SEMISIMPLE, ARCHIMEDEAN, AND SEMILOCAL PSEUDO MV-ALGEBRAS

GRZEGORZ DYMEK AND ANDRZEJ WALENDZIAK

Received July 27, 2006; revised February 13, 2007

ABSTRACT. The concepts of semisimple, Archimedean, and semilocal pseudo MV-algebras are investigated and many interesting facts concerning them are given.

1. INTRODUCTION

Pseudo MV-algebras were introduced by G. Georgescu and A. Iorgulescu in [6] and independently by J. Rachůnek in [8] (there they are called generalized MV-algebras or, for short, GMV-algebras) as a non-commutative generalization of MV-algebras. This work was intended as an attempt to order some notions appearing in the theory of these algebras. Semisimple pseudo MV-algebras and Archimedean pseudo MV-algebras are examples of such notions. In Section 3 we give some characterizations of semisimple pseudo MV-algebras. Archimedean pseudo MV-algebras are investigated and characterized in Section 4. It is shown that in the case of pseudo MV-algebras the notion of Archimedean is equivalent with the notion of Archimedean in the Belluce sense, that occurs in the theory of MV-algebras, and both are equivalent with the notion of semisimple. Section 5 is devoted to introduce and characterize semilocal pseudo MV-algebras, the concept generalizing a similar one from the theory of MV-algebras. For the convenience of the reader, in Section 2 we give the relevant material needed in the sequel, thus making our exposition self-contained.

2. Preliminaries

Let $A = (A, \oplus, \bar{}, \bar{}, 0, 1)$ be an algebra of type (2, 1, 1, 0, 0). Set $x \cdot y = (y^- \oplus x^-)^{\sim}$ for any $x, y \in A$. We assume that the operation \cdot has priority to the operation \oplus , i.e., we will write $x \oplus y \cdot z$ instead of $x \oplus (y \cdot z)$. The algebra A is called a *pseudo MV-algebra* if for any $x, y, z \in A$ the following conditions are satisfied:

 $\begin{array}{l} (\mathrm{A1}) \ x \oplus (y \oplus z) = (x \oplus y) \oplus z, \\ (\mathrm{A2}) \ x \oplus 0 = 0 \oplus x = x, \\ (\mathrm{A3}) \ x \oplus 1 = 1 \oplus x = 1, \\ (\mathrm{A4}) \ 1^{\sim} = 0; 1^{-} = 0, \\ (\mathrm{A5}) \ (x^{-} \oplus y^{-})^{\sim} = (x^{\sim} \oplus y^{\sim})^{-}, \\ (\mathrm{A6}) \ x \oplus x^{\sim} \cdot y = y \oplus y^{\sim} \cdot x = x \cdot y^{-} \oplus y = y \cdot x^{-} \oplus x, \\ (\mathrm{A7}) \ x \cdot (x^{-} \oplus y) = (x \oplus y^{\sim}) \cdot y, \\ (\mathrm{A8}) \ (x^{-})^{\sim} = x. \end{array}$

²⁰⁰⁰ Mathematics Subject Classification. 06D35. Key words and phrases. pseudo MV-algebra, semisimple, Archimedean, semilocal.

If the addition \oplus is commutative, then both unary operations $\bar{}$ and \sim coincide and A can be considered as an MV-algebra.

Throughout this paper A will denote a pseudo MV-algebra. For any $x \in A$ and $n = 0, 1, 2, \ldots$ we put

$$0x = 0 \text{ and } (n+1)x = nx \oplus x;$$

$$x^{0} = 1 \text{ and } x^{n+1} = x^{n} \cdot x.$$

Proposition 2.1 (Georgescu and Iorgulescu [6]). The following properties hold for any $x, y \in A$:

(a) $x \cdot 1 = 1 \cdot x = x$, (b) $x^- \oplus x = 1, x \oplus x^{\sim} = 1$, (c) $x \cdot x^- = 0, x^{\sim} \cdot x = 0$.

Proposition 2.2 (Georgescu and Iorgulescu [6]). The following properties are equivalent for any $x, y \in A$:

- (a) $x^- \oplus y = 1$,
- (b) $y \oplus x^{\sim} = 1$.

We define

$$x \leqslant y \Longleftrightarrow x^- \oplus y = 1.$$

As it is shown in [6], (A, \leq) is a lattice in which the join $x \lor y$ and the meet $x \land y$ of any two elements x and y are given by:

$$\begin{array}{rcl} x \lor y & = & x \oplus x^{\sim} \cdot y = x \cdot y^{-} \oplus y, \\ x \land y & = & x \cdot \left(x^{-} \oplus y\right) = \left(x \oplus y^{\sim}\right) \cdot y. \end{array}$$

For every pseudo *MV*-algebra *A* we set $\mathcal{L}(A) = (A, \lor, \land, 0, 1)$.

Proposition 2.3 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra. The following properties hold for any $x, y, z \in A$:

(a) $x \leq y \iff y^- \leq x^- \iff y^- \leq x^-$, (b) $x \leq y \implies z \oplus x \leq z \oplus y, x \oplus z \leq y \oplus z$, (c) $(x \oplus z) \cdot y \leq x \oplus z \cdot y, y \cdot (x \oplus z) \leq y \cdot x \oplus z$.

Definition 2.4. An *ideal* of A is a subset J of A satisfying the following conditions: (I1) $0 \in J$,

(I2) if $x, y \in J$, then $x \oplus y \in J$,

(I3) if $x \in J$, $y \in A$ and $y \leq x$, then $y \in J$.

Under this definition, $\{0\}$ and A are the simplest examples of ideals. Denote by Id(A) the set of all ideals of A and note that Id(A) ordered by set inclusion is a complete lattice.

Remark 2.5. Let $J \in Id(A)$. (a) If $x, y \in J$, then $x \cdot y, x \wedge y, x \vee y \in J$, (b) J is an ideal of the lattice $\mathcal{L}(A)$.

For every subset $W \subseteq A$, the smallest ideal of A which contains W, i.e., the intersection of all ideals $J \supseteq W$, is said to be the ideal *generated* by W, and will be denoted (W].

Proposition 2.6 (Georgescu and Iorgulescu [6]). Let W be a subset of A. If $W = \emptyset$, then $(W] = \{0\}$. If $W \neq \emptyset$, then

 $(W] = \{ x \in A : x \leq w_1 \oplus \cdots \oplus w_n \text{ for some } w_1, \dots, w_n \in W \}.$

316

In particular, for every $z \in A$, the ideal $(z] = (\{z\})$ is called the *principal ideal generated* by z (see [6]), and we have

$$(z] = \{x \in A : x \leq nz \text{ for some } n \in \mathbb{N}\}.$$

Definition 2.7. Let J be a proper ideal of A (i.e., $J \neq A$).

(a) J is called *prime* if, for all $J_1, J_2 \in Id(A), J = J_1 \cap J_2$ implies $J = J_1$ or $J = J_2$.

(b) J is called *regular* iff $J = \bigcap X$ implies that $J \in X$ for every subset X of Id(A).

(c) J is called *maximal* iff whenever M is an ideal such that $J \subseteq M \subseteq A$, then either M = J or M = A.

By definition, each maximal ideal is regular and each regular ideal is prime.

Definition 2.8. An ideal H of A is called *normal* if it satisfies the condition: (N) for all $x, y \in A$, $x \cdot y^- \in H \iff y^- \cdot x \in H$.

Denote by $\mathrm{Id}_n(A)$ the set of normal ideals of A.

Proposition 2.9 (Georgescu and Iorgulescu [6]). Let A be a pseudo MV-algebra and let H be an ideal of A. Then the following are equivalent: (a) H is normal,

(b) for each $x \in A$, $x \oplus H = H \oplus x$ (i.e., for each $h \in H$ there exists $h' \in H$ such that $x \oplus h = h' \oplus x$; and for each $h \in H$ there exists $h'' \in H$ such that $h \oplus x = x \oplus h''$).

From Propositions 2.6 and 2.9 we obtain the following lemma.

Lemma 2.10. Let H_1, H_2 be normal ideals of A. Then

$$(H_1 \cup H_2] = \{x \in A : x \leq h_1 \oplus h_2 \text{ for some } h_1 \in H_1, h_2 \in H_2\}.$$

Lemma 2.11. Let A be a pseudo MV-algebra and let H be an ideal of A. Then the following are equivalent:

(a) H is normal,

(b) $(x \oplus h) \cdot x^- \in H$ and $x^{\sim} \cdot (h \oplus x) \in H$ for all $x \in A$ and $h \in H$.

Proof. (a) \Rightarrow (b): Let $x \in A$. By Proposition 2.9, for each $h \in H$ there exists $h' \in H$ such that $x \oplus h = h' \oplus x$. From Propositions 2.3(c) and 2.1(c) we obtain

$$(x \oplus h) \cdot x^{-} = (h' \oplus x) \cdot x^{-} \leqslant h' \oplus x \cdot x^{-} = h' \oplus 0 = h' \in H$$

Hence $(x \oplus h) \cdot x^- \in H$. Similarly, $x^{\sim} \cdot (h \oplus x) \in H$.

(b) \Rightarrow (a): Let $x \in A$ and $h \in H$. Let us set $h' = (x \oplus h) \cdot x^-$ and $h'' = x^- \cdot (h \oplus x)$. By assumption, $h', h'' \in H$. Applying (A6) and Propositions 2.3(b,c) and 2.1(c) we have

$$h' \oplus x = (x \oplus h) \cdot x^- \oplus x = x \oplus x^{\sim} \cdot (x \oplus h) \leqslant x \oplus x^{\sim} \cdot x \oplus h = x \oplus h.$$

On the other hand, by Propositions 2.3(c) and 2.1, we get

$$h' \oplus x = x \oplus x^{\sim} \cdot (x \oplus h) \ge (x \oplus x^{\sim}) \cdot (x \oplus h) = x \oplus h.$$

Thus $x \oplus h = h' \oplus x$. Similarly, $h \oplus x = x \oplus h''$. Therefore, from Proposition 2.9 we conclude that (a) is true.

Proposition 2.12 (Dvurečenskij and Pulmannova [4]). For any proper normal ideal H of a pseudo MV-algebra A, the following conditions are equivalent:

(a) H is maximal,

- (b) for each $z \in A$, $z \notin H$ iff $(nz)^- \in H$ for some $n \in \mathbb{N}$,
- (c) for each $z \in A$, $z \notin H$ iff $(nz)^{\sim} \in H$ for some $n \in \mathbb{N}$.

Following [6], for any normal ideal H of A, we define a congruence on A by:

$$x \sim_H y \iff x \cdot y^- \lor y \cdot x^- \in H.$$

We also have

$$x \sim_H y \iff x^{\sim} \cdot y \lor y^{\sim} \cdot x \in H.$$

We denote by x/H the congruence class of an element $x \in A$ and on the set $A/H = \{x/H : x \in A\}$ we define the operations:

$$x/H \oplus y/H = (x \oplus y)/H, \ (x/H)^{-} = (x^{-})/H, \ (x/H)^{\sim} = (x^{\sim})/H.$$

The resulting quotient algebra $A/H = (A/H, \oplus, \bar{}, \sim, 0/H, 1/H)$ becomes a pseudo MV-algebra, called the quotient algebra of A by the normal ideal H.

Lemma 2.13. Let H_1, \ldots, H_m be normal ideals of A such that $(H_i \cup H_j] = A$ for $i, j = 1, \ldots, m$ and $i \neq j$. Let $x_1, \ldots, x_m \in A$. Then there is $x \in A$ such that $x \sim_{H_i} x_i$ for $i = 1, \ldots, m$.

Proof. First, let m = 2. Since $(H_1 \cup H_2] = A$, by Lemma 2.10 there exist $h_{12} \in H_1$ and $h_{21} \in H_2$ such that $h_{12} \oplus h_{21} = 1$. Applying (A8) we get $h_{12} \oplus (h_{21}^-)^{\sim} = 1$. From Proposition 2.2 we deduce that $h_{21}^- \leq h_{12}$. Since $h_{12} \in H_1$, we see that $h_{21}^- \in H_1$. Hence $h_{21} \sim_{H_1} 1$. Take $x = x_1 \cdot h_{21} \oplus x_2 \cdot h_{12}$, where $x_1, x_2 \in A$. We obtain

$$\begin{aligned} x/H_1 &= x_1/H_1 \cdot h_{21}/H_1 \oplus x_2/H_1 \cdot h_{12}/H_1 \\ &= x_1/H_1 \cdot 1/H_1 \oplus x_2/H_1 \cdot 0/H_1 = x_1/H_1. \end{aligned}$$

Thus $x \sim_{H_1} x_1$. Similarly, $x \sim_{H_2} x_2$.

Now let m be arbitrary. For i, j = 1, ..., m and $i \neq j$, there exist $h_{ij} \in H_i$ and $h_{ji} \in H_j$ such that $h_{ij} \oplus h_{ji} = 1$. Considering $x = \sum_{i=1}^m x_i \cdot h_{1i} \cdots h_{i-1,i} \cdot h_{i+1,i} \cdots h_{mi}$ and reasoning as above we see that $x \sim_{H_i} x_i$ for i = 1, ..., m.

A pseudo MV-algebra is *simple* iff there is no non-trivial proper ideal of A (i.e., $Id(A) = \{\{0\}, A\}$).

Proposition 2.14 (Dvurečenskij [3]). A normal ideal H of a pseudo MV-algebra A is maximal if and only if A/H is a simple pseudo MV-algebra.

Proposition 2.15 (Georgescu and Iorgulescu [6]). Let H be a normal ideal of a pseudo MV-algebra A. Then the quotient algebra A/H is a pseudo MV-chain if and only if H is prime.

The radical of a pseudo MV-algebra A is the set

 $\operatorname{Rad}\left(A\right) = \bigcap \left\{M : M \text{ is a maximal ideal of } A\right\}$

and the *normal radical* of A is the set

 $\operatorname{Rad}_n(A) = \bigcap \{M : M \text{ is a maximal and normal ideal of } A\}.$

If there are no maximal and normal ideals of A, then we set $\operatorname{Rad}_n(A) = A$.

Remark 2.16. If A is an MV-algebra, then $\operatorname{Rad}_n(A) = \operatorname{Rad}(A)$.

Let I be a nonempty set. The direct product of the pseudo MV-algebras A_i , $i \in I$, denoted by $\prod_{i \in I} A_i$, is the pseudo MV-algebra obtained by endowing the set-theoretical cartesian product of A_i $(i \in I)$ with the pseudo MV-operations defined pointwise. For each $i \in I$, the map $\pi_i : \prod_{i \in I} A_i \to A_i$, defined by

$$\pi_i(x) = x(i)$$
 for all $x \in \prod_{i \in I} A_i$,

is a homomorphism onto A_i , called the *i*-th projection function.

Proposition 2.17. Let A_1, \ldots, A_k be pseudo MV-algebras and let $A = A_1 \times \cdots \times A_k$. If $J_i \in Id(A_i)$ for $i = 1, \ldots, k$, then $J_1 \times \cdots \times J_k$ is an ideal of A. Conversely, if J is an ideal of A, then for $i = 1, \ldots, k$, $J_i = \pi_i(J)$ is an ideal of A_i , and $J = J_1 \times \cdots \times J_k$.

Proof. It is straightforward.

Proposition 2.18. Let $A = A_1 \times \cdots \times A_k$, where A_1, \ldots, A_k are pseudo MV-algebras. Then:

(a) $\mathrm{Id}(A) = \mathrm{Id}(A_1) \times \cdots \times \mathrm{Id}(A_k)$,

(b) $\operatorname{Id}_{n}(A) = \operatorname{Id}_{n}(A_{1}) \times \cdots \times \operatorname{Id}_{n}(A_{k}),$

(c) $\operatorname{Rad}(A) = \operatorname{Rad}(A_1) \times \cdots \times \operatorname{Rad}(A_k)$,

(d) $\operatorname{Rad}_n(A) = \operatorname{Rad}_n(A_1) \times \cdots \times \operatorname{Rad}_n(A_k).$

Proof. (a) Follows from Proposition 2.17.

(b) It is sufficient to prove that $J_1 \times \cdots \times J_k$ is a normal ideal of A if and only if J_i is a normal ideal of A_i for $i = 1, \ldots, k$. It is easy to see that if J_i is a normal ideal of A_i for $i = 1, \ldots, k$, then $J_1 \times \cdots \times J_k$ is a normal ideal of A. Now, assume that $J = J_1 \times \cdots \times J_k$ is normal. Let $a \in A_i$ and $b \in J_i$. Take $x \in A$ with x(i) = a. Define $y \in A$ by y(i) = b and y(j) = 0 for $j \neq i$. Then $y \in J$, and we conclude from Lemma 2.11 that $(x \oplus y) \cdot x^- \in J$. We have

$$(a \oplus b) \cdot a^{-} = [\pi_i(x) \oplus \pi_i(y)] \cdot [\pi_i(x)]^{-} = \pi_i((x \oplus y) \cdot x^{-}) \in \pi_i(J) = J_i.$$

Similarly, $a^{\sim} \cdot (b \oplus a) \in J_i$. Therefore, by Lemma 2.11, J_i is a normal ideal of A_i for $i = 1, \ldots, k$.

(c) It is easy to see that J is a maximal ideal of A if and only if $J = A_1 \times \cdots \times A_{i-1} \times J_i \times A_{i+1} \times \cdots \times A_k$, where J_i is a maximal ideal of A_i for $i = 1, \ldots, k$. Hence (c) is true. (d) Follows from (b) and (c).

Definition 2.19. A pseudo MV-algebra A is called *normal-valued* if for any regular ideal J of A and any $x \in J^*$, $x \oplus J = J \oplus x$, where J^* is the unique least ideal which properly contains J.

Proposition 2.20. Let A be a normal-valued pseudo MV-algebra and let M be a maximal ideal of A. Then M is normal.

Proof. Since A is normal-valued and M is a maximal ideal of A, M is regular and $x \oplus M = M \oplus x$ for every $x \in M^* = A$. Hence, by Proposition 2.9, M is normal.

An element x of a pseudo MV-algebra A is called *infinitesimal* (see [9]) if x satisfies condition

$$nx \leq x^{-}$$
 for each $n \in \mathbb{N}$.

Let us denote by Infinit(A) the set of all infinitesimal elements in A.

Proposition 2.21 (Rachunek [9]). Let A be a pseudo MV-algebra. Then:

(a) $\operatorname{Rad}(A) \subseteq \operatorname{Infinit}(A)$,

(b) if A is normal-valued, then $\operatorname{Rad}(A) = \operatorname{Infinit}(A)$.

Proposition 2.22 (Di Nola, Dvurečenskij and Jakubík [1]). Let A be a pseudo MV-algebra. Then $\text{Infinit}(A) \subseteq \text{Rad}_n(A)$.

By Propositions 2.21 and 2.22 we have a ladder of inclusions:

 $\operatorname{Rad}(A) \subseteq \operatorname{Infinit}(A) \subseteq \operatorname{Rad}_n(A)$.

Proposition 2.23. Let A be a normal-valued pseudo MV-algebra. Then

 $\operatorname{Rad}(A) = \operatorname{Infinit}(A) = \operatorname{Rad}_n(A).$

Proof. Since A is normal-valued, from Proposition 2.20 we have that every maximal ideal of A is normal. Thus $\operatorname{Rad}(A) = \operatorname{Rad}_n(A)$.

Now we give the definition of an Artinian pseudo MV-algebra.

Definition 2.24. A pseudo MV-algebra A is called Artinian if for every descending sequence $J_1 \supseteq J_2 \supseteq \cdots$ of ideals of A there exists $k \in \mathbb{N}$ such that $J_m = J_k$ for all $m \ge k$.

Proposition 2.25 (Dymek [5]). If A is Artinian, then A/H is Artinian for every normal ideal H of A.

At the end of this section we recall some definitions and facts from [7].

Definition 2.26. The order of an element $x \in A$ is the least n such that nx = 1 if such n exists, and $ord(x) = \infty$ otherwise.

Remark 2.27. It is easy to see that for any $x \in A$, $\operatorname{ord}(x^{-}) = \operatorname{ord}(x^{\sim})$.

Definition 2.28. A pseudo *MV*-algebra *A* is called *local* if

ord $(x \oplus y) < \infty$ implies that ord $(x) < \infty$ or ord $(y) < \infty$

for all $x, y \in A$.

Remark 2.29. If A is local, then $\operatorname{ord}(x) < \infty$ or $\operatorname{ord}(x^{-}) < \infty$ for every $x \in A$.

Let A be a pseudo MV-algebra. We denote by $D(A) = \{x \in A : \operatorname{ord}(x) = \infty\}$ the set of all elements of infinite order.

Proposition 2.30 (Leuştean [7]). Let A be a pseudo MV-algebra. The following are equivalent:

(a) A is local,

(b) D(A) is an ideal of A,

(c) D(A) is the only maximal ideal of A.

3. Semisimple pseudo MV-algebras

Definition 3.1. A pseudo *MV*-algebra *A* is semisimple iff $\operatorname{Rad}_n(A) = \{0\}$.

Remark 3.2. Every simple pseudo MV-algebra is semisimple.

Example 3.3. Let $A = \{(1, y) \in \mathbb{R}^2 : y \ge 0\} \cup \{(2, y) \in \mathbb{R}^2 : y \le 0\}, \mathbf{0} = (1, 0), \mathbf{1} = (2, 0).$ For any $(a, b), (c, d) \in A$, we define operations $\oplus, \overline{}, \sim$ as follows:

$$\begin{array}{lll} (a,b) \oplus (c,d) & = & \left\{ \begin{array}{ll} (1,b+d) & \mbox{if } a = c = 1, \\ (2,ad+b) & \mbox{if } ac = 2 \ and \ ad+b \leqslant 0, \\ (2,0) & \mbox{in other cases.} \end{array} \right. \\ (a,b)^{-} & = & \left(\frac{2}{a}, -\frac{2b}{a} \right), \\ (a,b)^{\sim} & = & \left(\frac{2}{a}, -\frac{b}{a} \right). \end{array}$$

Then $A = (A, \oplus, \bar{}, \bar{}, 0, 1)$ is a pseudo MV-algebra. Let $H = \{(1, y) : y \ge 0\}$. Then H is the unique normal maximal ideal of A and hence $\operatorname{Rad}_n(A) = H \neq \{0\}$. Thus A is not

semisimple. Moreover, note that by Proposition 2.14, A/H is a simple pseudo MV-algebra. Therefore A/H is semisimple.

Recall that a pseudo MV-algebra A is a subdirect product of pseudo MV-algebras A_i , $i \in I$, if there exists an injective homomorphism $h : A \to \prod_{i \in I} A_i$ such that $\pi_i \circ h$ maps A onto A_i for all $i \in I$.

Proposition 3.4. Let A be a pseudo MV-algebra. The following are equivalent: (a) A is semisimple,

(b) there is a family $\{H_i : i \in I\}$ of normal maximal ideals of A with $\bigcap_{i \in I} H_i = \{0\}$,

(c) A is a subdirect product of simple pseudo MV-chains.

Proof. (a) \Rightarrow (b): Follows from definition.

(b) \Rightarrow (c): Suppose that $\{H_i : i \in I\}$ is a family of maximal and normal ideals of A such that $\bigcap_{i \in I} H_i = \{0\}$. Write $A_i := A/H_i$ for $i \in I$. First note that, by Propositons 2.14 and 2.15, A_i are simple pseudo MV-chains. Define $h : A \to \prod_{i \in I} A_i$ by

 $h(x) = (x/H_i : i \in I)$ for all $x \in A$.

Since $\bigcap_{i \in I} H_i = \{0\}$, we have that Ker $(h) = \{0\}$. Thus h is injective. It is easy to see that $\pi_i \circ h$ maps A onto A_i , where π_i is the *i*-th projection function. Therefore, A is a subdirect product of the (simple) pseudo MV-chains A_i , $i \in I$.

(c) \Rightarrow (a): Let $h : A \to \prod_{i \in I} A_i$ be an injective homomorphism, where A_i are simple pseudo MV-chains, and let $\pi_i \circ h : A \to A_i$ be surjective. Write $\operatorname{Ker}(\pi_i \circ h) = H_i$ for $i \in I$. Then H_i is a normal ideal of A and $A/H_i \cong A_i$. Consequently, A/H_i is simple. By Proposition 2.14, H_i is maximal. If $x \in \bigcap_{i \in \Gamma} H_i$, then $\pi_i(h(x)) = 0$ for all $i \in I$. This implies that h(x) = 0, and since h is injective, we obtain x = 0. Therefore $\operatorname{Rad}_n(A) \subseteq \bigcap_{i \in I} H_i = \{0\}$. Hence $\operatorname{Rad}_n(A) = \{0\}$. Thus A is semisimple. \Box

Now recall that a pseudo MV-algebra A is representable (see [6]) if it is a subdirect product of pseudo MV-chains. Thus, by Proposition 3.4, we have the following proposition.

Proposition 3.5. If a pseudo MV-algebra A is semisimple, then it is representable.

Proposition 2.19(d) yields

Proposition 3.6. Let $A = A_1 \times \cdots \times A_k$, where A_1, \ldots, A_k are pseudo MV-algebras. Then A is semisimple if and only if A_i is semisimple for $i = 1, \ldots, k$.

4. Archimedean pseudo MV-algebras

Definition 4.1. Let A be a pseudo MV-algebra.

(a) A is Archimedean iff $Infinit(A) = \{0\}.$

(b) A is Archimedean in the Belluce sense iff for each $x, y \in A$, if $nx \leq y$ for all $n \geq 0$, then $x \cdot y = x$.

Proposition 4.2 (Dvurečenskij [2]). Any Archimedean pseudo MV-algebra is an MV-algebra.

Proposition 4.3 (Dvurečenskij [2]). A pseudo MV-algebra A has the MacNeille completion as a pseudo MV-algebra if and only if A is Archimedean.

Recall that a pseudo *MV*-algebra is *locally finite* if $\operatorname{ord}(x) < \infty$ for every x > 0.

Lemma 4.4. A pseudo MV-algebra A is locally finite if and only if $Id(A) = \{\{0\}, A\}$ (i.e., A is simple).

Proof. If A is trivial, then the lemma is obvious. Assume that $A \neq \{0\}$. Suppose that A is locally finite. Let $I \neq \{0\}$ be an ideal of A and let $x \in I, x \neq 0$. Then there is $n \in \mathbb{N}$ such that nx = 1. Thus $1 \in I$, i.e., I = A.

Now suppose that $Id(A) = \{\{0\}, A\}$ and A is not locally finite. Then there exists $x \in A$ and $x \neq 0$ such that nx < 1 for all $n \in \mathbb{N}$. Let us take an ideal

$$(x] = \{ y \in A : y \leqslant mx \text{ for some } m \in \mathbb{N} \}$$

generated by x. Then $(x] \neq \{0\}$. Hence (x] = A, i.e., $1 \in (x]$. Thus $1 \leq mx$ for some $m \in \mathbb{N}$, i.e., mx = 1 for some $m \in \mathbb{N}$. This is a contradiction. Therefore A is locally finite.

Theorem 4.5. Let A be a pseudo MV-algebra. The following are equivalent:

(a) A is semisimple,

- (b) A is a subdirect product of simple pseudo MV-chains,
- (c) A is Archimedean in the Belluce sense,

(d) A is Archimedean,

(e) A has the MacNeille completion.

Proof. (a) \Rightarrow (b): Follows by Proposition 3.4.

(b) \Rightarrow (c): Let $A \subseteq \prod_{i \in I} A_i$ be a subdirect product of simple pseudo MV-chains A_i , $i \in I$. Let $x, y \in A$ and suppose that $nx \leq y$ for all $n \geq 0$. Then

$$nx(i) = (nx)(i) = \pi_i(nx) \le \pi_i(y) = y(i)$$

for all $i \in I$ and $n \ge 0$. By Lemma 4.4, each A_i is locally finite. Therefore x(i) = 0 or y(i) = 1 for all $i \in I$. Hence in each A_i we have

$$(x \cdot y)(i) = x(i) \cdot y(i) = \begin{cases} 0 & \text{if } x(i) = 0\\ x(i) & \text{if } x(i) \neq 0 \end{cases}$$

Thus $(x \cdot y)(i) = x(i)$ for $i \in I$. It follows that $x \cdot y = x$.

(c) \Rightarrow (d): Let $x \in \text{Infinit}(A)$. Then $nx \leq x^-$ for all $n \in \mathbb{N}$. Since A is Archimedean in the Belluce sense, we obtain $x = x \cdot x^- = 0$. Consequently, $\text{Infinit}(A) = \{0\}$, i.e., A is Archimedean.

(d) \Leftrightarrow (e): Follows from Proposition 4.3.

 $(d) \Rightarrow (a)$: Let A be an Archimedean pseudo MV-algebra. By Proposition 4.2, A is an MV-algebra. Hence $\operatorname{Rad}_n(A) = \operatorname{Rad}(A) \subseteq \operatorname{Infinit}(A) = \{0\}$, i.e., $\operatorname{Rad}_n(A) = \{0\}$. Thus A is semisimple.

Proposition 4.6. Any subalgebra of a semisimple pseudo MV-algebra is semisimple.

Proof. Let A be a semisimple pseudo MV-algebra and let B be a subalgebra of A. We have $\text{Infinit}(A) = \{0\}$, because A is Archimedean by Theorem 4.5. Since $\text{Infinit}(B) \subseteq \text{Infinit}(A)$, we see that $\text{Infinit}(B) = \{0\}$. Theorem 4.5 now shows that B is semisimple.

5. Semilocal pseudo MV-algebras

Definition 5.1. A pseudo *MV*-algebra is called *semilocal* if it has only finitely many normal maximal ideals.

By Proposition 2.30, we have the following proposition.

Proposition 5.2. Any local pseudo MV-algebra is semilocal.

322

Theorem 5.3. Let A be a pseudo MV-algebra. The following are equivalent:

(a) A is semilocal,

(b) $A/\operatorname{Rad}_n(A)$ is trivial or isomorphic to a direct product of finitely many simple pseudo MV-chains,

(c) $A/\operatorname{Rad}_n(A)$ has finitely many ideals,

(d) $A/\operatorname{Rad}_n(A)$ is Artinian.

Proof. (a) \Rightarrow (b): Assume that A is semilocal. If A does not have any maximal and normal ideals, then $\operatorname{Rad}_n(A) = A$ and hence $A/\operatorname{Rad}_n(A)$ is trivial. Let $\{H_1, \ldots, H_m\}$ be the set of all maximal and normal ideals of A, where m is a natural number. Then $\operatorname{Rad}_n(A) = \bigcap_{i=1}^m H_i$. By Propositions 2.14 and 2.15, each A/H_i is a simple pseudo MV-chain. Take the map $\varphi: A/\operatorname{Rad}_n(A) \to \prod_{i=1}^m A/H_i$ given by

 $\varphi\left(x/\operatorname{Rad}_{n}\left(A\right)\right)=\left(x/H_{1},\ldots,x/H_{m}\right).$

Clearly φ is a homomorphism. We prove that φ is an isomorphism. Indeed, since $(H_i \cup H_j] = A$ for $i, j = 1, \ldots, m$ and $i \neq j$, we have, by Lemma 2.13, that φ is surjective. Now, suppose that $\varphi(x/\operatorname{Rad}_n(A)) = \varphi(y/\operatorname{Rad}_n(A))$ for $x, y \in A$. Hence $x/H_i = y/H_i$ for each i $(1 \leq i \leq m)$. Then $x \cdot y^- \lor y \cdot x^- \in H_i$ for $i = 1, \ldots, m$, i.e., $x \cdot y^- \lor y \cdot x^- \in \operatorname{Rad}_n(A)$. Thus $x/\operatorname{Rad}_n(A) = y/\operatorname{Rad}_n(A)$. Therefore φ is an isomorphism.

(b) \Rightarrow (c): If $A/\operatorname{Rad}_n(A)$ is trivial, then it has only one ideal. Let $A/\operatorname{Rad}_n(A) \cong A_1 \times \cdots \times A_m$, where A_i is a simple (non-trivial) pseudo MV-chain for $i = 1, \ldots, m$. From Proposition 2.18 we have $|\operatorname{Id}(A/\operatorname{Rad}_n(A))| = |\operatorname{Id}(A_1) \times \cdots \times \operatorname{Id}(A_m)|$. Since $\operatorname{Id}(A_i)$ has 2 elements for every $i = 1, \ldots, m$, we have that $\operatorname{Id}(A/\operatorname{Rad}_n(A))$ has 2^m elements. Thus $A/\operatorname{Rad}_n(A)$ has finitely many ideals.

(c) \Rightarrow (d): Obvious.

(d) \Rightarrow (a): Suppose that A has infinitely many maximal and normal ideals H_1, H_2, \ldots . Then we have a strictly descending sequence $H_1 \supset H_1 \cap H_2 \supset H_1 \cap H_2 \cap H_3 \supset \cdots$ of ideals of A. Hence we obtain a sequence

$$H_1/\operatorname{Rad}_n(A) \supseteq (H_1 \cap H_2)/\operatorname{Rad}_n(A) \supseteq (H_1 \cap H_2 \cap H_3)/\operatorname{Rad}_n(A) \supseteq \cdots$$

of ideals of $A/\operatorname{Rad}_n(A)$. Note that this sequence is strictly descending. Indeed, if J_1, J_2 are maximal and normal ideals of A, then $(J_1 \cap J_2)/\operatorname{Rad}_n(A) \subset J_1/\operatorname{Rad}_n(A)$. Suppose that $(J_1 \cap J_2)/\operatorname{Rad}_n(A) = J_1/\operatorname{Rad}_n(A)$. Let $a \in J_1 - (J_1 \cap J_2)$. Note that there is $b \in J_1 \cap J_2$ such that $a/\operatorname{Rad}_n(A) = b/\operatorname{Rad}_n(A)$. Thus $a \cdot b^- \lor b \cdot a^- \in \operatorname{Rad}_n(A)$ and hence $a \cdot b^- \in \operatorname{Rad}_n(A) \subseteq J_1 \cap J_2$. Since $a \leq a \lor b = a \cdot b^- \oplus b \in J_1 \cap J_2$, we have $a \in J_1 \cap J_2$, which is a contradiction. Therefore we get a strictly descending sequence of ideals of Artinian pseudo MV-algebra $A/\operatorname{Rad}_n(A)$, which is impossible. Thus A is semilocal.

Corollary 5.4. If A is Artinian, then it is semilocal.

Proof. If A is Artinian, then $A/\operatorname{Rad}_n(A)$ is Artinian by Proposition 2.25. From Theorem 5.3 we see that A is semilocal.

Corollary 5.5. Let A be semisimple pseudo MV-algebra. Then A is semilocal if and only if A is Artinian.

Corollary 5.6. If A is semilocal, then $A/\operatorname{Rad}_n(A)$ is semisimple.

Acknowledgements

The authors thank the referees for their remarks which were incorporated into this revised version.

References

- A. Di Nola, A. Dvurečenskij and J. Jakubík, Good and bad infinitesimals, and states on pseudo MValgebras, Order 21 (2004), 293–314.
- [2] A. Dvurečenskij, Pseudo MV-algebras are intervals in l-groups, J. Austral. Math. Soc. 72 (2002), 427–445.
- [3] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327.
- [4] A. Dvurečenskij and S. Pulmannova, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000.
- [5] G. Dymek, Noetherian and Artinian pseudo MV-algebras, submitted.
- [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras, Multi. Val. Logic 6 (2001), 95–135.
- [7] I. Leuştean, Local pseudo MV-algebras, Soft Comp. 5 (2001), 386–395.
- [8] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255–273.
- [9] J. Rachůnek, Radicals in non-commutative generalizations of MV-algebras, Math. Slovaca 52 (2002), 135–144.
- [10] A. Walendziak, On implicative ideals of pseudo MV-algebras, Sci. Math. Jpn. 62 (2005), 281–287;
 e-2005, 363–369.

G. Dymek: Institute of Mathematics and Physics, University of Podlasie, 3 Maja 54, 08–110 Siedlee, Poland

E-mail address: gdymek@o2.pl

A. Walendziak: Warsaw School of Information Technology, Newelska 6, 01–447 Warszawa, Poland

E-mail address: walent@interia.pl