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COMMUTATION OF INTERNAL COLIMIT AND FINITE LIMITS

S.N. HOSSEINI

Received January 3, 2007

Abstract. It is well known that if E is a topos, Colim : EC �� E preserves finite

limits if and only if C is a filtered internal category.
The main result of this paper is that for E belonging to a wider class of categories

than topoi, Colim : EC �� E preserves finite limits if C is smooth, proper, and a

universal extremal filtered internal category.
This result is simplified for topological categories E over Set that satisfy certain

conditions. It is shown that for these categories Colim : EC �� E preserves finite

limits if C is filtered and d0C is initial.

1. Preliminaries

Let E be a category with finite limits and coequalizers of reflexive pairs. Throughout the
paper we refer to a pullback diagram:

P

p.b.π1

��

π2 �� Y

g

��
X

f
�� Z

Diagram I
as the pullback fπ1 = gπ2 : P �� Z . Given a morphism f : X �� Y in E , form

the kernel pair, Kf

π1 ��
π2

�� X, of f . Let qf : X �� I be the coequalizer of the reflexive pair

Kf

π1 ��
π2

�� X. Since f coequalizes π1 and π2, it factors through qf by a unique morphism if .

Hence to each morphism f in E there corresponds unique morphisms qf and if such that
f = ifqf , where qf is the coequalizer of the kernel pair of f . We refer to qf , respectively
if , as the q-map, respectively i-map of f .

Let Cat(E) denote the category of the internal categories in E , see [2] p 47. For C in
Cat(E), define the maps dC , tC , and sC as follows, see [2], p66.

Form the pullback
d1π1 = d1π2 : KC

�� C0

Let π = 〈π1, π2〉 : KC
�� C2

1 and dC = d2
0π : KC

�� C2
0 .

Form the pullbacks
〈d0, d1〉π1 = 〈d0, d1〉π2 : R �� C2

0

and
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〈π2m, m〉π1 = 〈π2m, m〉π2 : T �� C2
1

Let tC = (π1π1, π1π2) : T �� R .
Finally form the pullbacks

d0π1 = d0π2 : Q �� C0 and mπ1 = mπ2 : S �� C1

Let sC = (π1π1, π1π2) : S �� Q .
We write e.e., for an extremal epimorphism, i.e., a morphism that whenever it factors

through a monomorphism with the same codomain, the monomorphism is an isomorphism
and we write u.e.e., for a universal extremal epimorphism, i.e. an e.e. whose pullback along
every morphism is an e.e.

Consider the following (internal) conditions on an internal category C in E .

1.1. Conditions:
(a) The unique morphismC0

! �� 1 is an e.e.

(b) The morphism dC : KC
�� C2

0 is a u.e.e.

(c) The morphism tC : TC
�� RC is a u.e.e.

(d) The morphism sC : SC
�� QC is a u.e.e.

Also consider the following (external) conditions on C.

1.2. Conditions:
(a)′ The unique morphismC0

�� 1 is an e.e.

(b)′ For all pair of morphisms U
γ1 ��

γ2
�� C0 in E , there are morphisms V

λ1 ��
λ2

�� C1 and

ε : V �� U such that ε is a u.e.e., d1λ1 = d1λ2 and d0λj = γjε, for j = 1, 2.

(c)′ For all pair of morphisms U
γ1 ��

γ2
�� C1 coequalized by d0 and d1, there are morphisms

µ : V �� C1 and ε : V �� U such that ε is a u.e.e., d0µ = d1γjε, for j = 1, 2, and
m(γ1ε, µ) = m(γ2ε, µ).

(d)′ For all pair of morphisms U
γ1 ��

γ2
�� C1 coequalized by d0, there are morphisms V

δ1 ��
δ2

�� C1, and ε : V �� U such that ε is a u.e.e., d0δj = d1γjε, for j = 1, 2, and

m(γ1ε, δ1) = m(γ2ε, δ2).

1.3. Theorem: Conditions (a), (b), (c), and (d) of 1.1 are equivalent to conditions (a)′,
(b)′, (c)′ and (d)′ of 1.2, respectively.

Proof: (a) and (a)′ are the same.

(b) ⇒ (b)′: Given U
γ1 ��

γ2
�� C0, pullback dC along 〈γ1, γ2〉 : U �� C2

0 to get

λ : V �� KC and ε : V �� U . (b) implies that dC , and hence ε, is a u.e.e. Let

λj = πjλ, j = 1, 2, where KC

π1 ��
π2

�� C1 is the kernel pair of d1 : C1
�� C0 . d1π1 = d1π2

implies d1λ1 = d1π1λ = d1π2λ = d1λ2. Also the above pullback diagram implies that dCλ =
〈γ1, γ2〉ε, where dC = d2

0π = d2
0〈π1, π2〉 = 〈d0π1, d0π2〉, thus 〈d0π1, d0π2〉λ = 〈γ1, γ2〉ε, which

implies that d0πjλ = γjε, j = 1, 2. This in turn implies that d0λj = γjε, j = 1, 2 as desired.
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(b)′ ⇒ (b): Let C2
0

pr1 ��
pr2

�� C0 be the projections. (b)′ implies the existence of mor-

phisms V
λ1 ��

λ2

�� C1, and ε : V �� C2
0 such that ε is u.e.e., d1λ1 = d1λ2, and d0λj =

prjε, j = 1, 2. Since d1λ1 = d1λ2, the pullback d1π1 = d1π2 : KC
�� C0 implies there

is a unique λ = (λ1, λ2) : V �� KC such that πjλ = λj , j = 1, 2. We have πλ =
〈π1, π2〉λ = 〈π1λ, π2λ〉 = 〈λ1, λ2〉, and therefore dCλ = d2

0πλ = d2
0〈λ1, λ2〉 = 〈d0λ1, d0λ2〉 =

〈pr1ε, pr2ε〉 = 〈pr1, pr2〉ε = ε. Now since ε is a u.e.e., so is dC .
The proofs that (c) ⇔ (c)′ and (d) ⇔ (d)′ are similar.

�
1.4. Definition: C in Cat(E) is said to be a universal extremal weakly filtered (u.e.w.f.)

category if conditions (c) and (d) of 1.1 are met, and it is said to be a universal extremal
filtered (u.e.f.) category if conditions (a), (b), and (c) of 1.1 are satisfied.

1.5. Lemma: Let C be in Cat(E) and γ : F �� C be a discrete opfibration.
(a) If C is a u.e.f. category, then it is a u.e.w.f. category.
(b) If C is a u.e.w.f. category, then so is F .
(c) If C is a u.e.f. category, then C satisfies the following condition:

(d)′′ For all pairs of morphisms U
γ1 ��

γ2
�� C1 and U

γ′
1 ��

γ′
2

�� C1 such that d0γ1 = d0γ2, d0γ
′
1 =

d0γ
′
2 and d1γj = d1γ

′
j , j = 1, 2, there are morphisms V

ζ1 ��
ζ2

�� C1, and ε : V �� U such

that ε is a u.e.e., d0ζj = d1γjε = d1γ
′
jε, m(γ1ε, ζ1) = m(γ2ε, ζ2), and m(γ′

1ε, ζ1) = m(γ′
2ε, ζ2).

Proof: (a) See [2], p 68, 2.53 Lemma.
(b) See [2], p 69, 2.56 Lemma.
(c) Straightforward.

�

2. Proper Internal Category

A category E with finite limits and coequalizers of reflexive pairs is said to be admissible
if for all f ∈ E , the i-map of f is mono.

In this and the next section we let E be an admissible category.

2.1. Lemma: In E :
(a) a morphism is an e.e. iff it is a coequalizer of its kernel pair.
(b) the composition of two e.e.’s as an e.e..

Proof: Straightforward.
�

2.2. Definition: Let C be in Cat(E ).
(a) C is said to be weakly proper if the q-map of dC is a u.e.e., and the i-map of dC is

effective, (see [2], p 16) if it is an equivalence relation (see [2], p 16).
(b) C is said to be proper if for all discrete opfibrations γ : F �� C , F is weakly

proper.

2.3. Lemma: Let γ : F �� C be a discrete opfibration in Cat(E ).
(a) If C is proper, then it is weakly proper.
(b) If C is proper, then so is F .
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Proof: (a) Consider the discrete opfibration 1 : C �� C to conclude C is weakly proper.
(b) Let α : E �� F be a discrete opfibration. The composite γα : E �� C is a

discrete opfibration. So E is weakly proper as desired.
�

2.4. Lemma: Let C in Cat(E ) be weakly proper. If C satisfies Condition 1.1(d), then
the i-map of dC is effective.

Proof: By Definition 2.2(a), it is sufficient to show the i-map of dC is an equivalence
relation. A straightforward computation shows that the relation is symmetric and reflexive.
To show transitivity form the pullbacks d1π1 = d1π2 : KC

�� C0 and

dCa = dCb : R �� C2
0 . Let q : KC

�� I be the coequalizer of R
a ��
b

�� KC . We have

iq = dC = d2
0π. Form the pullback i2r = i1s : T �� C0 , where i1 and i2 are the compo-

nents of i. We need to show 〈i1r, i2s〉 : T �� C2
0 factors through i. Form the following

pullbacks to get the maps α1, α2, and β.

A

α2

///
��

��

β

p.b. ���
��

��
��

�

��
α1 ///

��

T1

p.b.

��

��

K

q

��
d0π1///

��

T2

p.b.

��

��

T

p.b.

s ��

r

��

I

i1

��
K

d0π2

///

��q
�� I

i2
�� C0

Diagram II

The fact that C is weakly proper implies q is a u.e.e., and therefore so is β.
By Diagram II we have, d0(π2α1) = d0(π1α2), so we get the unique morphism

(π2α1, π1α2) : A �� Q , such that π1(π2α1, π1α2) = π2α1, and π2(π2α1, π1α2) = π1α2.
pullback sC along (π2α1, π1α2) to get:
(1) (π2α1, π1α2)ε = sCδ : V �� Q

C satisfies Condition (d), so by Theorem 1.3 it satisfies Condition (d)′, hence sC , and
therefore ε is a u.e.e.. (1), and the definition of KC as the pullback of d1 along d1 imply that
d1π1α1ε = d1π2α1ε = d1π1π1δ = d0π2π1δ and d1π2α2ε = d1π1α2ε = d1π1π2δ = d0π2π2δ.
Now the definition of C2 as the pullback of d0 along d1 yields the existence of the maps:

(π1α1ε, π2π1δ), (π2α2ε, π2π2δ) : V
���� C2

Define ηj = m(πjαjε, π2πjδ) : V �� C1 , where m is the multiplication. Since mπ1 =
mπ2 and d1m = d1π2, we have d1π2π1 = d1mπ1 = d1mπ2 = d1π2π2, and so d1η1 =
d1m(π1α1ε, π2π1δ) = d1π2(π1α1ε, π2π1δ) = d1π2π1δ = d1π2π2δ = d1π2(π2α2ε, π2π2δ) =
d1m(π2α2ε, π2π2δ) = d1η2. Hence η1 and η2 are coequalized by d1, which yields the ex-
istence of the unique map (η1, η2) : V �� K . Now we have iq(η1, η2) = d(η1, η2) =
d2
0π(η1, η2) = 〈d0π1, d0π2〉(η1, η2) = 〈d0π1(η1, η2), d0π2(η1, η2)〉 = 〈d0η1, d0η2〉, and by Dia-

gram II, 〈i1r, i2s〉βε = 〈i1rβε, i2sβε〉 = 〈i1qα1ε, i2qα2ε〉 = 〈d0π1α1ε, d0π2α2ε〉 = 〈d0η1, d0η2〉.
Therefore we have
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(2) iq(η1, η2) = 〈i1r, i2s〉βε
Since β and ε are e.e.’s, so is βε, and so by Lemma 2.1, βε is the coequalizer of its

kernel pair. Let W
f ��
g

�� V be the kernel pair of βε. It follows that βεf = βεg, and so

〈i1r, i2s〉βεf = 〈i1r, i2s〉βεg. Equation (2) implies that iq(η1, η2)f = iq(η1, η2)g. Since i
is a mono q(η1, η2)f = q(η1, η2)g. Thus q(η1, η2) coequalizes f and g, and hence there is
a unique map h such that q(η1, η2) = hβε. Therefore ihβε = iq(η1, η2), and so, by (2),
ihβε = 〈i1r, i2s〉βε. βε is an e.e., and thus an epi. Hence ih = 〈i1r, i2s〉, that is, 〈i1r, i2s〉
factors through i as desired.

�
For an object X of E , let E /X denote the comma category, see [3] p 47. Let C be

in Cat(E ), and σ : C0
�� L the coequalizer of C1

d0 ��
d1

�� C0. C can be regarded as an

object of Cat(E/L) by means of the morphism σ : C0
�� L , in which case we denote it

by C/L.

2.5. Proposition: Let C in Cat(E ) be weakly proper, and σ : C0
�� L be the co-

equalizer of C1

d0 ��
d1

�� C0. If C is a u.e.w.f. category in Cat(E ), then C/L is a u.e.f. category

in Cat(E/L).

Proof: We need to show Conditions 1.1(a)-(c) hold. Since a morphism of E/L is a mono,
respectively an e.e., in E /L if and only if it is so when regarded as a morphism of E ,
Conditions (a) and (c) follow trivially.

To show (b) holds in E /L, we need to show dC/L is a u.e.e.. But dC/L = ∂ is obtained
as follows:

KC

d0π2

///

��

∂

���
��

��
���

�
∂

���
��

��
���

�

d0π1

///

		

C0×
L
C0

p.b.

b ��

a

��

C0

σ

��
C0 σ

�� L

Diagram III

The commutativity of the outer square in Diagram III follows from the fact that σd0 =
σd1. We have:
(1) dC = 〈a, b〉∂ : KC

�� C2
0 and iq = dC : KC

�� C2
0

Since q is the q-map of dC , it is a u.e.e. On the other hand since C is weakly proper, C
is a u.e.w.f. category in Cat(E ), so it satisfies Condition 1.1(d). Lemma 2.4 now implies
that, the i-map of dC is effective. Therefore there is a morphism f : C0

�� Y for some
object Y of E , such that:
(2) fi1 = fi2 : I �� Y is a pullback

Let i : C0
�� C1 be the inclusion of identities. Since d1 = d1(id1), the pullback

d1π1 = d1π2 : KC
�� C0 yields a unique morphism (1, id1) : C1

�� KC such that:

(3) π1(1, id1) = 1 : C1
�� C1 and π2(1, id1) = id1 : C1

�� C1
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(1), (2), (3), and the equation d0i = 1C0 imply that fd0 = fd0π1(1, id1) = fi1q(1, id1) =
fi2q(1, id1) = fd0π2(1, id1) = fd0id1 = fd1. So f coequalizes d0 and d1. Hence there is a
unique morphism t : L �� Y such that tσ = f . This and Diagram III yield fa = tσa =

tσb = fb. Now the pullback fi1 = fi2 : I �� Y yields a unique m : C0×
L
C0 �� I

such that i1m = a, and i2m = b.
On the other hand, (1), Diagram III, and the definition of σ yield σi1q = σd0π1 =

σd1π1 = σd1π2 = σd0π2 = σi2q i.e., σi1q = σi2q. But q is epi, hence σi1 = σi2, and
since σa = σb : C0×

L
C0 �� L is a pullback, it follows that there is a unique n such that

an = i1, and bn = i2. Pullbacks fi1 = fi2 : I �� Y and σa = σb : C0×
L
C0 �� L ,

imply mn = 1 and nm = 1. This and (1) imply that dC = 〈a, b〉∂, im = 〈a, b〉, 〈a, b〉n = i
nq = ∂, and q = m∂. Since n is an isomorphism, and q a u.e.e., ∂ is a u.e.e..

�

3. Internal Colimit

For any category E , with finite limits and coequalizers of reflexive pairs, and any C in
Cat(E ), EC denotes the full subcategory of the comma category Cat(E )/C whose objects
are discrete opfibrations. See [2] p 49 and 50.

3.1. Definition: Define:

(a) Colim : Cat(E ) �� E by Colim(C) = Coeq(C1

d0 ��
d1

�� C0).

(b) For C in Cat(E ), ColimC : EC �� E by ColimC(F
C �� γ) = Colim(F ). We

refer to this functor as the internal colimit.

3.2. Definition: An object X of E is said to be separated if in E/X , the product of e.e.’s
is an e.e..

3.3. Remark: Since products in E/X are pullbacks in E , it follows that X in E is
separated if and only if for any two e.e.’s σ1 : X1

�� Y1 , and σ2 : X2
�� Y2 ; and

any two morphisms f1 : Y1
�� X , and f2 : Y2

�� X , the morphism σ1×
X

σ2 is an e.e.,
where σ1×

X
σ2 is obtained by the following pullbacks :

X1×
X

X2

p.b.

��
σ1×

X

σ2



��
�������

��

E2

p.b.

��

��

X2

σ2

��
E1

p.b.

��

��

Y1×
L
Y2

p.b.

π2 ��

π1

��

Y2

f2

��
X1

σ1
�� Y1

f1

�� X

Diagram IV

3.4. Definition: C in Cat(E ) is said to be:
(a) weakly smooth if Colim(C) is a separated object of E .
(b) smooth if for all discrete opfibrationsF �� C , F is weakly smooth.

3.5. Lemma: (a) If C in Cat(E ) is smooth, then it is weakly smooth.
(b) If γ : F �� C is a discrete opfibration, and C is smooth, then so is F.
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Proof: The proof is similar to the proof of Lemma 2.3.
�

3.6. Theorem: Let C in Cat(E ) be weakly smooth and proper. If C is u.e.w.f., then

Colim : (E/L)C/L �� E/L preserves finite products, where L = Colim(C).

Proof: For αi : F i/L �� C/L in (E/L)C/L, the product of α1 by α2 in (E/L)C/L is

α1π1 : G/L �� C/L , where G is obtained by the pullback:

(1) α1π1 = α2π2 : G �� C
and G/L is G regarded as an object over L by passing to C, and regarding C as an object

over L.
The internal colimit ofG/L �� C/L in E/L is, by definition, the coequalizer of (G/L)1
d0 ��

d1

�� (G/L)0 in E/L, which is simply the coequalizer G1

d0 ��
d1

�� G0
τ �� M in E , regarded

as an object over L. So M/L is the internal colimit of the product of α1 and α2.
On the other hand, the internal colimit of αi : F i/L �� C/L in E/L is the coequalizer

of (F i/L)1
d0 ��

d1

�� (F i/L)0 in E/L, which is again simply the coequalizer F i
1

d0 ��
d1

�� F i
0

σi
�� Li

regarded as an object over L by li. The product of L1/L by L2/L in E/L is (L1×
L
L2)/L,

where L1×
L
L2 is the pullback of l2 : L2 �� L along l1 : L1 �� L . So the product of

the internal colimit of α1 and the internal colimit of α2 is (L1×
L
L2)/L. We need to show

M/L and (L1×
L
L2)/L are canonically isomorphic.

To this end we first note that the morphism 〈σ1π1
0 , σ2π2

0〉 : G0
�� L1 × L2 is coequal-

ized by d0 and d1 of G, where d0 and d1 are obtained by the pullback (1). Therefore there
is a unique morphism Φ such that:
(2) Φτ = 〈σ1π1

0 , σ
2π2

0〉
It is straightforward to verify that l1σ1π1

0 = l2σ2π2
0 . Hence 〈σ1π1

0 , σ
2π2

0〉 factors through
L1×

L
L2. The factoring map is denoted by (σ1π1

0 , σ
2π2

0). Note that

(3) π(σ1π1
0 , σ2π2

0) = 〈σ1π1
0 , σ

2π2
0〉

where π = 〈π1, π2〉. Since π is a mono, and 〈σ1π1
0 , σ

2π2
0〉 is coequalized by d0 and d1, it

follows that (σ1π1
0 , σ

2π2
0) is coequalized by d0 and d1. Hence there is a unique morphism φ

(canonical morphism) such that
(4) φτ = (σ1π1

0 , σ2π2
0)

(2), (3), and (4) imply that Φτ = 〈σ1π1
0 , σ2π2

0〉 = π(σ1π1
0 , σ

2π2
0) = πφτ . τ , being a

coequalizer, is an epi, so Φ = πφ. It follows that φ is mono if and only if Φ is mono. We
will show that φ is an isomorphism by showing it is mono and e.e..

To show φ is mono, we show that Φ is mono by showing for arbitrary morphisms U
γ1 ��

γ2
�� G0, if Φτγ1 = Φτγ2 then τγ1 = τγ2. But first let us show this is sufficient. Form the

pullback (Φτ)π1 = (Φτ)π2 : R �� L1 × L2 and the coequalizer R
π1 ��

π2
�� G0

Q �� q and

let i : Q �� L1 × L2 be the i-map of Φτ , so that iq = Φτ . The morphism i is mono since
it is the i-map of Φτ . Φτπ1 = Φτπ2 implies by our hypothesis that τπ1 = τπ2. So there
is a unique morphism α : Q �� M such that αq = τ . Therefore iq = Φτ and αq = τ ,
and consequently Φαq = iq. Since q is an epi, Φα = i. Since i is mono, so is α. Since the



380 S.N. HOSSEINI

e.e. τ factors through α, α is an isomorphism. Thus Φ is a mono, since Φα = i, α is an

isomorphism, and i is a mono. So suppose we are given U
γ1 ��

γ2
�� G0 such that

(5) Φτγ1 = Φτγ2

Define morphisms γi
j : U �� F i

0 , i, j = 1, 2, by γi
j = πi

0γj . (2), and (5) imply σiγi
1 =

σiγi
2, from which it follows that U can be regarded as an object of E/Li, for each i, and

that γi
1 and γi

2 are morphisms in E/Li. By Lemma 1.5, F i is u.e.w.f., and by Lemma
2.3, F i is weakly proper. Hence by Proposition 2.5, F i/Li is u.e.f. in Cat(E/Li), and
therefore satisfies Condition 1.2(b)′ in E/Li. Applying (b)′ to γi

1 and γi
2 we get morphisms

V i
λi
1 ��

λi
2

�� F i
1 and εi : V i �� U such that:

(6) εi is a u.e.e., d1λ
i
1 = d1λ

i
2, and d0λ

i
j = γi

jε
i

Pullback ε2 along ε1 to get ti : V �� V i for i = 1, 2. Define ε : V �� U , and

Λi
j : V �� F i

1 by ε = ε1t1, and Λi
j = λi

jt
i. (6) implies that:

(7) ε is a u.e.e., d1Λi
1 = d1Λi

2, and d0Λi
j = γi

jε

Define µi
j : V �� C1 by µi

j = αi
1Λ

i
j. The definition of γ1

j , γ2
j , and (1) imply that

α1
0γ

1
j = α2

0γ
2
j . This together with the definition of µi

j , the fact that d0α
1
1 = α1

0d0, and (7)
imply that:
(8) d0µ

1
j = d0µ

2
j , and d1µ

i
1 = d1µ

i
2

The fact that σd0 = σd1, and (8) imply that σd0µ
i
j does not depend on i or j. This

shows that V can be regarded as an object over L, and µi
j as a morphism in E/L.

By Lemma 2.3, and Proposition 2.5, C is a u.e.f. in Cat(E/L), therefore by Lemma 1.5,

it satisfies Condition (d)′′ in E/L. Applying (d)′′ to µi
j , we get morphisms W

ρ1
��

ρ2
�� C1 and

ξ : W �� V such that the following hold simultaneously for both j = 1 and 2.
(9) ξ is a u.e.e., d0ρ

i = diµ
i
jξ, and m(µ1

jξ, ρ
1) = m(µ2

jξ, ρ
2)

The definition of µi
j , and (9) imply that d0ρ

i = d1µ
i
jξ = d1α

i
1Λ

i
jξ = αi

0d1Λi
jξ. Since

d0αi
1 = αi

0d0 : F i
1

�� C0 is a pullback there is a unique map θi : W �� F i
1 , for each

i, such that:
(10) αi

1θ
i = ρi, and d0θ

i = d1Λi
jξ

Note that by (7), d1Λi
1 = d1Λi

2, so that θi does not depend on j.
By (7), and (10) we have d0θ

i = d1Λi
1ξ = d1Λi

2ξ. Since d1π1 = d0π2 : F i
2

�� F i
0 is a

pullback there exists a unique map (Λi
jξ, θ

i) such that:
(11) π1(Λi

jξ, θ
i) = Λi

jξ, and π2(Λi
jξ, θ

i) = θi

Define morphisms Ψi
j : W �� F i

1 by Ψi
j = m(Λi

jξ, θ
i). (11), and the definition of µi

j

imply that π1α
i
2(Λi

jξ, θ
i) = αi

1π
i
1(Λi

jξ, θ
i) = αi

1Λi
jξ = µi

jξ = π1(µi
jξ, ρ

i). Similarly we can
show π2α

i
2(Λi

jξ, θ
i) = π2(µi

jξ, ρ
i). The pullback d1π1 = d0π2 : C2

�� C0 then shows that
αi

2(Λi
jξ, θ

i) = (µi
jξ, ρ

i). This and the definition of Ψi
j imply that αi

1Ψi
j = αi

1m(Λi
jξ, θ

i) =
mαi

2(Λ
i
jξ, θ

i) = m(µi
jξ, ρ

i).
On the other hand by (9) m(µ1

jξ, ρ
1) = m(µ2

jξ, ρ
2). Therefore α1

1Ψ
1
j = α2

1Ψ
2
j , and

since α1
1π

1
1 = α2

1π
2
1 : G1

�� C1 is a pullback there is a unique morphism (Ψ1
j , Ψ

2
j) such

that π1
1(Ψ1

j , Ψ
2
j) = Ψ1

j and π2
1(Ψ1

j , Ψ
2
j) = Ψ2

j . By the definition of Ψi
j , and (11), we get

d1Ψi
j = d1m(Λi

jξ, θ
i) = d1π2(Λi

jξ, θ
i) = d1θ

i. It follows that:
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(12) d1(Ψ1
1, Ψ2

1) = (d1θ
1, d1θ

2) = d1(Ψ1
2, Ψ2

2)
On the other hand d0Ψi

j = d0m(Λi
jξ, θ

i) = d0π1(Λi
jξ, θ

i) = d0Λi
jξ. This and equation

(7) imply d0(Ψ1
j , Ψ

2
j) = (d0Λ1

jξ, d0Λ2
jξ) = (d0Λ1

j , d0Λ2
j)ξ = (γ1

j ε, γ2
j ε)ξ = (γ1

j , γ2
j )εξ = γjεξ.

This and equation (12) imply that τγ1εξ = τd0(Ψ1
1, Ψ

2
1) = τd1(Ψ1

1, Ψ
2
1) = τd1(Ψ1

2, Ψ
2
2) =

τd0(Ψ1
2, Ψ

2
2) = τγ2εξ. ε and ξ are e.e.’s and therefore epi’s, hence τγ1 = τγ2 as desired.

This proves Φ, and therefore φ, is mono.
To show φ is e.e., form the pullback

(13) (σα1
0)π1

0 = (σα2
0)π2

0 : F 1
0×

L
F 2

0 �� L

and note that the morphisms F 1
0×

L
F 2

0

α1
0π1

0 ��
α2

0π2
0

�� C0 are coequalized by σ, and therefore are

morphisms in E/L. C/L is u.e.f. in Cat(E/L), and so satisfies Condition (b)′ of 1.2 in E/L.

Applying (b)′ to α1
0π

1
0 and α2

0π
2
0 , we get morphisms V

λ1 ��
λ2

�� C1 and ε : V �� F 1
0 ×

L
F 2

0

such that
(14) ε is a u.e.e., d1λ1 = d1λ2, and d0λi = αi

0π
i
0ε

The last equation of (14) and the fact that d0α
i
1 = αi

0d0 : F i
1

�� C0 is a pullback imply

the existence of the unique morphism µi : V �� F i
1 such that:

(15) αi
1µi = λi, and d0µi = πi

0ε
By (14) and (15) we have α1

0d1µ1 = d1α
1
1µ1 = d1λ1 = d1λ2 = d1α

2
1µ2 = α2

0d1µ2. The
pullback α1

0π
1
0 = α2

0π
2
0 : G0

�� C0 yields a unique morphism ρ : V �� G0 such that:
(16) π1

0ρ = d1µ1, and π2
0ρ = d1µ2

(4), (15), and (16) imply that:
(17) φτρ = (σ1π1

0 , σ
2π2

0)ρ = (σ1π1
0ρ, σ2π2

0ρ) = (σ1d1µ1, σ
2d1µ2) =

(σ1d0µ1, σ
2d0µ2) = (σ1π1

0ε, σ2π2
0ε) = (σ1π1

0 , σ2π2
0)ε

Using (13), and the fact that liσi = σαi
0, which holds by the definition of li, form the

following pullback to get the morphism σ1×
L
σ2.

F 1
0×

L
F 2

0

p.b.

π2
0

/// ��
��

σ1×
L

σ2



����
���

��

��
π1
0 ///

��

E2

p.b.

��

��

F 2
0

σ2

��
σα2

0///



E1

p.b.

��

��

L1×
L
L2

p.b.

π2 ��

π1

��

L2

l2

��
F 1

0

σα1
0

///

��
σ1

�� L1

l1
�� L

Diagram V

By Diagram V, it is obvious that σ1×
L
σ2= (σ1π1

0 , σ
2π2

0), and so by (17) we have φτρ =

(σ1×
L
σ2)ε. C is weakly smooth, so by Remark 3.3, σ1×

L
σ2 is an e.e.. Also by (15) ε is an

e.e., therefore φτρ is an e.e., and hence so is φ. This concludes the proof.
�
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3.7. Corollary: Let C in Cat(E ) be smooth and proper. If C is u.e.w.f., then

ColimC : EC �� E preserves pullbacks.

Proof: Let γ : F �� C be an arbitrary discrete opfibration. We need to show that

ColimC : EC �� E takes pullbacks over γ in EC to pullbacks over ColimC(γ) in E .

Form the coequalizer F1

d0 ��
d1

�� F0
σ �� L, so that L = ColimC(γ). A straightforward

computation shows that U ◦ ColimF/L = ColimF ◦ θ : (E/L)F/L �� E , where the func-

tor θ : (E/L)F/L �� EF is the obvious equivalence of categories and U : E/L �� E
is the forgetful functor. Since C is smooth, proper, and u.e.w.f., Lemmas 1.5, 2.3, and
3.5 imply that F is weakly smooth, proper, and u.e.w.f.. Therefore by Theorem 3.6,
ColimF/L : (E/L)F/L �� E/L preserves finite products. A pullback over γ in EC is

a product in EF , which is taken to a product in (E/L)F/L by θ, which is then taken to a
product in E/L by ColimF/L, which is finally taken to a pullback over L in E by U . We
conclude the proof by noting that ColimC of a pullback diagram over γ in EC , and ColimF

of the same diagram regarded as a product in EF are the same.
�

3.8. Lemma: If C in Cat(E ) is u.e.f., then Colim(C) � 1, and the functor

ColimC : EC �� E preserves the terminal object.

Proof: Form the coequalizer C1

d0 ��
d1

�� C0
τ �� L, so that L = Colim(C). Given mor-

phisms U
γ1 ��

γ2
�� C0, since C is u.e.f., and so satisfies Condition 1.2(b)′, we get morphisms V

λ1 ��
λ2

�� C1 and ε : V �� U such that ε is a u.e.e., d1λ1 = d1λ2, and d0λi = γiε. Therefore

τγ1ε = τd0λ1 = τd1λ1 = τd1λ2 = τd0λ2 = τγ2ε. ε being epi implies τγ1 = τγ2. Hence τ

coequalizes any pair of maps to C0, in particular the kernel pair R
π1 ��

π2
�� C0, of the unique

morphism ! : C0
�� 1 .

By Condition 1.1(a), ! : C0
�� 1 is an e.e., and so by Lemma 2.1, it is the coequalizer

of its kernel pair. But τ coequalizes π1 and π2, therefore there is a unique map σ : 1 �� L
such that σ! = τ . The map τ , being a coequalizer is by Lemma 2.1 an e.e.. σ! = τ implies
that σ is an e.e.. On the other hand σ is a mono, since its domain is the terminal object.
Therefore σ is an isomorphism, and L � 1. The other assertion of the lemma is obvious.

�
3.9. Theorem: Let C in Cat(E ) be smooth and proper. If C is u.e.f., then

ColimC : EC �� E preserves finite limits.

Proof: By Corollary 3.7, and Lemma 3.8, pullbacks and the terminal object are preserved,
which implies the preservation of finite limits (see [3], Chapter 5).

�
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4. Examples

It can be easily verified that any topos, E , is an admissible category, and any internal
category C in E is smooth and proper, see [2], and [6]. Also C is u.e.f. iff it is filtered, see
[2], p66. So theorem 4.9 contains the known result in a topos as a special case, see [2], p70.

Now let E denote any category that is topological over the category Set of sets, see [1],
in which product of extremal epis is an extremal epi (e.g. if E is cartesian closed then this
condition is satisfied, see [5]) and the pullback of an extremal epi along an initial mono is
an extremal epi. It follows that E is an admissible category. In what follows we denote by
f : X �� Y the underlying map of the morphism f : X �� Y of E .

4.1. Theorem: In E initial maps are universal.

Proof: Pullback the initial map f : X �� Y along g : Z �� Y to get:

(1) gπ1 = fπ2 : T �� Y

Given α : R �� Z and h : R �� T such that π1h = α, we have f(π2h) = gα. Ini-
tiality of f implies there is a unique morphism k : R �� X such that:
(2) k = π2h and fk = gα

Pullback (1) yields a morphism h∗ : R �� T such that π1h
∗ = α and π2h

∗ = k.
Since both h∗ and h followed by π1 and π2 are equal to α and k respectively and since
gπ1 = fπ2 : T �� Y is a pullback in Sets we get h∗ = h.

Now suppose there is h∗∗ such that π1h
∗∗ = α and h∗∗ = h. This implies f(π2h

∗∗) = gα
and π2h

∗∗ = π2h. By (2) π2h
∗∗ = k and by pullback (1) h∗∗ = h∗.

�
4.2. Corollary: An initial epi in E is a split epi and therefore a u.e.e.

Proof: straightforward.
�

4.3. Theorem: Let the morphism f : X �� Y , the epimorphism q : X �� Z , and
the monomorphism i : Z �� Y be in E such that f = iq. f is initial iff both q and i are.

Proof: ⇒: To show q is initial, suppose α : R �� Z and h : R �� X are given such
that qh = α. We have fh = iα. Initiality of f implies there is a unique h∗ : R �� X
such that:
(1) fh∗ = iα and h∗ = h

This implies iqh∗ = iα. i is a mono, therefore qh∗ = α.
Now suppose there is h∗∗ such that qh∗∗ = α and h∗∗ = h. This implies iqh∗∗ = iα and

h∗∗ = h. Thus fh∗∗ = iα and h∗∗ = h. Therefore by (1) h∗∗ = h∗.
To show i is initial suppose α : R �� Y and h : R �� Z are given such that ih = α.

Let q′ : Z �� X split q : X �� Z , i.e. qq′ = 1 (every epi in Sets is split epi), so that

fq′h = α. Initiality of f implies there is a unique k∗ : R �� X such that fk∗ = α and
k∗ = q′h. Let h∗ = qk∗. Since fk∗ = α we have iqk∗ = α, which implies ih∗ = α and
h∗ = qk∗ = qq′h = h.

Now suppose there is h∗∗ such that ih∗∗ = α. This implies ih∗∗ = ih∗, and since i is a
mono we have h∗∗ = h∗.

⇐: Easy.
�
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4.4. Theorem: Let the morphisms f : X �� Y , g : Z �� Y , π1 : T �� Z ,

and π2 : T �� X be morphisms in E . The diagram gπ1 = fπ2 : T �� Y is a pull-

back in E iff the underlying diagram gπ1 = fπ2 : T �� Y is a pullback in Set and

π : T �� Z × X is initial.

Proof: See [1] and [5].
�

4.5. Theorem: Let C be an internal category in E . If d0C : C1
�� C0 is initial, then

C is proper.

Proof: Let γ : F �� C be a discrete opfibration. Since d0F : F1
�� F0 is the pull-

back of d0C : C1
�� C0 along γ0 : F0

�� C0 , it is initial by Theorem 4.1. This implies

d2
0F : F 2

1
�� F 2

0 is initial. Also πF : KF
�� F 2

1 , where KF is the kernel pair of d1F ,
is initial by Theorem 4.4. So dF = d2

0F πF is initial by Theorem 4.3. On the other hand
dF = iF qF , so by Theorem 4.3 both q and i are initial. Therefore by Corollary 4.2 q is a
u.e.e. and i is effective if it is an equivalence relation, see [2], p16. This shows C is proper.

�
4.6. Theorem: Every internal category C in E is smooth.

Proof: To show C is smooth, we show that every object X ∈ E is separated. Given mor-
phisms σ1 : X1

�� Y1 and σ2 : X2
�� Y2 over X , see Remark 3.3, find the product

of σ1 by σ2 in E/X to get σ1×
X

σ2 : X1×
X

X2 �� Y1×
X

Y2 . It can be shown that σ1×
X

σ2 is

the pullback of σ1 × σ2 along the inclusion (initial mono) π : Y1×
X

Y2 �� Y1 × Y2 . Since

product of extremal epis in E is an extremal epi, σ1 × σ2 : X1 × X2
�� Y1 × Y2 is an

e.e., and since σ1×
X

σ2 : X1×
X

X2 �� Y1×
X

Y2 is the pullback of the

morphism σ1 × σ2 : X1 × X2
�� Y1 × Y2 along the initial mono π : Y1×

X
Y2 �� Y1 × Y2

, it is an e.e..
�

4.7. Theorem: Let C ∈ Cat(E ) be filtered. If d0C : C1
�� C0 is initial, then C is

universal extremal filtered.

Proof: To show that C is u.e.f., condition 1.1(a) holds because C is filtered, see [2], p66.
To prove condition 1.1(b), the initiality of d0C implies that of dC : KC

�� C2
0 . Since

dC is epi, therefore it is a u.e.e.. Finally to prove condition 1.1(c), it can be shown that
tC : TC

�� RC satisfies the equation πtC = π2
1π : TC

�� C2
1 , where π1 : C2

�� C1

is the pullback of d0C : C1
�� C0 along d1C : C1

�� C0 . By Theorem 4.1, initiality

of d0C implies that of π1 and hence that of π2
1 , and since π : TC

�� C2
2 is initial, it fol-

lows that π2
1π is. However πtC = π2

1π, so πtC is initial. Since tC is epi and π is mono, by
Theorem 4.3, tC is initial. Since tC is epi, by Corollary 4.2 it is a u.e.e..

�
4.8. Corollary: If C ∈ Cat(E ) is filtered and d0C : C1

�� C0 is initial, then

ColimC : EC �� E preserves finite limits.
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Proof: From Theorems 4.5, 4.6, 4.7, it follows that C is smooth, proper, and u.e.f.. The
proof then follows by Theorem 3.9.

�
We conclude the paper by remarking that E can be taken to be the categories constructed

in [4] as topological completions with universal final epi sinks.
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