
Scientiae Mathematicae Japonicae Online, e-2007, 315–324 315

SEMISIMPLE, ARCHIMEDEAN, AND SEMILOCAL PSEUDO
MV -ALGEBRAS

GRZEGORZ DYMEK AND ANDRZEJ WALENDZIAK

Received July 27, 2006; revised February 13, 2007

Abstract. The concepts of semisimple, Archimedean, and semilocal pseudo MV -algebras
are investigated and many interesting facts concerning them are given.

1. Introduction

Pseudo MV -algebras were introduced by G. Georgescu and A. Iorgulescu in [6] and in-
dependently by J. Rach̊unek in [8] (there they are called generalized MV -algebras or, for
short, GMV -algebras) as a non-commutative generalization of MV -algebras. This work
was intended as an attempt to order some notions appearing in the theory of these al-
gebras. Semisimple pseudo MV -algebras and Archimedean pseudo MV -algebras are ex-
amples of such notions. In Section 3 we give some characterizations of semisimple pseudo
MV -algebras. Archimedean pseudo MV -algebras are investigated and characterized in Sec-
tion 4. It is shown that in the case of pseudo MV -algebras the notion of Archimedean is
equivalent with the notion of Archimedean in the Belluce sense, that occurs in the theory of
MV -algebras, and both are equivalent with the notion of semisimple. Section 5 is devoted to
introduce and characterize semilocal pseudo MV -algebras, the concept generalizing a simi-
lar one from the theory of MV -algebras. For the convenience of the reader, in Section 2 we
give the relevant material needed in the sequel, thus making our exposition self-contained.

2. Preliminaries

Let A = (A,⊕,− ,∼ , 0, 1) be an algebra of type (2, 1, 1, 0, 0). Set x · y = (y− ⊕ x−)∼ for
any x, y ∈ A. We assume that the operation · has priority to the operation ⊕, i.e., we will
write x⊕ y · z instead of x⊕ (y · z). The algebra A is called a pseudo MV-algebra if for any
x, y, z ∈ A the following conditions are satisfied:

(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,
(A2) x ⊕ 0 = 0 ⊕ x = x,
(A3) x ⊕ 1 = 1 ⊕ x = 1,
(A4) 1∼ = 0; 1− = 0,

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)− ,
(A6) x ⊕ x∼ · y = y ⊕ y∼ · x = x · y− ⊕ y = y · x− ⊕ x,
(A7) x · (x− ⊕ y) = (x ⊕ y∼) · y,
(A8) (x−)∼ = x.
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If the addition ⊕ is commutative, then both unary operations − and ∼ coincide and A
can be considered as an MV -algebra.

Throughout this paper A will denote a pseudo MV -algebra. For any x ∈ A and n =
0, 1, 2, . . . we put

0x = 0 and (n + 1)x = nx ⊕ x;
x0 = 1 and xn+1 = xn · x.

Proposition 2.1 (Georgescu and Iorgulescu [6]). The following properties hold for any x, y ∈
A:
(a) x · 1 = 1 · x = x,
(b) x− ⊕ x = 1, x ⊕ x∼ = 1,
(c) x · x− = 0, x∼ · x = 0.

Proposition 2.2 (Georgescu and Iorgulescu [6]). The following properties are equivalent
for any x, y ∈ A:
(a) x− ⊕ y = 1,
(b) y ⊕ x∼ = 1.

We define

x � y ⇐⇒ x− ⊕ y = 1.

As it is shown in [6], (A,�) is a lattice in which the join x∨ y and the meet x∧ y of any
two elements x and y are given by:

x ∨ y = x ⊕ x∼ · y = x · y− ⊕ y,

x ∧ y = x · (x− ⊕ y
)

= (x ⊕ y∼) · y.

For every pseudo MV -algebra A we set L (A) = (A,∨,∧, 0, 1) .

Proposition 2.3 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra. The fol-
lowing properties hold for any x, y, z ∈ A:
(a) x � y ⇐⇒ y− � x− ⇐⇒ y∼ � x∼,
(b) x � y =⇒ z ⊕ x � z ⊕ y, x ⊕ z � y ⊕ z,
(c) (x ⊕ z) · y � x ⊕ z · y, y · (x ⊕ z) � y · x ⊕ z.

Definition 2.4. An ideal of A is a subset J of A satisfying the following conditions:
(I1) 0 ∈ J,
(I2) if x, y ∈ J , then x ⊕ y ∈ J,
(I3) if x ∈ J, y ∈ A and y � x, then y ∈ J.

Under this definition, {0} and A are the simplest examples of ideals.
Denote by Id(A) the set of all ideals of A and note that Id(A) ordered by set inclusion

is a complete lattice.

Remark 2.5. Let J ∈ Id(A).
(a) If x, y ∈ J , then x · y, x ∧ y, x ∨ y ∈ J,
(b) J is an ideal of the lattice L (A).

For every subset W ⊆ A, the smallest ideal of A which contains W , i.e., the intersection
of all ideals J ⊇ W , is said to be the ideal generated by W , and will be denoted (W ].

Proposition 2.6 (Georgescu and Iorgulescu [6]). Let W be a subset of A. If W = ∅, then
(W ] = {0}. If W 	= ∅, then

(W ] = {x ∈ A : x � w1 ⊕ · · · ⊕ wn for some w1, . . . , wn ∈ W}.
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In particular, for every z ∈ A, the ideal (z] = ({z}] is called the principal ideal generated
by z (see [6]), and we have

(z] = {x ∈ A : x � nz for some n ∈ N} .

Definition 2.7. Let J be a proper ideal of A (i.e., J 	= A).
(a) J is called prime if, for all J1, J2 ∈ Id(A), J = J1 ∩ J2 implies J = J1 or J = J2.
(b) J is called regular iff J =

⋂
X implies that J ∈ X for every subset X of Id(A).

(c) J is called maximal iff whenever M is an ideal such that J ⊆ M ⊆ A, then either M = J
or M = A.

By definition, each maximal ideal is regular and each regular ideal is prime.

Definition 2.8. An ideal H of A is called normal if it satisfies the condition:
(N) for all x, y ∈ A, x · y− ∈ H ⇐⇒ y∼ · x ∈ H.

Denote by Idn (A) the set of normal ideals of A.

Proposition 2.9 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra and let H
be an ideal of A. Then the following are equivalent:
(a) H is normal,
(b) for each x ∈ A, x ⊕ H = H ⊕ x (i.e., for each h ∈ H there exists h′ ∈ H such that
x ⊕ h = h′ ⊕ x; and for each h ∈ H there exists h′′ ∈ H such that h ⊕ x = x ⊕ h′′).

From Propositions 2.6 and 2.9 we obtain the following lemma.

Lemma 2.10. Let H1, H2 be normal ideals of A. Then

(H1 ∪ H2] = {x ∈ A : x � h1 ⊕ h2 for some h1 ∈ H1, h2 ∈ H2}.
Lemma 2.11. Let A be a pseudo MV-algebra and let H be an ideal of A. Then the following
are equivalent:
(a) H is normal,
(b) (x ⊕ h) · x− ∈ H and x∼ · (h ⊕ x) ∈ H for all x ∈ A and h ∈ H.

Proof. (a) ⇒ (b): Let x ∈ A. By Proposition 2.9, for each h ∈ H there exists h′ ∈ H such
that x ⊕ h = h′ ⊕ x. From Propositions 2.3(c) and 2.1(c) we obtain

(x ⊕ h) · x− = (h′ ⊕ x) · x− � h′ ⊕ x · x− = h′ ⊕ 0 = h′ ∈ H.

Hence (x ⊕ h) · x− ∈ H . Similarly, x∼ · (h ⊕ x) ∈ H .
(b) ⇒ (a): Let x ∈ A and h ∈ H . Let us set h′ = (x ⊕ h) · x− and h′′ = x∼ · (h ⊕ x). By

assumption, h′, h′′ ∈ H . Applying (A6) and Propositions 2.3(b,c) and 2.1(c) we have

h′ ⊕ x = (x ⊕ h) · x− ⊕ x = x ⊕ x∼ · (x ⊕ h) � x ⊕ x∼ · x ⊕ h = x ⊕ h.

On the other hand, by Propositions 2.3(c) and 2.1, we get

h′ ⊕ x = x ⊕ x∼ · (x ⊕ h) � (x ⊕ x∼) · (x ⊕ h) = x ⊕ h.

Thus x⊕h = h′⊕x. Similarly, h⊕x = x⊕h′′. Therefore, from Proposition 2.9 we conclude
that (a) is true.

Proposition 2.12 (Dvurečenskij and Pulmannova [4]). For any proper normal ideal H of
a pseudo MV-algebra A, the following conditions are equivalent:
(a) H is maximal,
(b) for each z ∈ A, z /∈ H iff (nz)− ∈ H for some n ∈ N,
(c) for each z ∈ A, z /∈ H iff (nz)∼ ∈ H for some n ∈ N.
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Following [6], for any normal ideal H of A, we define a congruence on A by:

x ∼H y ⇐⇒ x · y− ∨ y · x− ∈ H.

We also have

x ∼H y ⇐⇒ x∼ · y ∨ y∼ · x ∈ H.

We denote by x/H the congruence class of an element x ∈ A and on the set A/H =
{x/H : x ∈ A} we define the operations:

x/H ⊕ y/H = (x ⊕ y) /H, (x/H)− =
(
x−)

/H, (x/H)∼ = (x∼) /H.

The resulting quotient algebra A/H = (A/H,⊕,− ,∼ , 0/H, 1/H) becomes a pseudo MV -
algebra, called the quotient algebra of A by the normal ideal H .

Lemma 2.13. Let H1, . . . , Hm be normal ideals of A such that (Hi ∪ Hj ] = A for i, j =
1, . . . , m and i 	= j. Let x1, . . . , xm ∈ A. Then there is x ∈ A such that x ∼Hi xi for
i = 1, . . . , m.

Proof. First, let m = 2. Since (H1 ∪ H2] = A, by Lemma 2.10 there exist h12 ∈ H1 and
h21 ∈ H2 such that h12⊕h21 = 1. Applying (A8) we get h12⊕(h−

21)
∼ = 1. From Proposition

2.2 we deduce that h−
21 � h12. Since h12 ∈ H1, we see that h−

21 ∈ H1. Hence h21 ∼H1 1.
Take x = x1 · h21 ⊕ x2 · h12, where x1, x2 ∈ A. We obtain

x/H1 = x1/H1 · h21/H1 ⊕ x2/H1 · h12/H1

= x1/H1 · 1/H1 ⊕ x2/H1 · 0/H1 = x1/H1.

Thus x ∼H1 x1. Similarly, x ∼H2 x2.
Now let m be arbitrary. For i, j = 1, . . . , m and i 	= j, there exist hij ∈ Hi and hji ∈ Hj

such that hij ⊕hji = 1. Considering x =
∑m

i=1 xi ·h1i · · ·hi−1,i ·hi+1,i · · ·hmi and reasoning
as above we see that x ∼Hi xi for i = 1, . . . , m.

A pseudo MV -algebra is simple iff there is no non-trivial proper ideal of A (i.e., Id(A)
= {{0}, A}).
Proposition 2.14 (Dvurečenskij [3]). A normal ideal H of a pseudo MV-algebra A is max-
imal if and only if A/H is a simple pseudo MV-algebra.

Proposition 2.15 (Georgescu and Iorgulescu [6]). Let H be a normal ideal of a pseudo
MV-algebra A. Then the quotient algebra A/H is a pseudo MV-chain if and only if H is
prime.

The radical of a pseudo MV -algebra A is the set

Rad (A) =
⋂

{M : M is a maximal ideal of A}
and the normal radical of A is the set

Radn (A) =
⋂

{M : M is a maximal and normal ideal of A} .

If there are no maximal and normal ideals of A, then we set Radn (A) = A.

Remark 2.16. If A is an MV -algebra, then Radn (A) = Rad(A).

Let I be a nonempty set. The direct product of the pseudo MV -algebras Ai, i ∈ I,
denoted by

∏
i∈I Ai, is the pseudo MV -algebra obtained by endowing the set-theoretical

cartesian product of Ai (i ∈ I) with the pseudo MV -operations defined pointwise. For each
i ∈ I, the map πi :

∏
i∈I Ai → Ai, defined by

πi(x) = x(i) for all x ∈
∏
i∈I

Ai,
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is a homomorphism onto Ai, called the i-th projection function.

Proposition 2.17. Let A1, . . . , Ak be pseudo MV-algebras and let A = A1 × · · · × Ak. If
Ji ∈ Id(Ai) for i = 1, . . . , k, then J1 × · · · × Jk is an ideal of A.
Conversely, if J is an ideal of A, then for i = 1, . . . , k, Ji = πi (J) is an ideal of Ai, and
J = J1 × · · · × Jk.

Proof. It is straightforward.

Proposition 2.18. Let A = A1 × · · · × Ak, where A1, . . . , Ak are pseudo MV-algebras.
Then:
(a) Id(A) = Id(A1) × · · · × Id(Ak) ,
(b) Idn (A) = Idn (A1) × · · · × Idn (Ak) ,
(c) Rad(A) = Rad(A1) × · · · × Rad(Ak) ,
(d) Radn (A) = Radn (A1) × · · · × Radn (Ak).

Proof. (a) Follows from Proposition 2.17.
(b) It is sufficient to prove that J1 × · · · × Jk is a normal ideal of A if and only if Ji is

a normal ideal of Ai for i = 1, . . . , k. It is easy to see that if Ji is a normal ideal of Ai for
i = 1, . . . , k, then J1 × · · · × Jk is a normal ideal of A. Now, assume that J = J1 × · · · × Jk

is normal. Let a ∈ Ai and b ∈ Ji. Take x ∈ A with x(i) = a. Define y ∈ A by y(i) = b and
y(j) = 0 for j 	= i. Then y ∈ J , and we conclude from Lemma 2.11 that (x ⊕ y) · x− ∈ J .
We have

(a ⊕ b) · a− = [πi (x) ⊕ πi (y)] · [πi (x)]− = πi

(
(x ⊕ y) · x−) ∈ πi (J) = Ji.

Similarly, a∼ · (b ⊕ a) ∈ Ji. Therefore, by Lemma 2.11, Ji is a normal ideal of Ai for
i = 1, . . . , k.

(c) It is easy to see that J is a maximal ideal of A if and only if J = A1 × · · · × Ai−1 ×
Ji × Ai+1 × · · · × Ak, where Ji is a maximal ideal of Ai for i = 1, . . . , k. Hence (c) is true.

(d) Follows from (b) and (c).

Definition 2.19. A pseudo MV -algebra A is called normal-valued if for any regular ideal
J of A and any x ∈ J∗, x ⊕ J = J ⊕ x, where J∗ is the unique least ideal which properly
contains J .

Proposition 2.20. Let A be a normal-valued pseudo MV-algebra and let M be a maximal
ideal of A. Then M is normal.

Proof. Since A is normal-valued and M is a maximal ideal of A, M is regular and x⊕M =
M ⊕ x for every x ∈ M∗ = A. Hence, by Proposition 2.9, M is normal.

An element x of a pseudo MV -algebra A is called infinitesimal (see [9]) if x satisfies
condition

nx � x− for each n ∈ N.

Let us denote by Infinit(A) the set of all infinitesimal elements in A.

Proposition 2.21 (Rach̊unek [9]). Let A be a pseudo MV-algebra. Then:
(a) Rad(A) ⊆ Infinit(A),
(b) if A is normal-valued, then Rad(A) = Infinit(A).

Proposition 2.22 (Di Nola, Dvurečenskij and Jakub́ık [1]). Let A be a pseudo MV-algebra.
Then Infinit(A) ⊆ Radn (A).

By Propositions 2.21 and 2.22 we have a ladder of inclusions:

Rad (A) ⊆ Infinit (A) ⊆ Radn (A) .
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Proposition 2.23. Let A be a normal-valued pseudo MV-algebra. Then

Rad (A) = Infinit (A) = Radn (A) .

Proof. Since A is normal-valued, from Proposition 2.20 we have that every maximal ideal
of A is normal. Thus Rad(A) = Radn (A).

Now we give the definition of an Artinian pseudo MV -algebra.

Definition 2.24. A pseudo MV -algebra A is called Artinian if for every descending se-
quence J1 ⊇ J2 ⊇ · · · of ideals of A there exists k ∈ N such that Jm = Jk for all m � k.

Proposition 2.25 (Dymek [5]). If A is Artinian, then A/H is Artinian for every normal
ideal H of A.

At the end of this section we recall some definitions and facts from [7].

Definition 2.26. The order of an element x ∈ A is the least n such that nx = 1 if such n
exists, and ord(x) = ∞ otherwise.

Remark 2.27. It is easy to see that for any x ∈ A, ord(x−) = ord(x∼).

Definition 2.28. A pseudo MV -algebra A is called local if

ord (x ⊕ y) < ∞ implies that ord (x) < ∞ or ord (y) < ∞
for all x, y ∈ A.

Remark 2.29. If A is local, then ord(x) < ∞ or ord(x−) < ∞ for every x ∈ A.

Let A be a pseudo MV -algebra. We denote by D(A) = {x ∈ A : ord(x) = ∞} the set of
all elements of infinite order.

Proposition 2.30 (Leuştean [7]). Let A be a pseudo MV-algebra. The following are equiv-
alent:
(a) A is local,
(b) D(A) is an ideal of A,
(c) D(A) is the only maximal ideal of A.

3. Semisimple pseudo MV -algebras

Definition 3.1. A pseudo MV -algebra A is semisimple iff Radn (A) = {0}.
Remark 3.2. Every simple pseudo MV -algebra is semisimple.

Example 3.3. Let A = {(1, y) ∈ R
2 : y � 0} ∪ {(2, y) ∈ R

2 : y � 0}, 0 = (1, 0), 1 = (2, 0).
For any (a, b), (c, d) ∈ A, we define operations ⊕,− ,∼ as follows:

(a, b) ⊕ (c, d) =

⎧⎨
⎩

(1, b + d) if a = c = 1,
(2, ad + b) if ac = 2 and ad + b � 0,
(2, 0) in other cases.

(a, b)− =
(

2
a
,−2b

a

)
,

(a, b)∼ =
(

2
a
,− b

a

)
.

Then A = (A,⊕,− ,∼ ,0,1) is a pseudo MV -algebra. Let H = {(1, y) : y � 0}. Then H
is the unique normal maximal ideal of A and hence Radn (A) = H 	= {0}. Thus A is not
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semisimple. Moreover, note that by Proposition 2.14, A/H is a simple pseudo MV -algebra.
Therefore A/H is semisimple.

Recall that a pseudo MV -algebra A is a subdirect product of pseudo MV-algebras Ai,
i ∈ I, if there exists an injective homomorphism h : A → ∏

i∈I Ai such that πi ◦ h maps A
onto Ai for all i ∈ I.

Proposition 3.4. Let A be a pseudo MV-algebra. The following are equivalent:
(a) A is semisimple,
(b) there is a family {Hi : i ∈ I} of normal maximal ideals of A with

⋂
i∈I Hi = {0},

(c) A is a subdirect product of simple pseudo MV-chains.

Proof. (a) ⇒ (b): Follows from definition.
(b) ⇒ (c): Suppose that {Hi : i ∈ I} is a family of maximal and normal ideals of A such

that
⋂

i∈I Hi = {0}. Write Ai := A/Hi for i ∈ I. First note that, by Propositons 2.14 and
2.15, Ai are simple pseudo MV -chains. Define h : A → ∏

i∈I Ai by

h (x) = (x/Hi : i ∈ I) for all x ∈ A.

Since
⋂

i∈I Hi = {0}, we have that Ker(h) = {0}. Thus h is injective. It is easy to see that
πi ◦ h maps A onto Ai, where πi is the i-th projection function. Therefore, A is a subdirect
product of the (simple) pseudo MV -chains Ai, i ∈ I.

(c) ⇒ (a): Let h : A → ∏
i∈I Ai be an injective homomorphism, where Ai are simple

pseudo MV -chains, and let πi ◦ h : A → Ai be surjective. Write Ker(πi ◦ h) = Hi for
i ∈ I. Then Hi is a normal ideal of A and A/Hi

∼= Ai. Consequently, A/Hi is simple. By
Proposition 2.14, Hi is maximal. If x ∈ ⋂

i∈Γ Hi, then πi (h (x)) = 0 for all i ∈ I. This
implies that h (x) = 0, and since h is injective, we obtain x = 0. Therefore Radn (A) ⊆⋂

i∈I Hi = {0}. Hence Radn (A) = {0}. Thus A is semisimple.

Now recall that a pseudo MV -algebra A is representable (see [6]) if it is a subdirect
product of pseudo MV -chains. Thus, by Proposition 3.4, we have the following proposition.

Proposition 3.5. If a pseudo MV-algebra A is semisimple, then it is representable.

Proposition 2.19(d) yields

Proposition 3.6. Let A = A1×· · ·×Ak, where A1, . . . , Ak are pseudo MV-algebras. Then
A is semisimple if and only if Ai is semisimple for i = 1, . . . , k.

4. Archimedean pseudo MV -algebras

Definition 4.1. Let A be a pseudo MV -algebra.
(a) A is Archimedean iff Infinit(A) = {0}.
(b) A is Archimedean in the Belluce sense iff for each x, y ∈ A, if nx � y for all n � 0, then
x · y = x.

Proposition 4.2 (Dvurečenskij [2]). Any Archimedean pseudo MV-algebra is an MV-algebra.

Proposition 4.3 (Dvurečenskij [2]). A pseudo MV-algebra A has the MacNeille comple-
tion as a pseudo MV-algebra if and only if A is Archimedean.

Recall that a pseudo MV -algebra is locally finite if ord(x) < ∞ for every x > 0.

Lemma 4.4. A pseudo MV-algebra A is locally finite if and only if Id(A) = {{0} , A} (i.e.,
A is simple).
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Proof. If A is trivial, then the lemma is obvious. Assume that A 	= {0}. Suppose that A is
locally finite. Let I 	= {0} be an ideal of A and let x ∈ I, x 	= 0. Then there is n ∈ N such
that nx = 1. Thus 1 ∈ I, i.e., I = A.

Now suppose that Id(A) = {{0} , A} and A is not locally finite. Then there exists x ∈ A
and x 	= 0 such that nx < 1 for all n ∈ N. Let us take an ideal

(x] = {y ∈ A : y � mx for some m ∈ N}
generated by x. Then (x] 	= {0}. Hence (x] = A, i.e., 1 ∈ (x]. Thus 1 � mx for some m ∈ N,
i.e., mx = 1 for some m ∈ N. This is a contradiction. Therefore A is locally finite.

Theorem 4.5. Let A be a pseudo MV-algebra. The following are equivalent:
(a) A is semisimple,
(b) A is a subdirect product of simple pseudo MV-chains,
(c) A is Archimedean in the Belluce sense,
(d) A is Archimedean,
(e) A has the MacNeille completion.

Proof. (a) ⇒ (b): Follows by Proposition 3.4.
(b) ⇒ (c): Let A ⊆ ∏

i∈I Ai be a subdirect product of simple pseudo MV -chains Ai,
i ∈ I. Let x, y ∈ A and suppose that nx � y for all n � 0. Then

nx(i) = (nx)(i) = πi(nx) ≤ πi(y) = y(i)

for all i ∈ I and n � 0. By Lemma 4.4, each Ai is locally finite. Therefore x(i) = 0 or
y(i) = 1 for all i ∈ I. Hence in each Ai we have

(x · y)(i) = x(i) · y(i) =
{

0 if x(i) = 0
x(i) if x(i) 	= 0 .

Thus (x · y)(i) = x(i) for i ∈ I. It follows that x · y = x.
(c) ⇒ (d): Let x ∈ Infinit(A). Then nx � x− for all n ∈ N. Since A is Archimedean

in the Belluce sense, we obtain x = x · x− = 0. Consequently, Infinit(A) = {0}, i.e., A is
Archimedean.

(d) ⇔ (e): Follows from Proposition 4.3.
(d) ⇒ (a): Let A be an Archimedean pseudo MV -algebra. By Proposition 4.2, A is an

MV -algebra. Hence Radn (A) = Rad(A) ⊆ Infinit(A) = {0}, i.e., Radn (A) = {0}. Thus A
is semisimple.

Proposition 4.6. Any subalgebra of a semisimple pseudo MV-algebra is semisimple.

Proof. Let A be a semisimple pseudo MV-algebra and let B be a subalgebra of A. We have
Infinit(A) = {0},because A is Archimedean by Theorem 4.5. Since Infinit(B) ⊆ Infinit(A),
we see that Infinit(B) = {0}. Theorem 4.5 now shows that B is semisimple.

5. Semilocal pseudo MV -algebras

Definition 5.1. A pseudo MV -algebra is called semilocal if it has only finitely many nor-
mal maximal ideals.

By Proposition 2.30, we have the following proposition.

Proposition 5.2. Any local pseudo MV-algebra is semilocal.
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Theorem 5.3. Let A be a pseudo MV-algebra. The following are equivalent:
(a) A is semilocal,
(b) A/Radn (A) is trivial or isomorphic to a direct product of finitely many simple pseudo
MV-chains,
(c) A/Radn (A) has finitely many ideals,
(d) A/Radn (A) is Artinian.

Proof. (a) ⇒ (b): Assume that A is semilocal. If A does not have any maximal and
normal ideals, then Radn (A) = A and hence A/Radn (A) is trivial. Let {H1, . . . , Hm}
be the set of all maximal and normal ideals of A, where m is a natural number. Then
Radn (A) =

⋂m
i=1 Hi. By Propositions 2.14 and 2.15, each A/Hi is a simple pseudo MV -

chain. Take the map ϕ : A/Radn (A) → ∏m
i=1 A/Hi given by

ϕ (x/Radn (A)) = (x/H1, . . . , x/Hm) .

Clearly ϕ is a homomorphism. We prove that ϕ is an isomorphism. Indeed, since (Hi ∪ Hj ] =
A for i, j = 1, . . . , m and i 	= j, we have, by Lemma 2.13, that ϕ is surjective. Now, sup-
pose that ϕ (x/Radn (A)) = ϕ (y/Radn (A)) for x, y ∈ A. Hence x/Hi = y/Hi for each i
(1 ≤ i ≤ m). Then x · y− ∨ y · x− ∈ Hi for i = 1, . . . , m, i.e., x · y− ∨ y · x− ∈ Radn (A).
Thus x/Radn (A) = y/Radn (A). Therefore ϕ is an isomorphism.

(b) ⇒ (c): If A/Radn (A) is trivial, then it has only one ideal. Let A/Radn (A) ∼=
A1 × · · · ×Am, where Ai is a simple (non-trivial) pseudo MV -chain for i = 1, . . . , m. From
Proposition 2.18 we have |Id (A/Radn (A))| = |Id (A1) × · · · × Id (Am)|. Since Id(Ai) has
2 elements for every i = 1, . . . , m, we have that Id(A/Radn (A)) has 2m elements. Thus
A/Radn (A) has finitely many ideals.

(c) ⇒ (d): Obvious.
(d) ⇒ (a): Suppose that A has infinitely many maximal and normal ideals H1, H2, . . . .

Then we have a strictly descending sequence H1 ⊃ H1 ∩H2 ⊃ H1 ∩H2 ∩H3 ⊃ · · · of ideals
of A. Hence we obtain a sequence

H1/Radn (A) ⊇ (H1 ∩ H2) /Radn (A) ⊇ (H1 ∩ H2 ∩ H3) /Radn (A) ⊇ · · ·
of ideals of A/Radn (A). Note that this sequence is strictly descending. Indeed, if J1, J2 are
maximal and normal ideals of A, then (J1 ∩ J2) /Radn (A) ⊂ J1/Radn (A). Suppose that
(J1 ∩ J2) /Radn (A) = J1/Radn (A). Let a ∈ J1 − (J1 ∩ J2). Note that there is b ∈ J1 ∩ J2

such that a/Radn (A) = b/Radn (A). Thus a · b− ∨ b · a− ∈ Radn (A) and hence a · b− ∈
Radn (A) ⊆ J1 ∩ J2. Since a � a ∨ b = a · b− ⊕ b ∈ J1 ∩ J2, we have a ∈ J1 ∩ J2, which is a
contradiction. Therefore we get a strictly descending sequence of ideals of Artinian pseudo
MV -algebra A/Radn (A), which is impossible. Thus A is semilocal.

Corollary 5.4. If A is Artinian, then it is semilocal.

Proof. If A is Artinian, then A/Radn (A) is Artinian by Proposition 2.25. From Theorem
5.3 we see that A is semilocal.

Corollary 5.5. Let A be semisimple pseudo MV-algebra. Then A is semilocal if and only
if A is Artinian.

Corollary 5.6. If A is semilocal, then A/Radn (A) is semisimple.
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[3] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301–327.
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[7] I. Leuştean, Local pseudo MV-algebras, Soft Comp. 5 (2001), 386–395.
[8] J. Rach̊unek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002),

255–273.
[9] J. Rach̊unek, Radicals in non-commutative generalizations of MV-algebras, Math. Slovaca 52 (2002),

135–144.
[10] A. Walendziak, On implicative ideals of pseudo MV-algebras, Sci. Math. Jpn. 62 (2005), 281–287;

e-2005, 363–369.

G. Dymek: Institute of Mathematics and Physics, University of Podlasie, 3 Maja 54, 08–110

Siedlce, Poland

E-mail address: gdymek@o2.pl

A. Walendziak: Warsaw School of Information Technology, Newelska 6, 01–447 Warszawa,

Poland

E-mail address: walent@interia.pl


