCK-algebra X by the following:
x · y = (x∗ + y∗)∗ for each x, y ∈ X .

Theorem 3.8. Every element in a bounded commutative dual BCK-algebra X is a regular.

Proof. Since 0 ≤ x, x = (x ◦ 0) ◦ 0 = x∗∗ for all x ∈ X by 3.6(3).

Theorem 3.9. Let (X, ◦, 1, 0) be a bounded commutative dual BCK-algebra and x, y ∈ X .
Then

(1) x∗ · y∗ = (x + y)∗,
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(2) x∗ + y∗ = (x · y)∗,

(3) y∗ ◦ x∗ = x ◦ y.

Proof. (1) x∗ · y∗ = (x∗∗ + y∗∗)∗ = (x + y)∗ by the defninition of the binary operation · and
3.8.

(2) x∗ + y∗ = (x∗ + y∗)∗∗ = (x∗∗ · y∗∗)∗ = (x · y)∗ by the above (1).
(3) y∗ ◦ x∗ = x ◦ y∗∗ = x ◦ y from 3.3(5).

Theorem 3.10. A bounded commutative dual BCK-algebra is a lower semilattice.

Proof. Let (X, ◦, 1, 0) be a bounded commutative dual BCK-algebra and x, y ∈ X . Since
x∗ + y∗ is an upper bound of x∗ and y∗, (x∗ + y∗)∗ ≤ x∗∗ = x and (x∗ + y∗)∗ ≤ y∗∗ = y by
3.3(4). Hence x · y = (x∗ + y∗)∗ is a lower bound of x and y.

Next, we shall show that x · y = (x∗ + y∗)∗ is the greatest lower bound of x and y.
Suppose that z is a lower bound of x and y. Then x∗ ≤ z∗ and y∗ ≤ z∗ by 3.3(4), hence
z∗ is an upper bound of x∗ and y∗. Since x∗ + y∗ is the least upper bound of x∗ and y∗ by
the proof of 3.7, x∗ + y∗ ≤ z∗, and then z = (z∗)∗ ≤ (x∗ + y∗)∗ = x · y. Hence x · y is the
greatest lower bound of x and y and X is a lower semilattice.

Theorem 3.11. A bounded commutative dual BCK-algebra is a bounded lattice.

Proof. From 3.7 and 3.10, it follows immediately.

We note that x + y and x · y are the join and the meet, respectively, of any elements x
and y in a bounded commutative dual BCK-algebra X .

Definition 3.12. [1] An MV -algebra is an algebra (A,⊕,′ , 0) of type (2, 1, 0) satisfying
the following equations:

(1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(2) x ⊕ y = y ⊕ x,

(3) x ⊕ 0 = x,

(4) x′′ = x,

(5) x ⊕ 0′ = 0′,

(6) (x′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x.

On a MV -algebra A, we defnine the constant 1 and the operations “	” and “
” as
follows: 1 = 0′, x 	 y = (x′ ⊕ y′)′ and x 
 y = x · y′ = (x′ ⊕ y)′.

Lemma 3.13. [1] For x, y ∈ A, the following conditions are equvalent:

(1) x′ ⊕ y = 1,

(2) x 	 y′ = 0,

(3) y = x ⊕ (y 
 x),

(4) there is an element z ∈ A such that x ⊕ z = y.

We defnine the binary relation “≤” on a MV -algebra A as follows: x ≤ y if and only if
x and y satisfy one of the equvalent axioms 1) - 4) in the above lemma. The relation ≤ is
a partial ordered relation on A.
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Theorem 3.14. [1] Let A be a MV -algebra and x, y, z ∈ A. Then

(1) 1′ = 0,

(2) x ⊕ y = (x′ 	 y′)′,

(3) x ⊕ 1 = 1,

(4) (x 
 y) ⊕ y = (y 
 x) ⊕ x,

(5) x ⊕ x′ = 1,

(6) x 
 0 = x, 0 
 x = 0, x 
 x = 0, 1 
 x = x′, x 
 1 = 0,

(7) x ⊕ x = x iff x 	 x = x,

(8) x ≤ y iff y′ ≤ x′,

(9) if x ≤ y, then x ⊕ z ≤ y ⊕ z and x 	 z ≤ y 	 z,

(10) if x ≤ y, then x 
 z ≤ y 
 z and z 
 y ≤ z 
 x,

(11) x 
 y ≤ x, x 
 y ≤ y′,

(12) (x ⊕ y) 
 x ≤ y,

(13) x 	 z ≤ y iff z ≤ x′ ⊕ y,

(14) x ⊕ y ⊕ x 	 y = x ⊕ y.

Theorem 3.15. A bounded commutative dual BCK-algebra (X, ◦, 1, 0) is a MV -algebra
(X,⊕,′ , 0) with the operations “⊕” and “ ′” defnined as following:

x ⊕ y = x∗ ◦ y and x′ = x∗

for all x, y ∈ X .

Proof. For any x, y, z ∈ X , we have x⊕ (y⊕z) = x∗ ◦ (y∗ ◦z) = x∗ ◦ (z∗ ◦y) = z∗ ◦ (x∗ ◦y) =
(x∗ ◦ y)∗ ◦ z = (x ⊕ y) ⊕ z, x ⊕ y = x∗ ◦ y = y∗ ◦ x = y ⊕ x, x ⊕ 0 = x∗ ◦ 0 = x∗∗ = x,
x′′ = x∗∗ = x and x ⊕ 0′ = x∗ ◦ 0∗ = x∗ ◦ 1 = 1 = 0∗ = 0′. Thus we get the properties (1),
(2), (3), (4) and (5) of the defninition of MV -algebra. Next we will prove the property (6)
of the MV-algebra. (x′ ⊕ y)′ ⊕ y = (x ◦ y)∗ ⊕ y = (x ◦ y)∗∗ ◦ y = (y ◦ x) ◦ x = (y ◦ x)∗ ⊕ x =
(X∗ ◦ y∗)∗ ⊕ x = (y′ ⊕ x)′ ⊕ x.

Theorem 3.16. A MV -algebra (X,⊕,′ , 0) is a bounded commutative dual BCK-algebra
with the operation “◦” and the top element 1 defnined as following:

x ◦ y = x′ ⊕ y and 1 = 0′

for all x, y ∈ X .

Proof. 1) x ◦ 1 = x′⊕ 1 = 1. 2) x ◦x = x′⊕x = 1. 3) x ◦ ((x◦ y) ◦ y) = x′ ⊕ ((x′⊕ y)′⊕ y) =
(x′ ⊕ y)′ ⊕ (x′ ⊕ y) = 1. 4) If x ◦ y = 1 and y ◦ x = 1, then x′ ⊕ y = 1 and y′ ⊕ x = 1. From
the defninition of the order ≤ in MV -algebra, x ≤ y and y ≤ x, hence x = y.
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5) Let x, y, z ∈ X . Then we have

(x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z))
= (x ◦ y)′ ⊕ ((y ◦ z)′ ⊕ (x ◦ z))
= (x ◦ y)′ ⊕ ((y′ ⊕ z)′ ⊕ (x′ ⊕ z))
= (x ◦ y)′ ⊕ (((y′ ⊕ z)′ ⊕ z) ⊕ x′)
= (x ◦ y)′ ⊕ (((z′ ⊕ y)′ ⊕ y) ⊕ x′) (by 3.12(6))
= (x ◦ y)′ ⊕ ((z′ ⊕ y)′ ⊕ (x′ ⊕ y))
= (x ◦ y)′ ⊕ ((z′ ⊕ y)′ ⊕ (x ◦ y))
= ((x ◦ y)′ ⊕ (x ◦ y)) ⊕ (z′ ⊕ y)′

= 1 ⊕ (z′ ⊕ y)′

= 1.
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