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Abstract. The main purpose of this paper is to study an iteration procedure for find-
ing a common fixed point of a countable family of nonexpansive mappings in Banach
spaces. We introduce a Mann type iteration procedure. Then we prove that such a se-
quence converges weakly to a common fixed point of a countable family of nonexpansive
mappings. Moreover, we apply our result to the problem of finding a common fixed
point of a pair of nonexpansive mappings and the problem of finding a common solution
of the fixed point problem and the variational inequality problem.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and T a nonexpansive
mapping of C into itself, that is, ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The set of fixed
points of T is denoted by F (T ), that is, F (T ) = {x ∈ C : x = Tx}. In this paper, we deal
with an approximation of fixed points of nonexpansive mappings.

Mann [9] introduced an iteration procedure for approximating fixed points of a mapping
T in a Hilbert space as follows: x1 ∈ C and

xn+1 = αnxn + (1 − αn)Txn

for all n ∈ N, where {αn} is a sequence in [0, 1]. Later, Reich [11] discussed this iteration
procedure in a uniformly convex Banach space whose norm is Fréchet differentiable; see
also [10]. For two nonexpansive mappings S and T , Takahashi and Tamura [13] considered
the following iteration procedure: x1 ∈ C and

xn+1 = αnxn + (1 − αn)S(βnxn + (1 − βn)Txn)

for all n ∈ N, where {αn} and {βn} are sequences in [0, 1]; see also [4]. They obtained weak
convergence theorems for this procedure in a uniformly convex Banach space which satisfies
Opial’s condition or whose norm is Fréchet differentiable.

The main purpose of this paper is to study an iteration procedure for finding a common
fixed point of a countable family of nonexpansive mappings in Banach spaces. We introduce
the following iteration procedure: Let x1 ∈ C and

xn+1 = αnxn + (1 − αn)Tnxn

for all n ∈ N, where {αn} is a sequence in [0, 1] and {Tn} is a sequence of nonexpansive
mappings. Then we prove that this sequence {xn} converges weakly to a common fixed
point of {Tn}. Further we apply our result to the problem of finding a common fixed point
of a pair of nonexpansive mappings. We deal with the iteration procedure treated in [13]
and another type of sequence for a pair of nonexpansive mappings. Finally, we discuss
the problem of finding a common solution of the fixed point problem for a nonexpansive
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mapping and the variational inequality problem for an inverse-strongly-monotone mapping.
Similarly, we deal with two types of sequences.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and C a subset of E. The dual of E is
denoted by E∗, the set of all positive integers by N, and the set of all real numbers by R.
Let {xn} be a sequence in E. Strong convergence of {xn} to x is indicated by xn → x,
weak convergence of {xn} to x by xn ⇀ x, and the closure of the convex hull of C by coC.

Let U = {x ∈ E : ‖x‖ = 1}. The norm ‖ · ‖ of E is said to be Gâteaux differentiable if
the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . In this case a Banach space E is said to be smooth. The norm of E
is said to be Fréchet differentiable if for each x ∈ U , the limit (2.1) is attained uniformly
for y ∈ U . A Banach space E is said to satisfy Opial’s condition [10] if xn ⇀ x and x �= y
imply

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ .

A Banach space E is said to be strictly convex if ‖x‖ = ‖y‖ = 1 and x �= y imply
‖(x + y)/2‖ < 1. If E is strictly convex, then

‖x‖ = ‖λx + (1 − λ)y‖ = ‖y‖ and λ ∈ (0, 1) imply x = y.(2.2)

A Banach space E is said to be uniformly convex if for any ε > 0, there exists δ > 0 such
that ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε imply ‖(x + y)/2‖ ≤ 1 − δ. It is known that if E
is uniformly convex, then E is reflexive and strictly convex. It is also known that if E is
uniformly convex, then the function ‖ · ‖2 is uniformly convex [16] on every bounded convex
subset B of E, that is, for each ε > 0, there is δ > 0 such that

‖λx + (1 − λ)y‖2 ≤ λ ‖x‖2 + (1 − λ) ‖y‖2 − λ(1 − λ)δ

for all λ ∈ (0, 1) and x, y ∈ B with ‖x − y‖ ≥ ε; see, for example, [5, 16]. To prove our
results, we need several theorems:

Theorem 2.1 (Browder [2]). Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space E, T a nonexpansive mapping of C into itself, and {xn} a
sequence of C. If xn ⇀ x and xn − Txn → 0 as n → ∞, then x ∈ F (T ).

Reich stated the following; see also [15].

Theorem 2.2 (Reich [11]). Let C be a nonempty closed convex subset of a uniformly con-
vex Banach space whose norm is Fréchet differentiable. Let {Tn} be a sequence of non-
expansive mappings of C into itself such that

⋂∞
n=1 F (Tn) is nonempty. Let x ∈ C and

Sn = TnTn−1 · · ·T1 for n ∈ N. Then the set
∞⋂

n=1

co{Smx : m ≥ n} ∩
∞⋂

n=1

F (Tn)

consists of at most one point.

Theorem 2.3 (Bruck [3]). Let C be a nonempty closed convex subset of a strictly convex
Banach space E. Let {Sn} be a sequence of nonexpansive mappings of C into E and {βn}
a sequence of positive real numbers such that

∑∞
n=1 βn = 1. If

⋂∞
n=1 F (Sn) is nonempty,

then the mapping T =
∑∞

n=1 βnSn is well defined and F (T ) =
⋂∞

n=1 F (Sn).
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It is easily seen that this theorem is applied to a finite family of nonexpansive mappings,
that is, we conclude the following: Let {S1, S2, . . . , Sn} be a finite family of nonexpansive
mappings of C into a strictly convex Banach space E and {β1, β2, . . . , βn} a finite family
of positive real numbers such that

∑n
k=1 βk = 1. If

⋂n
k=1 F (Sk) is nonempty, then F (T ) =⋂n

k=1 F (Sk), where T =
∑n

k=1 βkSk.

3. The main result

In this section, we consider the problem of approximating a common fixed point of
a countable family of nonexpansive mappings. To obtain our main result, we need the
following:

Lemma 3.1. Let E be a uniformly convex Banach space. Let {αn} be a sequence of (0, 1)
such that 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R. Let {xn} and {yn} be two sequences of E
which satisfy the following:

1. xn+1 = αnxn + (1 − αn)yn;
2. there exists u ∈ E such that ‖yn − u‖ ≤ ‖xn − u‖ for every n ∈ N.

Then limn→∞ ‖xn − yn‖ = 0.

Proof. By (1) and (2), we have

‖xn+1 − u‖ ≤ αn ‖xn − u‖ + (1 − αn) ‖yn − u‖ ≤ ‖xn − u‖
for some u ∈ E. This implies that xn, yn ∈ B = {z ∈ E : ‖z‖ ≤ ‖x1 − u‖ + ‖u‖} for every
n ∈ N and {‖xn − u‖} is convergent. Suppose that limn→∞ ‖xn − yn‖ �= 0. Then there
exist ε > 0 and a subsequence {xni − yni} of {xn − yn} such that ‖xni − yni‖ ≥ ε for each
i ∈ N. Since E is uniformly convex, ‖ · ‖2 is uniformly convex on B, so that there exists
δ > 0 such that ‖x − y‖ ≥ ε implies

‖λx + (1 − λ)y‖2 ≤ λ ‖x‖2 + (1 − λ) ‖y‖2 − λ(1 − λ)δ

whenever x, y ∈ B and λ ∈ (0, 1). Thus we have

‖xni+1 − u‖2 = ‖αni(xni − u) + (1 − αni)(yni − u)‖2

≤ αni ‖xni − u‖2 + (1 − αni) ‖yni − u‖2 − αni(1 − αni)δ.

Therefore we obtain

0 < a(1 − b)δ ≤ αni(1 − αni)δ ≤ ‖xni − u‖2 − ‖xni+1 − u‖2

for each i ∈ N. Since the right side of the inequality above converges to 0 as i → ∞, we
have a contradiction. Therefore we conclude that limn→∞ ‖xn − yn‖ = 0.

Further we need the following:

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let {Tn}
be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=1 F (Tn) is nonempty

and {αn} a sequence of (0, 1) such that 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R. Let {xn} be
a sequence of C defined as follows: x1 ∈ C and

xn+1 = αnxn + (1 − αn)Tnxn

for every n ∈ N. Suppose that for any nonempty bounded closed convex subset B of C and
any increasing sequence {ni} of N, there exist a nonexpansive mapping T of C into itself
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and a subsequence {Tnij
} of {Tni} such that

lim
j→∞

sup
y∈B

∥∥∥Ty − Tnij
y
∥∥∥ = 0 and F (T ) =

∞⋂
n=1

F (Tn).

Then {xn} converges weakly to some point of F (T ) =
⋂∞

n=1 F (Tn).

Proof. Let u ∈ ⋂∞
n=1 F (Tn). It is clear that

‖Tnxn − u‖ = ‖Tnxn − Tnu‖ ≤ ‖xn − u‖
for every n ∈ N. Thus Lemma 3.1 implies that

lim
n→∞ ‖Tnxn − xn‖ = 0.(3.1)

Since
‖xn+1 − u‖ ≤ αn ‖xn − u‖ + (1 − αn) ‖Tnxn − u‖

≤ αn ‖xn − u‖ + (1 − αn) ‖xn − u‖
= ‖xn − u‖

(3.2)

for every n ∈ N, we have ‖xn − u‖ ≤ ‖x1 − u‖. So {xn} is bounded and, without loss of
generality, we may assume that C is bounded. Since E is reflexive, there exists a subsequence
{xni} of {xn} such that xni ⇀ v. For C and a subsequence {Tni} of {Tn}, there exist a
nonexpansive mapping T of C into itself and a subsequence {Tnij

} of {Tni} such that

lim
j→∞

sup
y∈C

∥∥∥Ty − Tnij
y
∥∥∥ = 0(3.3)

and

F (T ) =
∞⋂

n=1

F (Tn).

Since ∥∥∥xnij
− Txnij

∥∥∥ ≤
∥∥∥xnij

− Tnij
xnij

∥∥∥+
∥∥∥Tnij

xnij
− Txnij

∥∥∥
≤
∥∥∥xnij

− Tnij
xnij

∥∥∥+ sup
y∈C

∥∥∥Tnij
y − Ty

∥∥∥ ,

we have limj→∞
∥∥∥xnij

− Txnij

∥∥∥ = 0 from (3.1) and (3.3). By Theorem 2.1, we obtain
v ∈ F (T ).

Suppose that E satisfies Opial’s condition and xnk
⇀ w. From (3.2) and v, w ∈ F (T ) =⋂∞

n=1 F (Tn), we know that limn→∞ ‖xn − v‖ and limn→∞ ‖xn − w‖ exist. If v �= w, then
we have

lim
n→∞ ‖xn − v‖ = lim inf

i→∞
‖xni − v‖ < lim inf

i→∞
‖xni − w‖ = lim

n→∞ ‖xn − w‖
= lim inf

k→∞
‖xnk

− w‖ < lim inf
k→∞

‖xnk
− v‖ = lim

n→∞ ‖xn − v‖ .

This is a contradiction. Therefore we conclude that v = w.
Suppose that the norm of E is Fréchet differentiable. For each n ∈ N, let Sn be a

nonexpansive mapping of C into itself defined by Snz = αnz + (1 − αn)Tnz for z ∈ C.
Then we know that xn+1 = SnSn−1 · · ·S1x, v ∈ ⋂∞

n=1 co{xm : m ≥ n}, and
⋂∞

n=1 F (Sn) =⋂∞
n=1 F (Tn) = F (T ) �= ∅. By Theorem 2.2, we have

∞⋂
n=1

co{xm : m ≥ n} ∩ F (T ) = {v}.
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Consequently, we deduce that {xn} converges weakly to some point of F (T ) =
⋂∞

n=1 F (Tn).

In Lemma 3.2, we assume that for any nonempty bounded closed convex subset B and
any increasing sequence {ni}, there exist a nonexpansive mapping T of B into itself and
a subsequence {Tnij

} of {Tni} such that limj→∞ supy∈B

∥∥∥Ty − Tnij
y
∥∥∥ = 0 and F (T ) =⋂∞

n=1 F (Tn). For an arbitrary countable family {Sn} of nonexpansive mappings with a
common fixed point, we can generate a sequence {Tn} which satisfies this assumption.

Let C be a nonempty closed convex subset of a Banach space E. Let {Sn} be a sequence
of nonexpansive mappings of C into itself with a common fixed point and {βn} a sequence
of (0, 1) with

∑∞
n=1 βn < ∞. In this case note that 0 <

∏∞
n=1(1 − βn) < 1. We define a

sequence {Tn} of mappings of C into itself as follows:

T1 = β1S1 + (1 − β1)I,

T2 = β2S2 + (1 − β2)T1,

...

Tn = βnSn + (1 − βn)Tn−1,

that is,

Tn =
n∑

k=0

βk

n∏
i=k+1

(1 − βi)Sk

for every n ∈ N, where β0 = 1, I is the identity mapping, S0 = I, and
∏l

i=m(1 − βi) = 1 if
m > l. Put

γk
n = βk

n∏
i=k+1

(1 − βi) and pk =
k∏

i=1

(1 − βi)

for n ∈ N and k = 0, 1, . . . , n. Note that γk
n = βkpn/pk. It is easy to verify that

n∑
k=0

γk
n = 1

for every n ∈ N and

lim
n→∞ γk

n =
ββk

pk

for every k ∈ N, where β =
∏∞

n=1(1 − βn). Put γk = limn→∞ γk
n for k ∈ N. Since

n∑
k=0

γk =
n∑

k=0

ββk

pk
= β

(
β0

1
+

β1

1 − β1
+

β2

(1 − β1)(1 − β2)
+ · · · + βn

pn

)

= β

∑n
k=0 βk

∏n
i=k+1(1 − βi)
pn

= β

∑n
k=0 γk

n

pn
=

β

pn
,

we have
∞∑

k=0

γk = 1.

Further we obtain that
n∑

k=0

∣∣γk
n − γk

∣∣ =
n∑

k=0

(γk
n − γk)
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= (pn − β)
n∑

k=0

βk

pk

= (pn − β)
1
pn

n∑
k=0

βk

n∏
i=k+1

(1 − βi)

≤ (pn − β)
1
pn

n∑
k=0

βk

for every n ∈ N. Thus we have

lim
n→∞

n∑
k=0

∣∣γk
n − γk

∣∣ = 0.

By virtue of Theorem 2.3, we define a nonexpansive mapping T of C into itself by

T =
∞∑

k=0

γkSk,

where S0 = I. Since Sk is nonexpansive, we know that

‖Sky‖ ≤ ‖Sky − Sku‖ + ‖Sku‖ ≤ ‖y − u‖ + ‖u‖
for all y ∈ C, u ∈ ⋂∞

n=1 F (Sn), and k ∈ N. Let B be a nonempty bounded closed convex
subset of C. From all observations above, we obtain

‖Ty − Tny‖ ≤
n∑

k=0

∣∣γk
n − γk

∣∣ ‖Sky‖ +
∞∑

k=n+1

γk ‖Sky‖

≤ (‖y − u‖ + ‖u‖)
(

n∑
k=0

∣∣γk
n − γk

∣∣+ ∞∑
k=n+1

γk

)

for all y ∈ B. Therefore

lim
n→∞ sup

y∈B
‖Ty − Tny‖ ≤ sup

y∈B
(‖y − u‖ + ‖u‖) lim

n→∞

(
n∑

k=0

∣∣γk
n − γk

∣∣+ ∞∑
k=n+1

γk

)
= 0.

Theorem 2.3 also implies that F (Tn) =
⋂n

k=1 F (Sk) and F (T ) =
⋂∞

n=1 F (Sn). From these
facts it is verified that F (T ) =

⋂∞
n=1 F (Tn). Now we obtain the following result:

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let {Sn}
be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=1 F (Sn) is nonempty

and {αn} a sequence of (0, 1) such that 0 < a ≤ αn ≤ b < 1 for some a, b ∈ R. Let {βn} be
a sequence of (0, 1) with

∑∞
n=1 βn < ∞. Let {xn} be a sequence of C defined by x1 = x ∈ C

and

xn+1 = αnxn + (1 − αn)
n∑

k=0

βk

n∏
i=k+1

(1 − βi)Skxn

for every n ∈ N, where β0 = 1, I is the identity mapping, S0 = I, and
∏l

i=m(1− βi) = 1 if
m > l. Then {xn} converges weakly to some point of

⋂∞
n=1 F (Sn).

Remark 3.4. For strong convergence to a common fixed point of a countable family of
nonexpansive mappings, see [1].
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4. Common fixed points of a pair of nonexpansive mappings

In this section, we discuss the problem of finding a common fixed point of a pair of
nonexpansive mappings. This problem was considered in [4, 13].

Lemma 4.1. Let E be a strictly convex Banach space, C a nonempty closed convex subset
of E, S and T two nonexpansive mappings of C into itself, and λ ∈ (0, 1). Let U be a
nonexpansive mapping of C into itself defined by

U = (λI + (1 − λ)S)T,

where I is the identity mapping on E. If F (S) ∩ F (T ) �= ∅, then F (U) = F (S) ∩ F (T ).

Proof. By the definition of U , it is clear that F (U) ⊃ F (S) ∩ F (T ). Therefore we have
F (U) �= ∅. So we have to show that F (U) ⊂ F (S) ∩ F (T ). Let z ∈ F (U) and w ∈
F (S) ∩ F (T ). Then we have

‖z − w‖ = ‖Uz − w‖ = ‖(λI + (1 − λ)S)Tz − w‖
= ‖λ(Tz − w) + (1 − λ)(STz − w)‖
≤ λ ‖Tz − w‖ + (1 − λ) ‖STz − w‖
≤ λ ‖z − w‖ + (1 − λ) ‖Tz − w‖ ≤ ‖z − w‖ .

Taking into account 1 − λ > 0, we obtain

‖z − w‖ = ‖Tz − w‖ = ‖λ(Tz − w) + (1 − λ)(STz − w)‖ = ‖STz − w‖ .

Therefore, it follows that Tz − w = STz − w by (2.2) and hence Tz ∈ F (S). This yields

z = Uz = λTz + (1 − λ)STz = λTz + (1 − λ)Tz = Tz.

Thus we have that z ∈ F (T ) and hence z = Tz ∈ F (S). Then we conclude that z ∈
F (S) ∩ F (T ).

By using Lemma 3.2, we obtain the following:

Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let S and
T be two nonexpansive mappings of C into itself such that F (S) ∩ F (T ) is nonempty. Let
{αn} and {βn} be two sequences of (0, 1) such that 0 < a ≤ αn ≤ b < 1 and 0 < c ≤ βn ≤
d < 1 for some a, b, c, d ∈ R. Let {xn} be a sequence of C defined as follows: x1 = x ∈ C
and

xn+1 = αnxn + (1 − αn)(βnTxn + (1 − βn)STxn)

for every n ∈ N. Then {xn} converges weakly to some point of F (S) ∩ F (T ).

Proof. Put Un = (βnI +(1−βn)S)T for each n ∈ N, where I is the identity mapping. Then
clearly, Un is nonexpansive of C into itself and it follows from Lemma 4.1 that F (Un) =
F (S) ∩ F (T ) for every n ∈ N. Thus we know that

⋂∞
n=1 F (Un) = F (S) ∩ F (T ) �= ∅.

Let {ni}∞i=1 be an increasing sequence of N. Since {βni} is a sequence of [c, d], there
exists a subsequence {βnij

} of {βni} such that limj→∞ βnij
= β ∈ [c, d]. Put U = (βI +

(1 − β)S)T . Then it also follows from Lemma 4.1 that F (U) = F (S) ∩ F (T ) and hence
F (U) =

⋂∞
n=1 F (Un). Further we have∥∥∥Uy − Unij

y
∥∥∥ =

∥∥∥(βI + (1 − β)S)Ty − (βnij
I + (1 − βnij

)S)Ty
∥∥∥

=
∣∣∣β − βnij

∣∣∣ ‖Ty − STy‖

≤
∣∣∣β − βnij

∣∣∣ (‖Ty − u‖ + ‖u − STy‖)
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≤
∣∣∣β − βnij

∣∣∣ 2 ‖y − u‖
for all y ∈ C and i ∈ N, where u ∈ F (S) ∩ F (T ). Let B be a nonempty bounded closed
convex subset of C. Then we have

lim
j→∞

sup
y∈B

∥∥∥Uy − Unij
y
∥∥∥ = 0.

According to Lemma 3.2, we conclude that {xn} converges weakly to some point of F (U) =
F (S) ∩ F (T ).

The following result was obtained in [13].

Lemma 4.3 (Takahashi-Tamura [13]). Let E be a strictly convex Banach space, C a nonempty
closed convex subset of E, S and T two nonexpansive mappings of C into itself, and
λ ∈ (0, 1). Let U be a nonexpansive mapping of C into itself defined by

U = S(λI + (1 − λ)T ),

where I is the identity mapping on E. If F (S) ∩ F (T ) �= ∅, then F (U) = F (S) ∩ F (T ).

By using Lemma 3.2 combined with Lemma 4.3, we also obtain the following result.

Theorem 4.4 (Takahashi-Tamura [13]). Let C be a nonempty closed convex subset of a
uniformly convex Banach space E which satisfies Opial’s condition or whose norm is Fréchet
differentiable. Let S and T be two nonexpansive mappings of C into itself such that F (S)∩
F (T ) is nonempty. Let {αn} and {βn} be two sequences of (0, 1) such that 0 < a ≤ αn ≤
b < 1 and 0 < c ≤ βn ≤ d < 1 for some a, b, c, d ∈ R. Let {xn} be a sequence of C defined
as follows: x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)S(βnxn + (1 − βn)Txn)

for every n ∈ N. Then {xn} converges weakly to some point of F (S) ∩ F (T ).

5. Common solutions of a fixed point problem and a variational inequality

problem

Finally, we apply Lemma 3.2 to the problem of finding a common solution of the fixed
point problem for a nonexpansive mapping and the variational inequality problem for an
inverse-strongly-monotone mapping. This problem was discussed in [8, 14].

Let C be a nonempty closed convex subset of a real Hilbert space H and A a mapping
of C into H . The variational inequality problem is formulated as follows: Find x ∈ C such
that 〈y − x,Ax〉 ≥ 0 for all y ∈ C. In this case, such x ∈ C is a solution of this problem
and the solution set is denoted by VI(C,A), that is, VI(C,A) = {x ∈ C : 〈y − x,Ax〉 ≥
0 for all y ∈ C}. For every x ∈ H , there exists a unique nearest point in C, denoted by
Px, such that ‖x − Px‖ ≤ ‖x − y‖ for all y ∈ C. The mapping P is called the metric
projection of H onto C. We know that the metric projection P is nonexpansive and firmly
nonexpansive, that is,

‖Px − Py‖2 ≤ 〈x − y, Px − Py〉(5.1)

holds for all x, y ∈ C; see [6] for more details. We also know that

VI(C,A) = F (P (I − λA))(5.2)

for all λ > 0; see [14] for more details. Let α > 0. A mapping A of C into H is said to
be α-inverse-strongly-monotone if 〈x − y, Ax− Ay〉 ≥ α ‖Ax − Ay‖2 for all x, y ∈ C. It is
known that

‖Ax − Ay‖ ≤ 1
α
‖x − y‖(5.3)
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for all x, y ∈ C and

‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 − λ(2α − λ) ‖Ax − Ay‖2(5.4)

holds for all x, y ∈ C and λ > 0, where A is an α-inverse-strongly-monotone mapping and
I is the identity mapping. From this fact, a mapping I −λA is nonexpansive if 0 < λ ≤ 2α;
see [14] for more details. To apply Lemma 3.2 to our problem, we need the following:

Lemma 5.1. Let H be a real Hilbert space and C a nonempty closed convex subset of C.
Let α > 0 and 0 < λ < 2α. Let A be an α-inverse-strongly-monotone mapping of C into H
and S a nonexpansive mapping of C into itself. If F (S)∩F (P (I − λA)) is nonempty, then
F (SP (I − λA)) = F (S) ∩ F (P (I − λA)), where P is the metric projection of H onto C.

Proof. It is easy to show that F (SP (I − λA)) ⊃ F (S) ∩ F (P (I − λA)). Thus F (SP (I −
λA)) �= ∅. Let us prove that F (SP (I−λA)) ⊂ F (S)∩F (P (I−λA)). Let z ∈ F (SP (I−λA))
and w ∈ F (S)∩F (P (I − λA)) be given. From the nonexpansiveness of S and P and (5.4),
we obtain the following:

‖z − w‖2 = ‖SP (I − λA)z − SP (I − λA)w‖2

≤ ‖P (I − λA)z − P (I − λA)w‖2

≤ ‖(I − λA)z − (I − λA)w‖2

≤ ‖z − w‖2 − λ(2α − λ) ‖Az − Aw‖2

≤ ‖z − w‖2
.

Thus we have λ(2α − λ) ‖Az − Aw‖2 = 0, that is, it follows that Az = Aw. From this
fact combined with (5.1) and the nonexpansiveness of P and I − λA, we also obtain the
following:

‖z − w‖2 = ‖SP (I − λA)z − SP (I − λA)w‖2

≤ ‖P (I − λA)z − P (I − λA)w‖2

≤ 〈P (I − λA)z − P (I − λA)w, (I − λA)z − (I − λA)w〉
=

1
2
(‖P (I − λA)z − P (I − λA)w‖2 + ‖(I − λA)z − (I − λA)w‖2

− ‖P (I − λA)z − P (I − λA)w − (I − λA)z + (I − λA)w‖2)

≤ 1
2
(2 ‖z − w‖2 − ‖P (I − λA)z − z‖2).

Therefore ‖P (I − λA)z − z‖2 ≤ 0, that is, z ∈ F (P (I − λA)). This implies that z =
SP (I − λA)z = Sz and hence z ∈ F (S). Consequently we conclude that z ∈ F (S) ∩
F (P (I − λA)).

By Lemma 3.2, we obtain the following:

Theorem 5.2 (Takahashi-Toyoda [14]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let α > 0 and let A be an α-inverse-strongly-monotone mapping of C into
H and S a nonexpansive mapping of C into itself such that VI(C,A) ∩ F (S) is nonempty.
Let {xn} be a sequence generated by x1 ∈ C and

xn+1 = αnxn + (1 − αn)SP (xn − λnAxn),

for every n ∈ N, where {λn} is a sequence of [a, b] for some a, b ∈ (0, 2α), {αn} is a
sequence of [c, d] for some c, d ∈ (0, 1), and P is the metric projection of H onto C. Then
{xn} converges weakly to some point of VI(C,A) ∩ F (S).
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Proof. Put Un = SP (I − λnA) for each n ∈ N. It follows from Lemma 5.1 and (5.2) that
F (Un) = VI(C,A)∩F (S) and hence

⋂∞
n=1 F (Un) = VI(C,A)∩F (S) �= ∅. Let {ni}∞i=1 be an

increasing sequence of N. Since {λni} is a sequence of [a, b], there exists a subsequence {λnij
}

of {λni} such that limj→∞ λnij
= λ ∈ [a, b]. Put U = SP (I − λA). Then it also follows

from Lemma 5.1 and (5.2) that F (U) = VI(C,A) ∩ F (S) and hence F (U) =
⋂∞

n=1 F (Un).
Since both S and P are nonexpansive, we have∥∥∥Uy − Unij

y
∥∥∥ =

∥∥∥SP (I − λA)y − SP (I − λnij
A)y

∥∥∥
≤
∥∥∥P (I − λA)y − P (I − λnij

A)y
∥∥∥

≤
∥∥∥(I − λA)y − (I − λnij

A)y
∥∥∥

=
∣∣∣λ − λnij

∣∣∣ ‖Ay‖

(5.5)

for all y ∈ C and j ∈ N. Let B be a nonempty bounded closed convex subset of C. From
(5.3) and (5.5) it follows that

lim
j→∞

sup
y∈B

∥∥∥Uy − Unij
y
∥∥∥ = 0.

Consequently, Lemma 3.2 implies that {xn} converges weakly to some point of F (U) =
VI(C,A) ∩ F (S).

As in the proof of Lemma 5.1, we also obtain the following:

Lemma 5.3. Let H be a real Hilbert space and C a nonempty closed convex subset of
H. Let α > 0 and 0 < λ < 2α. Let A be an α-inverse-strongly-monotone mapping and
S a nonexpansive mapping of C onto itself. If F (P (I − λA)) ∩ F (S) is nonempty, then
F (P (I − λA)S) = F (P (I − λA)) ∩ F (S), where P is the metric projection of H onto C.

Similarly, by using Lemma 3.2 combined with Lemma 5.3, we also obtain the following:

Theorem 5.4 (Iiduka-Takahashi [7]). Let C be a closed convex subset of a real Hilbert
space H. Let A be an α-inverse-strongly-monotone mapping of C into H with α > 0 and
S a nonexpansive mapping of C into itself such that VI(C,A) ∩ F (S) �= ∅. Let {xn} be a
sequence generated by x1 ∈ C and

xn+1 = αnxn + (1 − αn)P (Sxn − λnASxn),

for every n ∈ N, where {λn} is a sequence of [a, b] for some a, b ∈ (0, 2α), {αn} is a
sequence of [c, d] for some c, d ∈ (0, 1), and P is the metric projection of H onto C. Then
{xn} converges weakly to some point of VI(C,A) ∩ F (S).
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