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COMMUTATION OF INTERNAL COLIMIT AND FINITE LIMITS
S.N. HOSSEINI

Received January 3, 2007

ABSTRACT. It is well known that if £ is a topos, Colim : € —— £ preserves finite
limits if and only if C' is a filtered internal category.

The main result of this paper is that for £ belonging to a wider class of categories
than topoi, (Colim : €€ — £ preserves finite limits if C' is smooth, proper, and a
universal extremal filtered internal category.

This result is simplified for topological categories £ over Set that satisfy certain
conditions. It is shown that for these categories (Colim : € — £ preserves finite
limits if C is filtered and dg¢ is initial.

1. PRELIMINARIES

Let &€ be a category with finite limits and coequalizers of reflexive pairs. Throughout the
paper we refer to a pullback diagram:

K
e

P—>Y
Wll p.b. lg
X—f>Z

Diagram I
as the pullback fm =gme: P——= Z . Given a morphism f: X ——=Y in &, form

™1
the kernel pair, K fT; X, of f. Let g : X —— T be the coequalizer of the reflexive pair
2

™1
K fT; X. Since f coequalizes m; and my, it factors through gy by a unique morphism ;.
2

Hence to each morphism f in £ there corresponds unique morphisms gy and iy such that
f = irqs, where gy is the coequalizer of the kernel pair of f. We refer to gy, respectively
iy, as the g-map, respectively i-map of f.

Let Cat(€) denote the category of the internal categories in £ , see [2] p 47. For C in
Cat(€), define the maps d¢, tc, and s¢ as follows, see [2], p66.

Form the pullback

d171'1 = d171'2 : KC —_— C()
Let 7= (m,m) : Ko — Cf and do = d3n: Ko — C§ .
Form the pullbacks
<d0, d1>71'1 = <d0, d1>71'2 :R—— Cg
and
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(mom, mymy = (mom, m)me : T — C}

Let tc = (mm,mme): T —R.
Finally form the pullbacks
domy = domy : Q —= Cy and mmy =mme : S ——= 4
Let s¢ = (mm,mm2): S —=Q .
We write e.e., for an extremal epimorphism, i.e., a morphism that whenever it factors
through a monomorphism with the same codomain, the monomorphism is an isomorphism
and we write u.e.e., for a universal extremal epimorphism, i.e. an e.e. whose pullback along

every morphism is an e.e.
Consider the following (internal) conditions on an internal category C in &.

1.1. Conditions:

(a) The unique morphismCjy — > 1isanee.
(b) The morphism d¢ : Ko — C? is a u.e.e.
(¢) The morphism t¢ : Toc — R¢ is a u.e.e.

(d) The morphism s¢ : So ——= Q¢ is a u.e.e.
Also consider the following (external) conditions on C.

1.2. Conditions:
(a)’ The unique morphismCy —— 1 is an e.e.

Y1 A1
(b) For all pair of morphisms U T; Cp in & | there are morphisms T; C1 and
2 2

€: V — U such that € is a u.e.e., diA1 = d1 A2 and doA; = vj¢, for j =1,2.
_n.
—_—

(c)’ For all pair of morphisms U C1 coequalized by dy and dy, there are morphisms

i:V ——=Ciand e:V ——U such that € is a u.e.e., dopt = dij¢, for 7 = 1,2, and
m(mi€, ) = m(y26, ).

71
(d) For all pair of morphisms U T; C1 coequalized by dy, there are morphisms V
2

T; Ci, and ¢:V —— U such that € is a u.e.e., dod; = divje, for 7 = 1,2, and

2

m(y1€,61) = m(72€, b2).

1.3. Theorem: Conditions (a), (b), (c), and (d) of 1.1 are equivalent to conditions (a)’,
(b)Y, (¢)" and (d)’ of 1.2, respectively.

Proof: (a) and (a)’ are the same.

i
(b) = (b)’: Given UT>—21>CO, pullback de along (y1,72) : U —> CZ to get

AM:V——=Kcand ¢:V——=U . (b) implies that dc, and hence €, is a u.e.e. Let

Aj =7, J = 1,2, where Kc:1>>C'1 is the kernel pair of d; : C; ——= Cy . dymy = di7mo
T2

implies di A1 = d1m1 A = dyma A = dy 2. Also the above pullback diagram implies that dg A =

(y1,72)€, where do = d3m = d3(m1, ) = (dom1, doma), thus (dom1, dom2) A = (71,72)€, which

implies that dom; A = 7;€,j = 1,2. This in turn implies that doA; = 7,¢,7 = 1,2 as desired.
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pri
(b)) = (b): Let CgW; Cy be the projections. (b)' implies the existence of mor-

A
phisms VT_1>>C1, and ¢:V — C3 such that € is we.e., diA1 = di)g, and do); =
2

prije,j = 1,2. Since diA1 = diAe, the pullback dym = dime : Ko — Cj implies there
is a unique A= (M,A2): V —— K¢ such that mjA = X;,j = 1,2. We have 7\ =
<7T1, 7T2>)\ = <’/T1>\,7T2>\> = <)\1, )\2>, and therefore dc>\ = d(2)7r)\ = d(2)<)\1, )\2) = <d0>\1, d0>\2> =
(prie, pro€) = (pr1,pra)e = €. Now since € is a u.e.e., so is dc.
The proofs that (¢) < (¢)’ and (d) < (d)" are similar.
0

1.4. Definition: C in Cat(FE) is said to be a universal extremal weakly filtered (u.e.w.f.)
category if conditions (c) and (d) of 1.1 are met, and it is said to be a universal extremal
filtered (u.e.f.) category if conditions (a), (b), and (c) of 1.1 are satisfied.

1.5. Lemma: Let C be in Cat(E) and v : F —— C be a discrete opfibration.
(a) If C is a uw.e.f. category, then it is a u.e.w.f. category.

(b) If C' is a u.e.w.f. category, then so is F.

(c) If C is a u.e.f. category, then C satisfies the following condition:

’

Y1
(d)"" For all pairs of morphisms UT; C1 and U—1>>Cl such that doy1 = doy2, doy; =
2 ’
Y2

G
dovys and diy; = dyy},j = 1,2, there are morphisms VTE C1, and ¢:V —— U such
2

that € is a u.e.e., do(; = diyje = divje, m(71€, (1) = m(y26, (2), and m(vi¢€, (1) = m (36, C2).

Proof: (a) See [2], p 68, 2.53 Lemma.
(b) See [2], p 69, 2.56 Lemma.
(c) Straightforward.

2. PROPER INTERNAL CATEGORY

A category £ with finite limits and coequalizers of reflexive pairs is said to be admissible
if for all f € £ , the i-map of f is mono.
In this and the next section we let £ be an admissible category.

2.1. Lemma: In &:
(a) a morphism is an e.e. iff it is a coequalizer of its kernel pair.
(b) the composition of two e.e.’s as an e.e..

Proof: Straightforward.
O

2.2. Definition: Let C be in Cat(£).

(a) C is said to be weakly proper if the g-map of d¢ is a u.e.e., and the é-map of d¢ is
effective, (see [2], p 16) if it is an equivalence relation (see [2], p 16).

(b) C is said to be proper if for all discrete opfibrations ~: F ——= (C, F is weakly
proper.

2.3. Lemma: Let ~: F —— (C be a discrete opfibration in Cat(€).

(a) If C is proper, then it is weakly proper.
(b) If C is proper, then so is F.
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Proof: (a) Consider the discrete opfibration 1 : ¢ —— C to conclude C'is weakly proper.

(b) Let «:E——= F be a discrete opfibration. The composite ya: E——=(C'is a
discrete opfibration. So E is weakly proper as desired.
O

2.4. Lemma: Let C in Cat(£) be weakly proper. If C satisfies Condition 1.1(d), then
the i-map of d¢ is effective.

Proof: By Definition 2.2(a), it is sufficient to show the i-map of d¢ is an equivalence
relation. A straightforward computation shows that the relation is symmetric and reflexive.
To show transitivity form the pullbacks dim = dims : Ko —— C and

deca =dcb: R—— Cg . Let ¢ : Ko —— I be the coequalizer of R—baﬁ K. We have

iq=doc = dgw. Form the pullback ior =1i1s: T —— C , where 41 and i are the compo-
nents of i. We need to show (iyr,iss) : T — CZ factors through i. Form the following
pullbacks to get the maps a1, as, and .

a2

/17

A—Th —K

X))

S
al,,, To——T———=1 ,//|dom

K——1T——C(C)
ia

11/

domo
Diagram II

The fact that C' is weakly proper implies ¢ is a u.e.e., and therefore so is f.

By Diagram II we have, dy(meaq) = do(m az), so we get the unique morphism
(o, mag) : A—— @, such that 7 (mea, miae) = maaq, and me(mear, T1as) = mas.
pullback s¢ along (maar1, mas) to get:
(1) (moaur, ma)e =500 : V——>Q

C satisfies Condition (d), so by Theorem 1.3 it satisfies Condition (d)’, hence s¢, and
therefore € is a u.e.e.. (1), and the definition of K¢ as the pullback of d; along d; imply that
dlﬂlale = dl']TQOélE = d17l'171'1(5 = d07T27T15 and d17l'2a26 = dlmage = d17T17T25 = d07r27r26.
Now the definition of Cy as the pullback of dy along dy yields the existence of the maps:

(m 1€, mam10), (Taae, mamad) : V—=Co

Define n; = m(mjaj e, mom;0) : V. ——= Cy , where m is the multiplication. Since mmy =
mmy and dym = djme, we have dymom = dymm; = diymme = dymems, and so dym =
dlm(male, 71'271’1(5) = d17r2(7r1a16, 71'271’1(5) = d17T27T15 = d17l'271'2(5 = dl’frg(’/TQCtQE, 71'271’2(5) =
diym(maage, momad) = dine. Hence 11 and 72 are coequalized by di, which yields the ex-
istence of the unique map (n1,72) : V ——= K . Now we have iq(n1,n2) = d(n,m2) =
dgm(m,n2) = (dom1, doma) (1, m2) = (dom1 (11, m2), doma(m,m2)) = (domn, done), and by Dia-
gram I1, (i17, i28) e = (i17rPe, i2sPe) = (i1qane, iaqase) = (domiare, domaaze) = (don1, donz)-
Therefore we have
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(2) iq(m1,m2) = (iyr, ias)Be
Since 8 and € are e.e.’s, so is (¢, and so by Lemma 2.1, (e is the coequalizer of its

f
kernel pair. Let W—g_>>V be the kernel pair of fe. It follows that Sef = (eg, and so

(i1r,i28)Bef = (i1r,i2s)Beg. Equation (2) implies that iq(n1,m2)f = iq(m,n2)g. Since i

is a mono q(n1,m2)f = q(n1,m2)g. Thus q(n1,n2) coequalizes f and g, and hence there is

a unique map h such that g(n,m2) = hfBe. Therefore ihfe = iq(m,n2), and so, by (2),

thfe = (i1r,ias)fe. Pe is an e.e., and thus an epi. Hence ih = (i17,i25), that is, (i17,i25)
factors through 7 as desired.

O

For an object X of £ , let £/X denote the comma category, see [3] p 47. Let C be

d
in Cat(£), and o : Cy — L the coequalizer of ClT>_O>CO. C can be regarded as an
object of Cat(€ /L) by means of the morphism o : Cy — [, in which case we denote it
by C/L.
2.5. Proposition: Let C' in Cat(€) be weakly proper, and o : Cy —— L be the co-

do

equalizer of C T—;C'O. If C is a u.e.w.f. category in Cat(E), then C/L is a u.e.f. category
1

in Cat(€/L).

Proof: We need to show Conditions 1.1(a)-(c) hold. Since a morphism of £/L is a mono,
respectively an e.e., in £ /L if and only if it is so when regarded as a morphism of &,
Conditions (a) and (c¢) follow trivially.

To show (b) holds in £/L, we need to show d¢,r, is a u.e.e.. But de/r, = 0 is obtained
as follows:

doma

K¢

Xé 1/

b
/11 0 >L<Co ——C,
do1 al p.b. la

Co

Diagram III

The commutativity of the outer square in Diagram III follows from the fact that ody =
od;. We have:

(1) de = {(a,0)0: Ko — C% and iq=dc : Ko — C?

Since ¢ is the g-map of d¢, it is a u.e.e. On the other hand since C is weakly proper, C
is a we.w.f. category in Cat(€), so it satisfies Condition 1.1(d). Lemma 2.4 now implies
that, the i-map of d¢ is effective. Therefore there is a morphism f : Cy ——= Y for some
object Y of £ | such that:

(2) fi1 = fig: I ——Y is a pullback

Let i:Cy—— C; be the inclusion of identities. Since d; = di(idy), the pullback

dym = dime : Ko — C) yields a unique morphism (1,idy) : C1 —— K¢ such that:

(3) Wl(l,idl) =1: Cl E—— C1 and Wg(l,idl) = idl . Cl I Cl
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(1), (2), (3), and the equation dpi = 1¢, imply that fdy = fdomi(1,id1) = fii1q(1,idy) =
fiaq(1,idy) = fdoma(1,idy) = fdoidy = fdi. So f coequalizes dy and d;. Hence there is a
unique morphism ¢ : [, —— Y such that to = f. This and Diagram III yield fa = toa =
tob = fb. Now the pullback fi; = fiy: I ——=Y yields a unique ™*: CO>L<CO —7

such that iym = a, and iom = b.
On the other hand, (1), Diagram III, and the definition of ¢ yield oiig = odom =
odim = odime = odygme = 0isq i.e., 0i1q = oieq. But ¢ is epi, hence oi; = ois, and

since o0a=ob: Cofco —— [ is a pullback, it follows that there is a unique n such that

an = i1, and bn = iy. Pullbacks fiy = fis: [ ——=Y and Ua:UbZCO§C0—>L,

imply mn = 1 and nm = 1. This and (1) imply that dc = (a, )0, im = (a,b), (a,b)n =i
nqg = 0, and ¢ = md. Since n is an isomorphism, and ¢ a u.e.e., J is a u.e.e..
O

3. INTERNAL COLIMIT

For any category £ , with finite limits and coequalizers of reflexive pairs, and any C' in
Cat(£), £ denotes the full subcategory of the comma category Cat(£)/C whose objects
are discrete opfibrations. See [2] p 49 and 50.

3.1. Definition: Define:
do
(a) Colim : Cat(€) — &€ by Colim(C) = Coeq(ClT_;Co).

(b) For C in Cat(&), Colime : EC — &€ by Colimc(FL>’Y) = Colim(F). We
refer to this functor as the internal colimit.

3.2. Definition: An object X of £ is said to be separated if in £ /X, the product of e.e.’s
is an e.e..

3.3. Remark: Since products in £/X are pullbacks in £ , it follows that X in & is
separated if and only if for any two ee.’s 07 : X7 ——=Y;, and o09: Xo ——=Y5; and
any two morphisms f; : Y1 —— X ,and f;:Y, ——= X , the morphism o X 02 is an e.e.,

where o1 X 02 is obtained by the following pullbacks :

X1 >)<(X2 E2 X2

E, Y1>L<Y2’T2—>Y2

l o n| e lh

X1 : Yy X

g 1

Diagram IV

3.4. Definition: C in Cat(£) is said to be:
(a) weakly smooth if Colim(C) is a separated object of £ .
(b) smooth if for all discrete opfibrations F —— (', F is weakly smooth.

3.5. Lemma: (a) If C'in Cat(€) is smooth, then it is weakly smooth.
(b) If v: F —— ( is a discrete opfibration, and C' is smooth, then so is F.
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Proof: The proof is similar to the proof of Lemma 2.3.
O

3.6. Theorem: Let C' in Cat(€) be weakly smooth and proper. If C is u.e.w.f., then
Colim : (£ /L)¢/* —— £ /L preserves finite products, where L = Colim(C).

Proof: For of: Fi/L — C/Lin (£/L)°/*, the product of a' by a? in (£/L)°/* is
alnrl: G/L ——= C/L , where G is obtained by the pullback:
(1) alrl =a?7?2:G—=C

and G/L is G regarded as an object over L by passing to C, and regarding C as an object

over L.
The internal colimit ofG/L ——= C/L in /L is, by definition, the coequalizer of (G/L);

do dO
T>_>(G/L)0 in £/L, which is simply the coequalizer G1T>_>G0—T> M in & | regarded

as an object over L. So M/L is the internal colimit of the product of a! and a?.
On the other hand, the internal colimit of of : F*/L —— C'/L in £/L is the coequalizer

. d . . d ) i
of (Fz/L)lToi (F"/L)o in £ /L, which is again simply the coequalizer FfToi Fi—Ts i
1 1

regarded as an object over L by l*. The product of L'/L by L?/L in £/L is (L1>£L2)/L,
where Ll>L<L2 is the pullback of j2.72 ——= [ along |!: 1 ——= [ . So the product of
the internal colimit of a! and the internal colimit of a2 is (L1>£L2) /L. We need to show

M/L and (L* >£L2)/L are canonically isomorphic.

To this end we first note that the morphism (o'n§, o?n) : Go — L! x L2 is coequal-

ized by dy and d; of G, where dy and d; are obtained by the pullback (1). Therefore there
is a unique morphism & such that:
(2) o1 = (otn}, o%n3)

It is straightforward to verify that I'oln} = (?0273. Hence (o7}, 0?72) factors through
Lt >L<L2. The factoring map is denoted by (o'ng,o%n2). Note that
3) n(o1m}, 0%n3) = (o'm}, o%nd)

where 7 = (71, mg). Since 7 is a mono, and (o'7}, o?nd) is coequalized by dy and dy, it
follows that (o'7}, 0?73) is coequalized by dy and d;. Hence there is a unique morphism ¢
(canonical morphism) such that
(4) ¢7 = (o'mg, o)

(2), (3), and (4) imply that &7 = (o'7},0%n3) = n(otny,0?73) = 7gr. T, being a
coequalizer, is an epi, so ® = w¢o. It follows that ¢ is mono if and only if ¢ is mono. We
will show that ¢ is an isomorphism by showing it is mono and e.e..

To show ¢ is mono, we show that ® is mono by showing for arbitrary morphisms U

71
T; Gy, if ®17y1 = §77y5 then 7y; = 7y2. But first let us show this is sufficient. Form the
2

pullback (®7)m = (P7)m2 : R—— [! x L2 and the coequalizer R—= GQ—Q> q and
2

let i:@Q —— L' x L2 be the i-map of ®7, so that i¢ = ®7. The morphism ¢ is mono since
it is the -map of ®7. 77w = d7my implies by our hypothesis that 71 = 7m5. So there
is a unique morphism « : (Q — M such that ag = 7. Therefore ig = &7 and ag = 7,
and consequently ®aqg = ig. Since g is an epi, ®a = i. Since 7 is mono, so is «. Since the
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e.e. 7 factors through «, « is an isomorphism. Thus @ is a mono, since Pa = i, « is an

71
isomorphism, and 7 is a mono. So suppose we are given UT>—> Gy such that

2
(5) Pry1 = P72

Define morphisms ’y;- U ——Fi,i,j=1,2, by 'yji- =miv;. (2), and (5) imply o'yl =

o'~4, from which it follows that U can be regarded as an object of £/L?, for each i, and
that 44 and 44 are morphisms in £/L’. By Lemma 1.5, F' is u.e.w.f., and by Lemma
2.3, F' is weakly proper. Hence by Proposition 2.5, Fi/L is wef. in Cat(E/L?), and
therefore satisfies Condition 1.2(b)" in £/L*. Applying (b)’ to 7} and 74 we get morphisms

Viij and ¢t ; ¢ — U such that:
A

(6) €' is a we.e., di\} = di b, and do)\§ = 'yji-ei

Pullback €2 along €' to get i .}y ——=yifor i = 1,2. Define ¢:V ——= U , and
AV —— Fj by e = ¢'t!, and A = Xit?. (6) implies that:
(7) €is a we.e., diA} = d; Al and doAé- = ’yji-e

Define M; :V——=C by ué- = oﬂiA;. The definition of 'y}, 7]2, and (1) imply that
afy} = afy;. This together with the definition of 4}, the fact that doa} = agdo, and (7)
imply that: 4 4
(8) dopj = dop3, and dypf = dypif

The fact that ody = ody, and (8) imply that 0d0u§» does not depend on ¢ or j. This
shows that V' can be regarded as an object over L, and ,ué- as a morphism in £ /L.

By Lemma 2.3, and Proposition 2.5, C'is a u.e.f. in Cat(€ /L), therefore by Lemma 1.5,

1

A p
it satisfies Condition (d)” in £/L. Applying (d)” to uj, we get morphisms VV—2>E C1 and
P

& : W —— V such that the following hold simultaneously for both 7 = 1 and 2.
(9) £ isla u.e.e., dop' = di,u;{, and m(ujlf,lpl) = m(/@g,pQ) . .

The definition of y}, and (9) imply that dop' = dipi€ = diajA% = agdiA%E. Since
doat = alydy : Fj — Cy is a pullback there is a unique map ¢i . W —— F} , for each
i, such that:

(10) aif’ = p*, and dof® = diA%¢

Note that by (7), diA} = d1 A%, so that §” does not depend on j.

By (7), and (10) we have dof" = d1 A1 = di AL, Since dym = domy : Fj — Fj is a
pullback there exists a unique map (Aéf ,0%) such that:

(11) T (A€, 0%) = AE, and mo(A%E,0°) = 0

Define morphisms \I/; : W —— Fj by \I/; = m(A;'-f, 6%). (11), and the definition of u;-
imply that Wlaé(A;'f,Gi) = a’iw’i(A?f,Gi) = oﬂiA;f = ,u;{ = Wl(u;'f,pi). Similarly we can
show moah (A;f, 0") = o (,u;f, p'). The pullback dym; = dymy : Oy — Cj then shows that
ay(A4E,0) = (i€, p'). This and the definition of W% imply that of ¥ = ajm(A%€,60") =
mab (A%, 0°) = m(uiE, p').

On the other hand by (9) m(u}ﬁ,pl) = m(u?f,pQ). Therefore a%\lfjl = a%llfi, and
since alnl = a2n? : Gy — C} is a pullback there is a unique morphism (\Iljl, \I/?) such
that 77%(\1/]1,\1/?) :4\11} and w%(\lljl,\llg) = \II? By the definition of W%, and (11), we get
d1 W = dlm(A}f, 0") = d17r2(A;£, 0") = d10". Tt follows that:
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(12) 0y (W1, 02) = (d61,d16°) = da (W}, 93)

On the other hand dolllé- = dom(Aéf,Hi) = dom (A;f,@i) = doA;{. This and equation
(7) imply do(¥},03) = (doAjE, doA3E) = (doA}, doA3)E = (vje, 7o)€ = (7], 77)e€ = vj¢€€.
This and equation (12) imply that 7y1e€ = 7do(¥}, V%) = 7d; (Y], 02) = 7d;(V3, ¥3) =
Tdo (W}, U3) = Ty2¢f. € and ¢ are e.e.’s and therefore epi’s, hence 771 = 77y as desired.
This proves ®, and therefore ¢, is mono.

To show ¢ is e.e., form the pullback

(13 (vab)nb = (ood)md : FixFf —
agmg

and note that the morphisms F01>L<F02T; Cy are coequalized by o, and therefore are
Ao To

morphisms in £/L. C/Lis u.e.f. in Cat(£/L), and so satisfies Condition (b)" of 1.2 in £ /L.
A
Applying (b)’ to aind and an3, we get morphisms VT>—1>01 and ¢:V —— Fo1>L<F02
2
such that
(14) €is a we.e., diA; = di)a, and do\; = afymie
The last equation of (14) and the fact that doa = aldy : Fi — Cy is a pullback imply
the existence of the unique morphism pu; : V. —— FJ such that:
(15) ol p; = N, and dop; = mhe
By (14) and (15) we have ajdipus = diadps = didy = dida = dia3ps = addijz. The
pullback i} = a2 : Go —— Cj yields a unique morphism p: V —— Gy such that:

(16) 7gp = dip1, and w3p = dipo
(4), (15), and (16) imply that:
(17) orp = (olnd, 02712)p = (otnip, o*ndp) = (oldipn, 0?dips) =

(otdopr, o2dops) = (otmie, o?mie) = (otny, o%73)e
Using (13), and the fact that I‘c? = oad, which holds by the definition of /¢, form the
following pullback to get the morphism o* >L<02.

2
To

1/
1, 72
Fy >L<Fo E2 F?

| R b

1 2 T2
o\ B ——= L XL =12 Joa}

F} = Lt i L
/17
oap
Diagram V
By Diagram V| it is obvious that 01>L<02: (otnd, 0%n2), and so by (17) we have ¢7p =

2

(01>L<02)e. C is weakly smooth, so by Remark 3.3, 01>£a is an e.e.. Also by (15) € is an

e.e., therefore ¢7p is an e.e., and hence so is ¢. This concludes the proof.
O
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3.7. Corollary: Let C in Cat(€) be smooth and proper. If C is u.e.w.f., then

Colim¢ : € ¢ s ¢ preserves pullbacks.

Proof: Let ~:F —— (C be an arbitrary discrete opfibration. We need to show that

Colime : E€ — & takes pullbacks over v in % to pullbacks over Colimc(y) in € .
do
Form the coequalizer Fy T; Fo—72= L, so that L = Colimc(y). A straightforward
1

computation shows that U o Colimp,, = Colimp o6 : (£/L)F/F — = g | where the func-

tor 0 : (E/L)F/L —— ¢F is the obvious equivalence of categories and U : /L ——= &

is the forgetful functor. Since C' is smooth, proper, and u.e.w.f., Lemmas 1.5, 2.3, and
3.5 imply that F' is weakly smooth, proper, and u.e.w.f.. Therefore by Theorem 3.6,

Colimp,r, (E/L)F/t —— £ /L preserves finite products. A pullback over v in EC is
a product in £, which is taken to a product in (£/L)F/* by 0, which is then taken to a
product in £/L by Colimp,r,, which is finally taken to a pullback over L in & by U. We
conclude the proof by noting that Colime of a pullback diagram over v in £, and Colimp

of the same diagram regarded as a product in EF are the same.
]
3.8. Lemma: If C in Cat(€) is u.e.f., then Colim(C) ~ 1, and the functor
Colimc : £¢ —— & preserves the terminal object.

d
Proof: Form the coequalizer ClT>—O>C0—T> L, so that L = Colim(C). Given mor-
1

71
phisms UT; Cy, since C is u.e.f., and so satisfies Condition 1.2(b)’, we get morphisms V'
2

A
Tli Ci and ¢:V —— U such that e is a u.e.e., diA\; = d1 X2, and dp\; = y;e. Therefore
2

Ty1€ = Tdg A1 = Td1 A1 = Td1 A2 = TdgA2 = Ty2¢. € being epi implies 7y; = 772. Hence 7
T

coequalizes any pair of maps to Cp, in particular the kernel pair RTﬁ Cp, of the unique
2

morphism !:Cy ——=1 .

By Condition 1.1(a), !: Cy — 1 is an e.e., and so by Lemma 2.1, it is the coequalizer
of its kernel pair. But 7 coequalizes 71 and 7o, therefore there is a unique map ¢:1 ——> L
such that o! = 7. The map 7, being a coequalizer is by Lemma 2.1 an e.e.. ¢! = 7 implies

that o is an e.e.. On the other hand o is a mono, since its domain is the terminal object.
Therefore o is an isomorphism, and L ~ 1. The other assertion of the lemma is obvious.

O
3.9. Theorem: Let C in Cat(£) be smooth and proper. If C is u.e.f., then
Colim¢ : € € s ¢ preserves finite limits.
Proof: By Corollary 3.7, and Lemma 3.8, pullbacks and the terminal object are preserved,

which implies the preservation of finite limits (see [3], Chapter 5).
O
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4. EXAMPLES

It can be easily verified that any topos, £, is an admissible category, and any internal
category C in £ is smooth and proper, see [2], and [6]. Also C' is u.e.f. iff it is filtered, see
[2], p66. So theorem 4.9 contains the known result in a topos as a special case, see [2], p70.

Now let £ denote any category that is topological over the category Set of sets, see [1],
in which product of extremal epis is an extremal epi (e.g. if £ is cartesian closed then this
condition is satisfied, see [5]) and the pullback of an extremal epi along an initial mono is
an extremal epi. It follows that £ is an admissible category. In what follows we denote by

f: X ——=Y the underlying map of the morphism f:X ——=7Y of £ .
4.1. Theorem: In £ initial maps are universal.

Proof: Pullback the initial map f: X ——= Y along ¢: Z —— Y to get:
(1) gmi = fry: T ——Y

Given o : R— Z and h:R——T such that m1h = o, we have f(mh) = ga. Ini-
tiality of f implies there is a unique morphism k: R —— X such that:
(2) k =myh and fk = ga

Pullback (1) yields a morphism A*: R—— T such that mh* = « and mh* = k.
Since both h* and h followed by m; and my are equal to o and k respectively and since
gm = fma : T ——Y is a pullback in Sets we get h* = h.

Now suppose there is h** such that mh** = o and h** = h. This implies f(mh**) = ga
and mph*™* = moh. By (2) moh™* =k and by pullback (1) h** = h*.

O

4.2. Corollary: An initial epi in £ is a split epi and therefore a u.e.e.

Proof: straightforward.
O

4.3. Theorem: Let the morphism f: X ——= Y , the epimorphism ¢: X —— 7 , and
the monomorphism §:Z ——= Y be in &£ such that f =iq. f is initial iff both ¢ and i are.

Proof: =: To show ¢ is initial, suppose o : R — Z and h: R —— X are given such
that gh = a. We have fh = ia. Initiality of f implies there is a unique p*: R ——= X
such that: B
(1) fh*=iaand h* =h

This implies igh™ = ic. i is a mono, therefore gh* = a.

Now suppose there is h** such that ¢gh*™* = o and A** = h. This implies igh** = i and
h** = h. Thus fh** =i« and h** = h. Therefore by (1) h** = h*.

To show ¢ is initial suppose «: R—Y and h: R —— Z are given such that ih = a.

Let ¢': Z—— X split ¢: X ——= 7 ,ie. g¢ =1 (every epi in Sets is split epi), so that

fd'h = a. Initiality of f implies there is a unique k* : R — X such that fk* = o and
k* = ¢'h. Let h* = gk*. Since fk* = a we have igk* = «, which implies ih* = o and
b* = qk* = qq¢'h = h.

Now suppose there is A** such that ih** = . This implies ih** = ih*, and since i is a
mono we have h** = h*.

<: Easy.
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4.4. Theorem: Let the morphisms f: X —Y, g: Z——Y , m:T—— 7,
and 79 : T — X be morphisms in £ . The diagram gm = fme : T ——Y is a pull-
back in &€ iff the underlying diagram gmi = fme:T ——= Y is a pullback in Set and
7w T — 7 x X is initial.

Proof: See [1] and [5].

O

4.5. Theorem: Let C be an internal category in € . If dyc : C4 —— Cj is initial, then
C is proper.

Proof: Let v : F ——= C be a discrete opfibration. Since dyp : F; —— Fy is the pull-
back of doc : C; —= Cy along g : Fy — Cy , it is initial by Theorem 4.1. This implies
d2p : F — F¢ is initial. Also 7p : Kp — F? , where K is the kernel pair of d;,

is initial by Theorem 4.4. So dp = dgFWF is initial by Theorem 4.3. On the other hand
dr = ipqr, so by Theorem 4.3 both ¢ and 4 are initial. Therefore by Corollary 4.2 ¢ is a

u.e.e. and ¢ is effective if it is an equivalence relation, see [2], p16. This shows C' is proper.
O

4.6. Theorem: Every internal category C in & is smooth.

Proof: To show C' is smooth, we show that every object X € £ is separated. Given mor-
phisms o1 : X1 ——=Y; and o9 : X5 ——= Y5 over X, see Remark 3.3, find the product

of 01 by 02 in £/X to get 01 >)<(U2 1 X1 >)<(X2 —Y >)<(Y2 . It can be shown that o >)<(02 is
the pullback of o1 x 09 along the inclusion (initial mono) 7 * Y1 >)<(Y2 ——Y7; x Y5 . Since

product of extremal epis in £ is an extremal epi, o1 X 09 : X7 X Xo ——=Y7 x Y5 is an

e.e., and since 71°X02" X1 >)<(X2 — " >)<(Y2 is the pullback of the

morphism o1 X 09 : X7 X Xo ——= Y] X Y5 along the initial mono 7 : Y >)<(Y2 ——=Y1 xY,

, 1t is an e.e..
g

4.7. Theorem: Let C € Cat(€) be filtered. If doo : C1 — Cj is initial, then C is
universal extremal filtered.

Proof: To show that C' is u.e.f., condition 1.1(a) holds because C' is filtered, see [2], p66.
To prove condition 1.1(b), the initiality of dpc implies that of de : Ko —— C2 . Since
dc is epi, therefore it is a u.e.e.. Finally to prove condition 1.1(c), it can be shown that
tc : To — R satisfies the equation 7tc = 7271 : To — C% , where 7 : Co — C}
is the pullback of dpe : C1 ——= Cy along dic : C1 —— Cy . By Theorem 4.1, initiality
of doc implies that of 71 and hence that of 77, and since 7 : T — C7% is initial, it fol-

lows that 737 is. However mtg = 7w, so wtc is initial. Since t¢ is epi and 7 is mono, by
Theorem 4.3, t¢ is initial. Since ¢ is epi, by Corollary 4.2 it is a u.e.e..
O

4.8. Corollary: If C' € Cat(€) is filtered and doc : C; — Cy is initial, then

Colim¢ : € € s ¢ preserves finite limits.
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Proof: From Theorems 4.5, 4.6, 4.7, it follows that C' is smooth, proper, and u.e.f.. The
proof then follows by Theorem 3.9.
O
We conclude the paper by remarking that £ can be taken to be the categories constructed
in [4] as topological completions with universal final epi sinks.
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