COMMUTATION OF INTERNAL COLIMIT AND FINITE LIMITS

S.N. HOSSEINI

Received January 3, 2007

ABSTRACT. It is well known that if \mathcal{E} is a topos, $Colim : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves finite limits if and only if C is a filtered internal category.

The main result of this paper is that for \mathcal{E} belonging to a wider class of categories than topoi, $Colim: \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves finite limits if C is smooth, proper, and a universal extremal filtered internal category.

This result is simplified for topological categories \mathcal{E} over *Set* that satisfy certain conditions. It is shown that for these categories $Colim : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves finite limits if *C* is filtered and d_{0C} is initial.

1. Preliminaries

Let \mathcal{E} be a category with finite limits and coequalizers of reflexive pairs. Throughout the paper we refer to a pullback diagram:

$$P \xrightarrow{\pi_2} Y$$

$$\pi_1 \bigvee_{\substack{p.b.\\ X \xrightarrow{f}}} Z$$

Diagram I

as the pullback $f\pi_1 = g\pi_2 : P \longrightarrow Z$. Given a morphism $f: X \longrightarrow Y$ in \mathcal{E} , form the kernel pair, $K_f \xrightarrow{\pi_1} X$, of f. Let $q_f: X \longrightarrow I$ be the coequalizer of the reflexive pair $K_f \xrightarrow{\pi_1} X$. Since f coequalizes π_1 and π_2 , it factors through q_f by a unique morphism i_f . Hence to each morphism f in \mathcal{E} there corresponds unique morphisms q_f and i_f such that $f = i_f q_f$, where q_f is the coequalizer of the kernel pair of f. We refer to q_f , respectively i_f , as the q-map, respectively i-map of f.

Let $Cat(\mathcal{E})$ denote the category of the internal categories in \mathcal{E} , see [2] p 47. For C in $Cat(\mathcal{E})$, define the maps d_C, t_C , and s_C as follows, see [2], p66.

Form the pullback

 $d_1\pi_1 = d_1\pi_2 : K_C \longrightarrow C_0$ Let $\pi = \langle \pi_1, \pi_2 \rangle : K_C \longrightarrow C_1^2$ and $d_C = d_0^2\pi : K_C \longrightarrow C_0^2$. Form the pullbacks

$$\langle d_0, d_1 \rangle \pi_1 = \langle d_0, d_1 \rangle \pi_2 : R \longrightarrow C_0^2$$

and

²⁰⁰⁰ Mathematics Subject Classification. 18A35, 18B99.

Key words and phrases. internal colimit, finite limit, filtered internal category, topological category, initiality.

Supported partially by Mahani Research Center.

$$\langle \pi_2 m, m \rangle \pi_1 = \langle \pi_2 m, m \rangle \pi_2 : T \longrightarrow C_1^2$$

Let $t_C = (\pi_1 \pi_1, \pi_1 \pi_2) : T \longrightarrow R$. Finally form the pullbacks

 $d_0\pi_1 = d_0\pi_2 : Q \longrightarrow C_0 \text{ and } m\pi_1 = m\pi_2 : S \longrightarrow C_1$

Let $s_C = (\pi_1 \pi_1, \pi_1 \pi_2) : S \longrightarrow Q$.

We write *e.e.*, for an *extremal epimorphism*, i.e., a morphism that whenever it factors through a monomorphism with the same codomain, the monomorphism is an isomorphism and we write *u.e.e.*, for a *universal extremal epimorphism*, i.e. an e.e. whose pullback along every morphism is an e.e.

Consider the following (internal) conditions on an internal category C in \mathcal{E} .

1.1. Conditions:

(a) The unique morphism $C_0 \xrightarrow{!} 1$ is an e.e.

(b) The morphism $d_C: K_C \longrightarrow C_0^2$ is a u.e.e.

(c) The morphism $t_C: T_C \longrightarrow R_C$ is a u.e.e.

(d) The morphism $s_C: S_C \longrightarrow Q_C$ is a u.e.e.

Also consider the following (external) conditions on C.

1.2. Conditions:

(a)' The unique morphism $C_0 \longrightarrow 1$ is an e.e.

(b)' For all pair of morphisms $U \xrightarrow[\gamma_2]{\gamma_1} C_0$ in \mathcal{E} , there are morphisms $V \xrightarrow[\lambda_2]{\lambda_2} C_1$ and $\epsilon: V \longrightarrow U$ such that ϵ is a u.e.e., $d_1\lambda_1 = d_1\lambda_2$ and $d_0\lambda_j = \gamma_j\epsilon$, for j = 1, 2.

(c)' For all pair of morphisms $U \xrightarrow{\gamma_1} C_1$ coequalized by d_0 and d_1 , there are morphisms

 $\mu: V \longrightarrow C_1$ and $\epsilon: V \longrightarrow U$ such that ϵ is a u.e.e., $d_0\mu = d_1\gamma_j\epsilon$, for j = 1, 2, and $m(\gamma_1\epsilon, \mu) = m(\gamma_2\epsilon, \mu)$.

(d)' For all pair of morphisms $U \xrightarrow{\gamma_1} C_1$ coequalized by d_0 , there are morphisms V

 $\xrightarrow{\delta_1}_{\delta_2} C_1, \text{ and } \epsilon: V \longrightarrow U \text{ such that } \epsilon \text{ is a u.e.e., } d_0 \delta_j = d_1 \gamma_j \epsilon, \text{ for } j = 1, 2, \text{ and} m(\gamma_1 \epsilon, \delta_1) = m(\gamma_2 \epsilon, \delta_2).$

1.3. Theorem: Conditions (a), (b), (c), and (d) of 1.1 are equivalent to conditions (a)', (b)', (c)' and (d)' of 1.2, respectively.

Proof: (a) and (a)' are the same.

(b) \Rightarrow (b)': Given $U \xrightarrow{\gamma_1} C_0$, pullback d_C along $\langle \gamma_1, \gamma_2 \rangle : U \longrightarrow C_0^2$ to get

 $\lambda: V \longrightarrow K_C$ and $\epsilon: V \longrightarrow U$. (b) implies that d_C , and hence ϵ , is a u.e.e. Let $\lambda_j = \pi_j \lambda, j = 1, 2$, where $K_C \xrightarrow{\pi_1} C_1$ is the kernel pair of $d_1: C_1 \longrightarrow C_0$. $d_1\pi_1 = d_1\pi_2$ implies $d_1\lambda_1 = d_1\pi_1\lambda = d_1\pi_2\lambda = d_1\lambda_2$. Also the above pullback diagram implies that $d_C\lambda = \langle \gamma_1, \gamma_2 \rangle \epsilon$, where $d_C = d_0^2 \pi = d_0^2 \langle \pi_1, \pi_2 \rangle = \langle d_0\pi_1, d_0\pi_2 \rangle$, thus $\langle d_0\pi_1, d_0\pi_2 \rangle \lambda = \langle \gamma_1, \gamma_2 \rangle \epsilon$, which implies that $d_0\pi_j\lambda = \gamma_j\epsilon, j = 1, 2$. This in turn implies that $d_0\lambda_j = \gamma_j\epsilon, j = 1, 2$ as desired.

(b)' \Rightarrow (b): Let $C_0^2 \xrightarrow{pr_1} C_0$ be the projections. (b)' implies the existence of morphisms $V \xrightarrow{\lambda_1} C_1$, and $\epsilon : V \longrightarrow C_0^2$ such that ϵ is u.e.e., $d_1\lambda_1 = d_1\lambda_2$, and $d_0\lambda_j = pr_j\epsilon, j = 1, 2$. Since $d_1\lambda_1 = d_1\lambda_2$, the pullback $d_1\pi_1 = d_1\pi_2 : K_C \longrightarrow C_0$ implies there is a unique $\lambda = (\lambda_1, \lambda_2) : V \longrightarrow K_C$ such that $\pi_j\lambda = \lambda_j, j = 1, 2$. We have $\pi\lambda = \langle \pi_1, \pi_2 \rangle \lambda = \langle \pi_1\lambda, \pi_2\lambda \rangle = \langle \lambda_1, \lambda_2 \rangle$, and therefore $d_C\lambda = d_0^2\pi\lambda = d_0^2\langle \lambda_1, \lambda_2 \rangle = \langle d_0\lambda_1, d_0\lambda_2 \rangle = \langle pr_1\epsilon, pr_2\epsilon \rangle = \langle pr_1, pr_2\rangle \epsilon = \epsilon$. Now since ϵ is a u.e.e., so is d_C . The proofs that (c) \Leftrightarrow (c)' and (d) \Leftrightarrow (d)' are similar.

1.4. **Definition:** C in Cat(E) is said to be a *universal extremal weakly filtered* (*u.e.w.f.*) category if conditions (c) and (d) of 1.1 are met, and it is said to be a *universal extremal filtered* (*u.e.f.*) category if conditions (a), (b), and (c) of 1.1 are satisfied.

- 1.5. Lemma: Let C be in Cat(E) and $\gamma: F \longrightarrow C$ be a discrete opfibration.
- (a) If C is a u.e.f. category, then it is a u.e.w.f. category.
- (b) If C is a u.e.w.f. category, then so is F.
- (c) If C is a u.e.f. category, then C satisfies the following condition:

(d)" For all pairs of morphisms
$$U \xrightarrow[\gamma_2]{\gamma_1} C_1$$
 and $U \xrightarrow[\gamma_2]{\gamma_1} C_1$ such that $d_0\gamma_1 = d_0\gamma_2, d_0\gamma_1' = d_0\gamma_2, d_0\gamma_2' = d_0\gamma_2' = d_0\gamma_2, d_0\gamma_2' = d_0\gamma_2' =$

 $d_0\gamma'_2$ and $d_1\gamma_j = d_1\gamma'_j$, j = 1, 2, there are morphisms $V \xrightarrow{\zeta_1} C_1$, and $\epsilon: V \longrightarrow U$ such that ϵ is a u.e.e., $d_0\zeta_j = d_1\gamma_j\epsilon = d_1\gamma'_j\epsilon$, $m(\gamma_1\epsilon, \zeta_1) = m(\gamma_2\epsilon, \zeta_2)$, and $m(\gamma'_1\epsilon, \zeta_1) = m(\gamma'_2\epsilon, \zeta_2)$.

- Proof: (a) See [2], p 68, 2.53 Lemma.
- (b) See [2], p 69, 2.56 Lemma.

(c) Straightforward.

2. PROPER INTERNAL CATEGORY

A category \mathcal{E} with finite limits and coequalizers of reflexive pairs is said to be admissible if for all $f \in \mathcal{E}$, the *i*-map of f is mono.

- In this and the next section we let \mathcal{E} be an admissible category.
- 2.1. Lemma: In \mathcal{E} :
- (a) a morphism is an e.e. iff it is a coequalizer of its kernel pair.
- (b) the composition of two e.e.'s as an e.e..

Proof: Straightforward.

2.2. **Definition:** Let C be in $Cat(\mathcal{E})$.

(a) C is said to be *weakly proper* if the q-map of d_C is a u.e.e., and the *i*-map of d_C is effective, (see [2], p 16) if it is an equivalence relation (see [2], p 16).

(b) C is said to be *proper* if for all discrete opfibrations $\gamma: F \longrightarrow C$, F is weakly proper.

2.3. Lemma: Let $\gamma: F \longrightarrow C$ be a discrete opfibration in $Cat(\mathcal{E})$.

(a) If C is proper, then it is weakly proper.

(b) If C is proper, then so is F.

S.N. HOSSEINI

Proof: (a) Consider the discrete opfibration $1: C \longrightarrow C$ to conclude C is weakly proper. (b) Let $\alpha: E \longrightarrow F$ be a discrete opfibration. The composite $\gamma \alpha: E \longrightarrow C$ is a discrete opfibration. So E is weakly proper as desired.

2.4. Lemma: Let C in $Cat(\mathcal{E})$ be weakly proper. If C satisfies Condition 1.1(d), then the *i*-map of d_C is effective.

Proof: By Definition 2.2(a), it is sufficient to show the *i*-map of d_C is an equivalence relation. A straightforward computation shows that the relation is symmetric and reflexive. To show transitivity form the pullbacks $d_1\pi_1 = d_1\pi_2 : K_C \longrightarrow C_0$ and

 $d_C a = d_C b : R \longrightarrow C_0^2$. Let $q : K_C \longrightarrow I$ be the coequalizer of $R \xrightarrow{a}_{b} K_C$. We have $iq = d_C = d_0^2 \pi$. Form the pullback $i_2 r = i_1 s : T \longrightarrow C_0$, where i_1 and i_2 are the components of i. We need to show $\langle i_1 r, i_2 s \rangle : T \longrightarrow C_0^2$ factors through i. Form the following pullbacks to get the maps α_1, α_2 , and β .

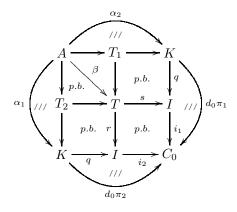


Diagram II

The fact that C is weakly proper implies q is a u.e.e., and therefore so is β .

By Diagram II we have, $d_0(\pi_2\alpha_1) = d_0(\pi_1\alpha_2)$, so we get the unique morphism $(\pi_2\alpha_1, \pi_1\alpha_2) : A \longrightarrow Q$, such that $\pi_1(\pi_2\alpha_1, \pi_1\alpha_2) = \pi_2\alpha_1$, and $\pi_2(\pi_2\alpha_1, \pi_1\alpha_2) = \pi_1\alpha_2$. pullback s_C along $(\pi_2\alpha_1, \pi_1\alpha_2)$ to get:

 $(\pi_2\alpha_1, \pi_1\alpha_2)\epsilon = s_C\delta: V \longrightarrow Q$

C satisfies Condition (d), so by Theorem 1.3 it satisfies Condition (d)', hence s_C , and therefore ϵ is a u.e.e.. (1), and the definition of K_C as the pullback of d_1 along d_1 imply that $d_1\pi_1\alpha_1\epsilon = d_1\pi_2\alpha_1\epsilon = d_1\pi_1\pi_1\delta = d_0\pi_2\pi_1\delta$ and $d_1\pi_2\alpha_2\epsilon = d_1\pi_1\alpha_2\epsilon = d_1\pi_1\pi_2\delta = d_0\pi_2\pi_2\delta$. Now the definition of C_2 as the pullback of d_0 along d_1 yields the existence of the maps: $(\pi_1\alpha_1\epsilon, \pi_2\pi_1\delta), (\pi_2\alpha_2\epsilon, \pi_2\pi_2\delta) : V \longrightarrow C_2$

Define $\eta_j = m(\pi_j \alpha_j \epsilon, \pi_2 \pi_j \delta) : V \longrightarrow C_1$, where *m* is the multiplication. Since $m\pi_1 = m\pi_2$ and $d_1m = d_1\pi_2$, we have $d_1\pi_2\pi_1 = d_1m\pi_1 = d_1m\pi_2 = d_1\pi_2\pi_2$, and so $d_1\eta_1 = d_1m(\pi_1\alpha_1\epsilon, \pi_2\pi_1\delta) = d_1\pi_2(\pi_1\alpha_1\epsilon, \pi_2\pi_1\delta) = d_1\pi_2\pi_1\delta = d_1\pi_2\pi_2\delta = d_1\pi_2(\pi_2\alpha_2\epsilon, \pi_2\pi_2\delta) = d_1m(\pi_2\alpha_2\epsilon, \pi_2\pi_2\delta) = d_1\eta_2$. Hence η_1 and η_2 are coequalized by d_1 , which yields the existence of the unique map $(\eta_1, \eta_2) : V \longrightarrow K$. Now we have $iq(\eta_1, \eta_2) = d(\eta_1, \eta_2) = d_0^2\pi(\eta_1, \eta_2) = \langle d_0\pi_1, d_0\pi_2\rangle(\eta_1, \eta_2) = \langle d_0\pi_1(\eta_1, \eta_2), d_0\pi_2(\eta_1, \eta_2) \rangle = \langle d_0\eta_1, d_0\eta_2\rangle$, and by Diagram II, $\langle i_1r, i_2s \rangle \beta \epsilon = \langle i_1r\beta\epsilon, i_2s\beta\epsilon \rangle = \langle i_1q\alpha_1\epsilon, i_2q\alpha_2\epsilon \rangle = \langle d_0\pi_1\alpha_1\epsilon, d_0\pi_2\alpha_2\epsilon \rangle = \langle d_0\eta_1, d_0\eta_2 \rangle$. Therefore we have

(1)

(2)

) $iq(\eta_1, \eta_2) = \langle i_1 r, i_2 s \rangle \beta \epsilon$ Since β and ϵ are e.e.'s, so is $\beta \epsilon$, and so by Lemma 2.1, $\beta \epsilon$ is the coequalizer of its kernel pair. Let $W \xrightarrow{f} V$ be the kernel pair of $\beta \epsilon$. It follows that $\beta \epsilon f = \beta \epsilon g$, and so $\langle i_1r, i_2s \rangle \beta \epsilon f = \langle i_1r, i_2s \rangle \beta \epsilon g$. Equation (2) implies that $iq(\eta_1, \eta_2)f = iq(\eta_1, \eta_2)g$. Since i is a mono $q(\eta_1, \eta_2)f = q(\eta_1, \eta_2)g$. Thus $q(\eta_1, \eta_2)$ coequalizes f and g, and hence there is a unique map h such that $q(\eta_1, \eta_2) = h\beta\epsilon$. Therefore $ih\beta\epsilon = iq(\eta_1, \eta_2)$, and so, by (2), $ih\beta\epsilon = \langle i_1r, i_2s\rangle\beta\epsilon$. $\beta\epsilon$ is an e.e., and thus an epi. Hence $ih = \langle i_1r, i_2s\rangle$, that is, $\langle i_1r, i_2s\rangle$ factors through i as desired.

For an object X of \mathcal{E} , let \mathcal{E}/X denote the comma category, see [3] p 47. Let C be in $Cat(\mathcal{E})$, and $\sigma: C_0 \longrightarrow L$ the coequalizer of $C_1 \xrightarrow[d_1]{d_1} C_0$. C can be regarded as an object of $Cat(\mathcal{E}/L)$ by means of the morphism $\sigma: C_0 \longrightarrow L$, in which case we denote it by C/L.

2.5. **Proposition:** Let C in $Cat(\mathcal{E})$ be weakly proper, and $\sigma: C_0 \longrightarrow L$ be the coequalizer of $C_1 \xrightarrow{d_0} C_0$. If C is a u.e.w.f. category in $Cat(\mathcal{E})$, then C/L is a u.e.f. category in $Cat(\mathcal{E}/L)$.

Proof: We need to show Conditions 1.1(a)-(c) hold. Since a morphism of \mathcal{E}/L is a mono, respectively an e.e., in \mathcal{E}/L if and only if it is so when regarded as a morphism of \mathcal{E} , Conditions (a) and (c) follow trivially.

To show (b) holds in \mathcal{E}/L , we need to show $d_{C/L}$ is a u.e.e.. But $d_{C/L} = \partial$ is obtained as follows:

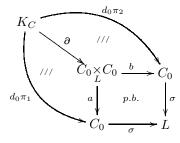


Diagram III

The commutativity of the outer square in Diagram III follows from the fact that $\sigma d_0 =$ σd_1 . We have:

 $d_C = \langle a, b \rangle \partial : K_C \longrightarrow C_0^2$ and $iq = d_C : K_C \longrightarrow C_0^2$ (1)

Since q is the q-map of d_C , it is a u.e.e. On the other hand since C is weakly proper, C is a u.e.w.f. category in $Cat(\mathcal{E})$, so it satisfies Condition 1.1(d). Lemma 2.4 now implies that, the *i*-map of d_C is effective. Therefore there is a morphism $f: C_0 \longrightarrow Y$ for some object Y of \mathcal{E} , such that:

(2)
$$fi_1 = fi_2 : I \longrightarrow Y$$
 is a pullback

Let $i: C_0 \longrightarrow C_1$ be the inclusion of identities. Since $d_1 = d_1(id_1)$, the pullback $d_1\pi_1 = d_1\pi_2 : K_C \longrightarrow C_0$ yields a unique morphism $(1, id_1) : C_1 \longrightarrow K_C$ such that: $\pi_1(1, id_1) = 1 : C_1 \longrightarrow C_1 \text{ and } \pi_2(1, id_1) = id_1 : C_1 \longrightarrow C_1$ (3)

(1), (2), (3), and the equation $d_0i = 1_{C_0}$ imply that $fd_0 = fd_0\pi_1(1, id_1) = fi_1q(1, id_1) = fi_2q(1, id_1) = fd_0\pi_2(1, id_1) = fd_0id_1 = fd_1$. So f coequalizes d_0 and d_1 . Hence there is a unique morphism $t: L \longrightarrow Y$ such that $t\sigma = f$. This and Diagram III yield $fa = t\sigma a = t\sigma b = fb$. Now the pullback $fi_1 = fi_2: I \longrightarrow Y$ yields a unique $m: C_0 \times C_0 \longrightarrow I$ such that $i_1m = a$, and $i_2m = b$.

On the other hand, (1), Diagram III, and the definition of σ yield $\sigma i_1 q = \sigma d_0 \pi_1 = \sigma d_1 \pi_1 = \sigma d_1 \pi_2 = \sigma d_0 \pi_2 = \sigma i_2 q$ i.e., $\sigma i_1 q = \sigma i_2 q$. But q is epi, hence $\sigma i_1 = \sigma i_2$, and since $\sigma a = \sigma b : C_0 \times C_0 \longrightarrow L$ is a pullback, it follows that there is a unique n such that

 $an = i_1$, and $bn = i_2$. Pullbacks $fi_1 = fi_2 : I \longrightarrow Y$ and $\sigma a = \sigma b : C_0 \underset{L}{\times} C_0 \longrightarrow L$, imply mn = 1 and nm = 1. This and (1) imply that $d_C = \langle a, b \rangle \partial$, $im = \langle a, b \rangle$, $\langle a, b \rangle n = i$ $nq = \partial$, and $q = m\partial$. Since n is an isomorphism, and q a u.e.e., ∂ is a u.e.e.

3. Internal Colimit

For any category \mathcal{E} , with finite limits and coequalizers of reflexive pairs, and any C in $Cat(\mathcal{E}), \mathcal{E}^{C}$ denotes the full subcategory of the comma category $Cat(\mathcal{E})/C$ whose objects are discrete opfibrations. See [2] p 49 and 50.

3.1. **Definition:** Define:

(a) $Colim: Cat(\mathcal{E}) \longrightarrow \mathcal{E}$ by $Colim(C) = Coeq(C_1 \xrightarrow{d_0} C_0).$

(b) For C in $Cat(\mathcal{E})$, $Colim_C : \mathcal{E}^C \longrightarrow \mathcal{E}$ by $Colim_C(\mathbb{F} \xrightarrow{C} \gamma) = Colim(\mathbb{F})$. We refer to this functor as the *internal colimit*.

3.2. **Definition:** An object X of \mathcal{E} is said to be *separated* if in \mathcal{E}/X , the product of e.e.'s is an e.e..

3.3. **Remark:** Since products in \mathcal{E}/X are pullbacks in \mathcal{E} , it follows that X in \mathcal{E} is separated if and only if for any two e.e.'s $\sigma_1: X_1 \longrightarrow Y_1$, and $\sigma_2: X_2 \longrightarrow Y_2$; and any two morphisms $f_1: Y_1 \longrightarrow X$, and $f_2: Y_2 \longrightarrow X$, the morphism $\sigma_1 \times \sigma_2$ is an e.e., where $\sigma_1 \times \sigma_2$ is obtained by the following pullbacks :

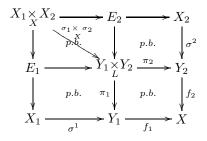


Diagram IV

3.4. **Definition:** C in $Cat(\mathcal{E})$ is said to be:

- (a) weakly smooth if Colim(C) is a separated object of \mathcal{E} .
- (b) smooth if for all discrete opfibrations $F \longrightarrow C$, F is weakly smooth.

3.5. Lemma: (a) If C in $Cat(\mathcal{E})$ is smooth, then it is weakly smooth.

(b) If $\gamma: F \longrightarrow C$ is a discrete opfibration, and C is smooth, then so is F.

Proof: The proof is similar to the proof of Lemma 2.3.

3.6. **Theorem:** Let C in $Cat(\mathcal{E})$ be weakly smooth and proper. If C is u.e.w.f., then $Colim : (\mathcal{E}/L)^{C/L} \longrightarrow \mathcal{E}/L$ preserves finite products, where L = Colim(C).

Proof: For $\alpha^i : F^i/L \longrightarrow C/L$ in $(\mathcal{E}/L)^{C/L}$, the product of α^1 by α^2 in $(\mathcal{E}/L)^{C/L}$ is $\alpha^1 \pi^1 : G/L \longrightarrow C/L$, where G is obtained by the pullback:

(1)
$$\alpha^1 \pi^1 = \alpha^2 \pi^2 : G \longrightarrow C$$

and G/L is G regarded as an object over L by passing to C, and regarding C as an object over L.

The internal colimit of $G/L \longrightarrow C/L$ in \mathcal{E}/L is, by definition, the coequalizer of $(G/L)_1$ $\xrightarrow{d_0} (G/L)_0$ in \mathcal{E}/L , which is simply the coequalizer $G_1 \xrightarrow{d_0} G_0 \xrightarrow{\tau} M$ in \mathcal{E} , regarded

as an object over L. So M/L is the internal colimit of the product of α^1 and α^2 .

On the other hand, the internal colimit of $\alpha^i : F^i/L \longrightarrow C/L$ in \mathcal{E}/L is the coequalizer d_0 d_0

of $(F^i/L)_1 \xrightarrow{d_0} (F^i/L)_0$ in \mathcal{E}/L , which is again simply the coequalizer $F_1^i \xrightarrow{d_0} F_0^i \xrightarrow{\sigma^i} L^i$ regarded as an object over L by l^i . The product of L^1/L by L^2/L in \mathcal{E}/L is $(L^1 \times L^2)/L$, where $L^1 \times L^2$ is the pullback of $l^2 : L^2 \longrightarrow L$ along $l^1 : L^1 \longrightarrow L$. So the product of the internal colimit of α^1 and the internal colimit of α^2 is $(L^1 \times L^2)/L$. We need to show M/L and $(L^1 \times L^2)/L$ are canonically isomorphic.

To this end we first note that the morphism $\langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle : G_0 \longrightarrow L^1 \times L^2$ is coequalized by d_0 and d_1 of G, where d_0 and d_1 are obtained by the pullback (1). Therefore there is a unique morphism Φ such that:

(2) $\Phi \tau = \langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle$ It is straightforward to verify that $l^1 \sigma^1 \pi_0^1 = l^2 \sigma^2 \pi_0^2$. Hence $\langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle$ factors through $L^1 \times L^2$. The factoring map is denoted by $(\sigma^1 \pi_0^1, \sigma^2 \pi_0^2)$. Note that

(3)
$$\pi(\sigma^1 \pi_0^1, \sigma^2 \pi_0^2) = \langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle$$

where $\pi = \langle \pi_1, \pi_2 \rangle$. Since π is a mono, and $\langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle$ is coequalized by d_0 and d_1 , it follows that $(\sigma^1 \pi_0^1, \sigma^2 \pi_0^2)$ is coequalized by d_0 and d_1 . Hence there is a unique morphism ϕ (canonical morphism) such that

(4) $\phi \tau = (\sigma^1 \pi_0^1, \sigma^2 \pi_0^2)$ (2), (3), and (4) imply that $\Phi \tau = \langle \sigma^1 \pi_0^1, \sigma^2 \pi_0^2 \rangle = \pi (\sigma^1 \pi_0^1, \sigma^2 \pi_0^2) = \pi \phi \tau$. τ , being a coequalizer, is an epi, so $\Phi = \pi \phi$. It follows that ϕ is mono if and only if Φ is mono. We will show that ϕ is an isomorphism by showing it is mono and e.e..

To show ϕ is mono, we show that Φ is mono by showing for arbitrary morphisms U $\xrightarrow{\gamma_1}{\gamma_2}G_0$, if $\Phi\tau\gamma_1 = \Phi\tau\gamma_2$ then $\tau\gamma_1 = \tau\gamma_2$. But first let us show this is sufficient. Form the

pullback $(\Phi\tau)\pi_1 = (\Phi\tau)\pi_2 : R \longrightarrow L^1 \times L^2$ and the coequalizer $R \xrightarrow[\pi_2]{\pi_2} G_0 \xrightarrow{Q} q$ and

let $i: Q \longrightarrow L^1 \times L^2$ be the *i*-map of $\Phi \tau$, so that $iq = \Phi \tau$. The morphism *i* is mono since it is the *i*-map of $\Phi \tau$. $\Phi \tau \pi_1 = \Phi \tau \pi_2$ implies by our hypothesis that $\tau \pi_1 = \tau \pi_2$. So there is a unique morphism $\alpha: Q \longrightarrow M$ such that $\alpha q = \tau$. Therefore $iq = \Phi \tau$ and $\alpha q = \tau$, and consequently $\Phi \alpha q = iq$. Since *q* is an epi, $\Phi \alpha = i$. Since *i* is mono, so is α . Since the

e.e. τ factors through α , α is an isomorphism. Thus Φ is a mono, since $\Phi \alpha = i$, α is an isomorphism, and i is a mono. So suppose we are given $U \xrightarrow[\gamma_2]{\gamma_2} G_0$ such that

(5)
$$\Phi \tau \gamma_1 = \Phi \tau \gamma_2$$

Define morphisms $\gamma_j^i : U \longrightarrow F_0^i$, i, j = 1, 2, by $\gamma_j^i = \pi_0^i \gamma_j$. (2), and (5) imply $\sigma^i \gamma_1^i = \sigma^i \gamma_2^i$, from which it follows that U can be regarded as an object of \mathcal{E}/L^i , for each i, and that γ_1^i and γ_2^i are morphisms in \mathcal{E}/L^i . By Lemma 1.5, F^i is u.e.w.f., and by Lemma 2.3, F^i is weakly proper. Hence by Proposition 2.5, F^i/L^i is u.e.f. in $Cat(\mathcal{E}/L^i)$, and therefore satisfies Condition 1.2(b)' in \mathcal{E}/L^i . Applying (b)' to γ_1^i and γ_2^i we get morphisms

$$V^{i} \xrightarrow{\lambda_{1}^{i}} F_{1}^{i} \text{ and } \epsilon^{i} : V^{i} \longrightarrow U \text{ such that:}$$

$$(6) \qquad \qquad \epsilon^{i} \text{ is a u.e.e., } d_{1}\lambda_{1}^{i} = d_{1}\lambda_{2}^{i}, \text{ and } d_{0}\lambda_{j}^{i} = \gamma_{j}^{i}\epsilon^{i}$$

Pullback ϵ^2 along ϵ^1 to get $t^i: V \longrightarrow V^i$ for i = 1, 2. Define $\epsilon: V \longrightarrow U$, and $\Lambda^i_i: V \longrightarrow F_1^i$ by $\epsilon = \epsilon^1 t^1$, and $\Lambda^i_i = \lambda^i_j t^i$. (6) implies that:

(7)
$$\epsilon$$
 is a u.e.e., $d_1 \Lambda_1^i = d_1 \Lambda_2^i$, and $d_0 \Lambda_j^i = \gamma_j^i \epsilon$

Define $\mu_j^i: V \longrightarrow C_1$ by $\mu_j^i = \alpha_1^i \Lambda_j^i$. The definition of γ_j^1, γ_j^2 , and (1) imply that $\alpha_0^1 \gamma_j^1 = \alpha_0^2 \gamma_j^2$. This together with the definition of μ_j^i , the fact that $d_0 \alpha_1^1 = \alpha_0^1 d_0$, and (7) imply that:

(8)
$$d_0\mu_j^1 = d_0\mu_j^2$$
, and $d_1\mu_1^i = d_1\mu_2^i$

The fact that $\sigma d_0 = \sigma d_1$, and (8) imply that $\sigma d_0 \mu_j^i$ does not depend on *i* or *j*. This shows that *V* can be regarded as an object over *L*, and μ_j^i as a morphism in \mathcal{E}/L .

By Lemma 2.3, and Proposition 2.5, C is a u.e.f. in $Cat(\mathcal{E}/L)$, therefore by Lemma 1.5, it satisfies Condition (d)" in \mathcal{E}/L . Applying (d)" to μ_j^i , we get morphisms $W \xrightarrow[\rho^2]{\rho^2} C_1$ and

 $\xi: W \longrightarrow V$ such that the following hold simultaneously for both j = 1 and 2.

(9) ξ is a u.e.e., $d_0 \rho^i = d_i \mu_j^i \xi$, and $m(\mu_j^1 \xi, \rho^1) = m(\mu_j^2 \xi, \rho^2)$

The definition of μ_j^i , and (9) imply that $d_0\rho^i = d_1\mu_j^i\xi = d_1\alpha_1^i\Lambda_j^i\xi = \alpha_0^i d_1\Lambda_j^i\xi$. Since $d_0\alpha_1^i = \alpha_0^i d_0: F_1^i \longrightarrow C_0$ is a pullback there is a unique map $\theta^i: W \longrightarrow F_1^i$, for each i, such that:

(10)
$$\alpha_1^i \theta^i = \rho^i$$
, and $d_0 \theta^i = d_1 \Lambda_i^i \xi$

Note that by (7), $d_1 \Lambda_1^i = d_1 \Lambda_2^i$, so that θ^i does not depend on j.

By (7), and (10) we have $d_0\theta^i = d_1\Lambda_1^i\xi = d_1\Lambda_2^i\xi$. Since $d_1\pi_1 = d_0\pi_2 : F_2^i \longrightarrow F_0^i$ is a pullback there exists a unique map $(\Lambda_j^i\xi, \theta^i)$ such that:

(11)
$$\pi_1(\Lambda_j^i\xi,\theta^i) = \Lambda_j^i\xi$$
, and $\pi_2(\Lambda_j^i\xi,\theta^i) = \theta^i$

Define morphisms $\Psi_j^i: W \longrightarrow F_1^i$ by $\Psi_j^i = m(\Lambda_j^i\xi, \theta^i)$. (11), and the definition of μ_j^i imply that $\pi_1 \alpha_2^i(\Lambda_j^i\xi, \theta^i) = \alpha_1^i \pi_1^i(\Lambda_j^i\xi, \theta^i) = \alpha_1^i \Lambda_j^i\xi = \mu_j^i\xi = \pi_1(\mu_j^i\xi, \rho^i)$. Similarly we can show $\pi_2 \alpha_2^i(\Lambda_j^i\xi, \theta^i) = \pi_2(\mu_j^i\xi, \rho^i)$. The pullback $d_1\pi_1 = d_0\pi_2 : C_2 \longrightarrow C_0$ then shows that $\alpha_2^i(\Lambda_j^i\xi, \theta^i) = (\mu_j^i\xi, \rho^i)$. This and the definition of Ψ_j^i imply that $\alpha_1^i \Psi_j^i = \alpha_1^i m(\Lambda_j^i\xi, \theta^i) =$ $m\alpha_2^i(\Lambda_j^i\xi, \theta^i) = m(\mu_j^i\xi, \rho^i)$.

On the other hand by (9) $m(\mu_j^1\xi,\rho^1) = m(\mu_j^2\xi,\rho^2)$. Therefore $\alpha_1^1\Psi_j^1 = \alpha_1^2\Psi_j^2$, and since $\alpha_1^1\pi_1^1 = \alpha_1^2\pi_1^2$: $G_1 \longrightarrow C_1$ is a pullback there is a unique morphism (Ψ_j^1,Ψ_j^2) such that $\pi_1^1(\Psi_j^1,\Psi_j^2) = \Psi_j^1$ and $\pi_1^2(\Psi_j^1,\Psi_j^2) = \Psi_j^2$. By the definition of Ψ_j^i , and (11), we get $d_1\Psi_j^i = d_1m(\Lambda_j^i\xi,\theta^i) = d_1\pi_2(\Lambda_j^i\xi,\theta^i) = d_1\theta^i$. It follows that:

(12)
$$d_1(\Psi_1^1, \Psi_1^2) = (d_1\theta^1, d_1\theta^2) = d_1(\Psi_2^1, \Psi_2^2)$$

On the other hand $d_0 \Psi_j^i = d_0 m(\Lambda_j^i \xi, \theta^i) = d_0 \pi_1(\Lambda_j^i \xi, \theta^i) = d_0 \Lambda_j^i \xi$. This and equation (7) imply $d_0(\Psi_j^1, \Psi_j^2) = (d_0 \Lambda_j^1 \xi, d_0 \Lambda_j^2 \xi) = (d_0 \Lambda_j^1, d_0 \Lambda_j^2) \xi = (\gamma_j^1 \epsilon, \gamma_j^2 \epsilon) \xi = (\gamma_j^1, \gamma_j^2) \epsilon \xi = \gamma_j \epsilon \xi$. This and equation (12) imply that $\tau \gamma_1 \epsilon \xi = \tau d_0(\Psi_1^1, \Psi_1^2) = \tau d_1(\Psi_1^1, \Psi_1^2) = \tau d_1(\Psi_2^1, \Psi_2^2) = \tau d_0(\Psi_2^1, \Psi_2^2) = \tau \gamma_2 \epsilon \xi$. ϵ and ξ are e.e.'s and therefore epi's, hence $\tau \gamma_1 = \tau \gamma_2$ as desired. This proves Φ , and therefore ϕ , is mono.

To show ϕ is e.e., form the pullback

(13)
$$(\sigma\alpha_0^1)\pi_0^1 = (\sigma\alpha_0^2)\pi_0^2 : F_0^1 \underset{L}{\times} F_0^2 \longrightarrow L$$

and note that the morphisms $F_0^1 \times F_0^2 \xrightarrow[\alpha_0^1 \pi_0^1]{\alpha_0^1 \pi_0^1} C_0$ are coequalized by σ , and therefore are morphisms in \mathcal{E}/L . C/L is u.e.f. in $Cat(\mathcal{E}/L)$, and so satisfies Condition (b)' of 1.2 in \mathcal{E}/L . Applying (b)' to $\alpha_0^1 \pi_0^1$ and $\alpha_0^2 \pi_0^2$, we get morphisms $V \xrightarrow[\lambda_2]{\lambda_2} C_1$ and $\epsilon : V \longrightarrow F_0^1 \times F_0^2$ such that

(14) ϵ is a u.e.e., $d_1\lambda_1 = d_1\lambda_2$, and $d_0\lambda_i = \alpha_0^i \pi_0^i \epsilon$

The last equation of (14) and the fact that $d_0 \alpha_1^i = \alpha_0^i d_0 : F_1^i \longrightarrow C_0$ is a pullback imply the existence of the unique morphism $\mu_i : V \longrightarrow F_1^i$ such that:

(15)
$$\alpha_1^i \mu_i = \lambda_i, \text{ and } d_0 \mu_i = \pi_0^i \epsilon$$

By (14) and (15) we have $\alpha_0^1 d_1 \mu_1 = d_1 \alpha_1^1 \mu_1 = d_1 \lambda_1 = d_1 \lambda_2 = d_1 \alpha_1^2 \mu_2 = \alpha_0^2 d_1 \mu_2$. The pullback $\alpha_0^1 \pi_0^1 = \alpha_0^2 \pi_0^2 : G_0 \longrightarrow C_0$ yields a unique morphism $\rho: V \longrightarrow G_0$ such that: (16) $\pi_0^1 \rho = d_1 \mu_1$, and $\pi_0^2 \rho = d_1 \mu_2$

(4), (15), and (16) imply that:

(17)
$$\phi \tau \rho = (\sigma^1 \pi_0^1, \sigma^2 \pi_0^2) \rho = (\sigma^1 \pi_0^1 \rho, \sigma^2 \pi_0^2 \rho) = (\sigma^1 d_1 \mu_1, \sigma^2 d_1 \mu_2) = (\sigma^1 d_0 \mu_1, \sigma^2 d_0 \mu_2) = (\sigma^1 \pi_0^1 \epsilon, \sigma^2 \pi_0^2 \epsilon) = (\sigma^1 \pi_0^1, \sigma^2 \pi_0^2) \epsilon$$

Using (13), and the fact that $l^i \sigma^i = \sigma \alpha_0^i$, which holds by the definition of l^i , form the following pullback to get the morphism $\sigma^1 \times \sigma^2$.

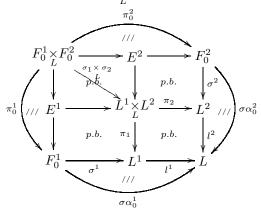


Diagram V

By Diagram V, it is obvious that $\sigma_L^1 \times \sigma^2 = (\sigma^1 \pi_0^1, \sigma^2 \pi_0^2)$, and so by (17) we have $\phi \tau \rho = (\sigma_L^1 \times \sigma^2) \epsilon$. *C* is weakly smooth, so by Remark 3.3, $\sigma_L^1 \times \sigma^2$ is an e.e.. Also by (15) ϵ is an e.e., therefore $\phi \tau \rho$ is an e.e., and hence so is ϕ . This concludes the proof.

3.7. Corollary: Let C in $Cat(\mathcal{E})$ be smooth and proper. If C is u.e.w.f., then $Colim_C : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves pullbacks.

Proof: Let $\gamma: F \longrightarrow C$ be an arbitrary discrete opfibration. We need to show that $Colim_C: \mathcal{E}^C \longrightarrow \mathcal{E}$ takes pullbacks over γ in \mathcal{E}^C to pullbacks over $Colim_C(\gamma)$ in \mathcal{E} .

Form the coequalizer $F_1 \xrightarrow[d_1]{d_1} F_0 \xrightarrow{\sigma} L$, so that $L = Colim_C(\gamma)$. A straightforward computation shows that $U \circ Colim_{F/L} = Colim_F \circ \theta : (\mathcal{E}/L)^{F/L} \longrightarrow \mathcal{E}$, where the functor $\theta : (\mathcal{E}/L)^{F/L} \longrightarrow \mathcal{E}^F$ is the obvious equivalence of categories and $U : \mathcal{E}/L \longrightarrow \mathcal{E}$ is the forgetful functor. Since C is smooth, proper, and u.e.w.f., Lemmas 1.5, 2.3, and 3.5 imply that F is weakly smooth, proper, and u.e.w.f.. Therefore by Theorem 3.6, $Colim_{F/L} : (\mathcal{E}/L)^{F/L} \longrightarrow \mathcal{E}/L$ preserves finite products. A pullback over γ in \mathcal{E}^C is a product in \mathcal{E}^F , which is taken to a product in $(\mathcal{E}/L)^{F/L}$ by θ , which is then taken to a product in \mathcal{E}/L by $Colim_{F/L}$, which is finally taken to a pullback over L in \mathcal{E} by U. We conclude the proof by noting that $Colim_C$ of a pullback diagram over γ in \mathcal{E}^C , and $Colim_F$ of the same diagram regarded as a product in \mathcal{E}^F are the same.

3.8. Lemma: If C in $Cat(\mathcal{E})$ is u.e.f., then $Colim(C) \simeq 1$, and the functor $Colim_C : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves the terminal object.

Proof: Form the coequalizer $C_1 \xrightarrow[d_1]{} C_0 \xrightarrow{\tau} L$, so that L = Colim(C). Given morphisms $U \xrightarrow[\gamma_2]{} C_0$, since C is u.e.f., and so satisfies Condition 1.2(b)', we get morphisms $V \xrightarrow[\lambda_2]{} C_1$ and $\epsilon: V \longrightarrow U$ such that ϵ is a u.e.e., $d_1\lambda_1 = d_1\lambda_2$, and $d_0\lambda_i = \gamma_i\epsilon$. Therefore $\tau\gamma_1\epsilon = \tau d_0\lambda_1 = \tau d_1\lambda_1 = \tau d_1\lambda_2 = \tau d_0\lambda_2 = \tau\gamma_2\epsilon$. ϵ being epi implies $\tau\gamma_1 = \tau\gamma_2$. Hence τ coequalizes any pair of maps to C_0 , in particular the kernel pair $R \xrightarrow[\pi_2]{} C_0$, of the unique morphism $!: C_0 \longrightarrow 1$.

By Condition 1.1(a), $!: C_0 \longrightarrow 1$ is an e.e., and so by Lemma 2.1, it is the coequalizer of its kernel pair. But τ coequalizes π_1 and π_2 , therefore there is a unique map $\sigma: 1 \longrightarrow L$ such that $\sigma! = \tau$. The map τ , being a coequalizer is by Lemma 2.1 an e.e., $\sigma! = \tau$ implies that σ is an e.e.. On the other hand σ is a mono, since its domain is the terminal object. Therefore σ is an isomorphism, and $L \simeq 1$. The other assertion of the lemma is obvious.

3.9. **Theorem:** Let C in $Cat(\mathcal{E})$ be smooth and proper. If C is u.e.f., then $Colim_C : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves finite limits.

Proof: By Corollary 3.7, and Lemma 3.8, pullbacks and the terminal object are preserved, which implies the preservation of finite limits (see [3], Chapter 5).

4. Examples

It can be easily verified that any topos, \mathcal{E} , is an admissible category, and any internal category C in \mathcal{E} is smooth and proper, see [2], and [6]. Also C is u.e.f. iff it is filtered, see [2], p66. So theorem 4.9 contains the known result in a topos as a special case, see [2], p70.

Now let \mathcal{E} denote any category that is topological over the category *Set* of sets, see [1], in which product of extremal epis is an extremal epi (e.g. if \mathcal{E} is cartesian closed then this condition is satisfied, see [5]) and the pullback of an extremal epi along an initial mono is an extremal epi. It follows that \mathcal{E} is an admissible category. In what follows we denote by $\underline{f}: \underline{X} \longrightarrow \underline{Y}$ the underlying map of the morphism $f: X \longrightarrow Y$ of \mathcal{E} .

4.1. Theorem: In \mathcal{E} initial maps are universal.

Proof: Pullback the initial map $f: X \longrightarrow Y$ along $g: Z \longrightarrow Y$ to get:

(1)
$$g\pi_1 = f\pi_2 : T \longrightarrow Y$$

Given $\alpha : R \longrightarrow Z$ and $h : \underline{R} \longrightarrow \underline{T}$ such that $\underline{\pi_1}h = \underline{\alpha}$, we have $\underline{f}(\underline{\pi_2}h) = \underline{g\alpha}$. Initiality of f implies there is a unique morphism $k : R \longrightarrow X$ such that: (2) $\underline{k} = \pi_2 h$ and $fk = \underline{g\alpha}$

Pullback (1) yields a morphism $h^*: R \longrightarrow T$ such that $\pi_1 h^* = \alpha$ and $\pi_2 h^* = k$. Since both <u> h^* </u> and <u>h</u> followed by $\underline{\pi_1}$ and $\underline{\pi_2}$ are equal to $\underline{\alpha}$ and <u>k</u> respectively and since $\underline{g\pi_1} = \underline{f\pi_2}: \underline{T} \longrightarrow \underline{Y}$ is a pullback in *Sets* we get $\underline{h^*} = h$.

Now suppose there is h^{**} such that $\pi_1 h^{**} = \alpha$ and $\underline{h^{**}} = h$. This implies $f(\pi_2 h^{**}) = g\alpha$ and $\underline{\pi_2 h^{**}} = \underline{\pi_2} h$. By (2) $\pi_2 h^{**} = k$ and by pullback (1) $h^{**} = h^*$.

4.2. Corollary: An initial epi in \mathcal{E} is a split epi and therefore a u.e.e.

Proof: straightforward.

4.3. **Theorem:** Let the morphism $f: X \longrightarrow Y$, the epimorphism $q: X \longrightarrow Z$, and the monomorphism $i: Z \longrightarrow Y$ be in \mathcal{E} such that f = iq. f is initial iff both q and i are.

Proof: \Rightarrow : To show q is initial, suppose $\alpha : R \longrightarrow Z$ and $h : \underline{R} \longrightarrow \underline{X}$ are given such that $\underline{q}h = \underline{\alpha}$. We have $\underline{f}h = \underline{i\alpha}$. Initiality of f implies there is a unique $h^* : R \longrightarrow X$ such that:

(1) $fh^* = i\alpha$ and $\underline{h^*} = h$ This implies $iqh^* = i\alpha$. i is a mono, therefore $qh^* = \alpha$.

Now suppose there is h^{**} such that $qh^{**} = \alpha$ and $\underline{h^{**}} = h$. This implies $iqh^{**} = i\alpha$ and $\underline{h^{**}} = h$. Thus $fh^{**} = i\alpha$ and $\underline{h^{**}} = h$. Therefore by (1) $h^{**} = h^*$.

To show *i* is initial suppose $\alpha : R \longrightarrow Y$ and $h : \underline{R} \longrightarrow \underline{Z}$ are given such that $\underline{i}h = \underline{\alpha}$. Let $q' : \underline{Z} \longrightarrow \underline{X}$ split $\underline{q} : \underline{X} \longrightarrow \underline{Z}$, i.e. $\underline{q}q' = 1$ (every epi in *Sets* is split epi), so that $\underline{f}q'h = \underline{\alpha}$. Initiality of *f* implies there is a unique $k^* : R \longrightarrow X$ such that $fk^* = \alpha$ and $\underline{k^*} = q'h$. Let $h^* = qk^*$. Since $fk^* = \alpha$ we have $iqk^* = \alpha$, which implies $ih^* = \alpha$ and $\underline{h^*} = \underline{qk^*} = \underline{qq'h} = h$.

Now suppose there is h^{**} such that $ih^{**} = \alpha$. This implies $ih^{**} = ih^*$, and since *i* is a mono we have $h^{**} = h^*$.

 \Leftarrow : Easy.

4.4. **Theorem:** Let the morphisms $f: X \longrightarrow Y$, $g: Z \longrightarrow Y$, $\pi_1: T \longrightarrow Z$, and $\pi_2: T \longrightarrow X$ be morphisms in \mathcal{E} . The diagram $g\pi_1 = f\pi_2: T \longrightarrow Y$ is a pullback in \mathcal{E} iff the underlying diagram $g\pi_1 = f\pi_2: T \longrightarrow Y$ is a pullback in *Set* and $\pi: T \longrightarrow Z \times X$ is initial.

Proof: See [1] and [5].

4.5. **Theorem:** Let C be an internal category in \mathcal{E} . If $d_{0C}: C_1 \longrightarrow C_0$ is initial, then C is proper.

Proof: Let $\gamma: F \longrightarrow C$ be a discrete opfibration. Since $d_{0F}: F_1 \longrightarrow F_0$ is the pullback of $d_{0C}: C_1 \longrightarrow C_0$ along $\gamma_0: F_0 \longrightarrow C_0$, it is initial by Theorem 4.1. This implies $d_{0F}^2: F_1^2 \longrightarrow F_0^2$ is initial. Also $\pi_F: K_F \longrightarrow F_1^2$, where K_F is the kernel pair of d_{1F} , is initial by Theorem 4.4. So $d_F = d_{0F}^2 \pi_F$ is initial by Theorem 4.3. On the other hand $d_F = i_F q_F$, so by Theorem 4.3 both q and i are initial. Therefore by Corollary 4.2 q is a u.e.e. and i is effective if it is an equivalence relation, see [2], p16. This shows C is proper.

4.6. Theorem: Every internal category C in \mathcal{E} is smooth.

Proof: To show C is smooth, we show that every object $X \in \mathcal{E}$ is separated. Given morphisms $\sigma_1 : X_1 \longrightarrow Y_1$ and $\sigma_2 : X_2 \longrightarrow Y_2$ over X, see Remark 3.3, find the product of σ_1 by σ_2 in \mathcal{E}/X to get $\sigma_1 \underset{X}{\times} \sigma_2 : X_1 \underset{X}{\times} X_2 \longrightarrow Y_1 \underset{X}{\times} Y_2$. It can be shown that $\sigma_1 \underset{X}{\times} \sigma_2$ is the pullback of $\sigma_1 \times \sigma_2$ along the inclusion (initial mono) $\pi : Y_1 \underset{X}{\times} Y_2 \longrightarrow Y_1 \times Y_2$. Since product of extremal epis in \mathcal{E} is an extremal epi, $\sigma_1 \times \sigma_2 : X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ is an e.e., and since $\sigma_1 \underset{X}{\times} \sigma_2 : X_1 \underset{X}{\times} X_2 \longrightarrow Y_1 \underset{X}{\times} Y_2$ is the pullback of the morphism $\sigma_1 \times \sigma_2 : X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ along the initial mono $\pi : Y_1 \underset{X}{\times} Y_2 \longrightarrow Y_1 \times Y_2$, it is an e.e..

4.7. Theorem: Let $C \in Cat(\mathcal{E})$ be filtered. If $d_{0C}: C_1 \longrightarrow C_0$ is initial, then C is universal extremal filtered.

Proof: To show that C is u.e.f., condition 1.1(a) holds because C is filtered, see [2], p66. To prove condition 1.1(b), the initiality of d_{0C} implies that of $d_C: K_C \longrightarrow C_0^2$. Since d_C is epi, therefore it is a u.e.e.. Finally to prove condition 1.1(c), it can be shown that $t_C: T_C \longrightarrow R_C$ satisfies the equation $\pi t_C = \pi_1^2 \pi : T_C \longrightarrow C_1^2$, where $\pi_1: C_2 \longrightarrow C_1$ is the pullback of $d_{0C}: C_1 \longrightarrow C_0$ along $d_{1C}: C_1 \longrightarrow C_0$. By Theorem 4.1, initiality of d_{0C} implies that of π_1 and hence that of π_1^2 , and since $\pi: T_C \longrightarrow C_2^2$ is initial, it follows that $\pi_1^2 \pi$ is. However $\pi t_C = \pi_1^2 \pi$, so πt_C is initial. Since t_C is epi and π is mono, by Theorem 4.3, t_C is initial. Since t_C is epi, by Corollary 4.2 it is a u.e.e..

4.8. Corollary: If $C \in Cat(\mathcal{E})$ is filtered and $d_{0C} : C_1 \longrightarrow C_0$ is initial, then $Colim_C : \mathcal{E}^C \longrightarrow \mathcal{E}$ preserves finite limits.

Proof: From Theorems 4.5, 4.6, 4.7, it follows that C is smooth, proper, and u.e.f.. The proof then follows by Theorem 3.9.

We conclude the paper by remarking that \mathcal{E} can be taken to be the categories constructed in [4] as topological completions with universal final epi sinks.

Bibliography

[1] H. Herrlich, Topological Functors, General Topology and its Applications 4 (1974) p125-142.

[2] P. T. Johnston, Topos Theory, London-New York-San Francisco, Academic Press, 1977.

[3] S. Mac Lane, Categories for the Working Mathematician. New York-Heidelberg-Berlin, Springer 1971.

[4] M. V. Mielke, Geometric Topological Completions with Universal Final Lifts. Topology and its Applications 9, 1985, p277-293.

[5] L. D. Nel, Initially Structured Categories and Cartesian Closedness, Can. Journal of Math., Vol. XXVII, No. 6, 1975, p1361-1377.

[6] O. Wyler, Lecture Notes on Topoi and Quasitopoi, Singapore- New Jersey-London-Hong Kong, Word Scientific, 1991.

Address: S. N. Hosseini Mathematics Department, Mahani Research Center Shahid Bahonar University of Kerman End of 22nd of Bahman Blvd, 76169-14111 Kerman, Iran Tel: (098341)3221080 Fax: (098341)3221078 or 3221080 email: nhoseini@mail.uk.ac.ir