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THE DEGREE OF PROPER HYPERSUBSTITUTIONS
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Abstract. Let V be a variety of type τ . A hypersubstitution which preserves all
identities of V is called a V -proper hypersubstitution. The set P (V ) of all V -proper
hypersubstitutions forms a monoid, which is a submonoid of the monoid of all hyper-
substitutions of type τ . The hypersubstitutions in P (V ) can be partitioned according
to an equivalence relation ∼V first introduced by P �lonka. The authors introduce the
name ”degree of proper hypersubstitutions with respect to V ” for the number dp(V )
of distinct equivalence classes under this relation, and study the properties of this
parameter.

1 Introduction Let (fi)i∈I be an indexed set of operation symbols of type τ and assume
that fi is ni-ary and ni ≥ 1 for all i ∈ I. We denote by Wτ (X) the set of all terms built up
from variables from a set X and operation symbols from {fi | i ∈ I}. Hypersubstitutions
are mappings from {fi | i ∈ I} into Wτ (X) preserving the arities. Any hypersubstitution
σ induces a mapping σ̂ : Wτ (X) −→ Wτ (X). The mapping σ̂ is defined in the following
inductive way :

(i) σ̂[x] := x for every variable x ∈ X.

(ii) σ̂[fi(t1, · · · , tni)] := σ(fi)(σ̂[t1], · · · , σ̂[tni ]) for any operation symbol fi and terms
t1, · · · , tni .

Using this extension one defines a multiplication σ1 ◦h σ2 := σ̂1 ◦ σ2, where ◦ is the
usual composition of functions. Using the identity hypersubstitution defined by σid(fi) =
fi(x1, · · · , xni) for all i ∈ I, one obtains the monoid (Hyp(τ); ◦h, σid) of all hypersubsti-
tutions of type τ . An identity s ≈ t in the variety V of all algebras Alg(τ) of type τ is a
hyperidentity of V if σ̂[s] ≈ σ̂[t] is an identity in V for any σ ∈ Hyp(τ). A variety V is
called solid if each of its identities is a hyperidentity.
We will use the following notation: Let IdV be set of all identities satisfied in the variety V
: A |= s ≈ t means that the algebra A of type τ satisfies s ≈ t as identity. Let vb(s) be the
set of variables occurring in s. Then s ≈ t is regular if vb(s) = vb(t). Let leftmost(s) and
rightmost(s) be the first and the last variables, respectively occurring in s. Then s ≈ t is
called outermost if leftmost(s) = leftmost(t) and rightmost(s) = rightmost(t).
Let P (V ) be the set of all V -proper hypersubstitutions ([13]), i.e. the set of all hypersub-
stitutions of Hyp(τ) which preserve all identities in the variety V , so P (V ) := {σ | ∀s ≈ t ∈
IdV (σ̂[s] ≈ σ̂[t] ∈ IdV )}. It is easy to see that P (V ) forms a submonoid of Hyp(τ). The
variety V is solid iff P (V ) = Hyp(τ). For a hypersubstitution σ ∈ Hyp(τ) and an algebra
A = (A; (fi

A)i∈I) of type τ we define the derived algebra σ(A) = (A; (σ(fi)A)i∈I), meaning
that, for the fundamental operations fi

σ(A) of the derived algebra we have fi
σ(A) = σ(fi)A

for all i ∈ I.
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We also need the following “ conjugate property”, which holds for all algebras A and all
hypersubstitutions σ.

A |= σ̂[s] ≈ σ̂[t] ⇔ σ(A) |= s ≈ t.

In [13] the following binary relation on sets of hypersubstitutions was introduced.

Definition 1.1 Let V be a variety of algebras of type τ . Then

σ1 ∼V σ2 :⇐⇒ ∀i ∈ I(σ1(fi) ≈ σ2(fi) ∈ IdV ).

Clearly, ∼V is an equivalence relation on the set Hyp(τ), but in general it is not a congruence
relation. By induction on the complexity of term definition one shows that σ1 ∼V σ2 implies
that there follows σ̂1[t] ≈ σ̂2[t] ∈ IdV for any term t ∈ Wτ (X) ([4]). Therefore, from
σ1 ∼V σ2 we obtain

(σ1 ◦h σ)(fi) = σ̂1[σ(fi)] ≈ σ̂2[σ(fi)] = (σ2 ◦h σ)(fi) ∈ IdV

for all i ∈ I, and thus σ1 ◦h σ ∼V σ2 ◦h σ. This shows that ∼V is a right congruence. If
V is a solid variety, then ∼V is both a left and a right congruence and therefore it is a
congruence. The following proposition is also well-known.

Proposition 1.2 ([13]) Let V be a variety of type τ . Let s ≈ t ∈ IdV , σ̂1[s] ≈ σ̂1[t] ∈ IdV
and σ1 ∼V σ2. Then σ̂2[s] ≈ σ̂2[t] ∈ IdV .

This result means that P (V ) is a union of equivalence classes with respect to ∼V . The
elements of P0(V ) := [σid]∼V are called inner hypersubstitutions. The inner hypersubstitu-
tions form a submonoid of P (V ). In this paper, we are interested in the cardinality of the
quotient set P (V )/∼V where ∼V is the restriction of the relation ∼V defined on Hyp(τ) to
the subset P (V ).

Definition 1.3 The cardinal number dp(V ) := |P (V )/∼V | is called the degree of proper
hypersubstitutions with respect to the variety V .

One extreme case is dp(V ) = 1. In this case P (V ) = P0(V ) = [σid]∼V . In [6] varieties
having this property are called unsolid. This suggests a classification of varieties using the
degree of proper hypersubstitutions.

2 Derived Algebras The class Alg(τ) of all algebras of type τ together with the ho-
momorphisms between them forms a category. If we map each algebra A ∈ Alg(τ) to
the derived algebra σ(A) and each homomorphism h : A −→ B to itself, then we get an
endofunctor Fσ of the category Alg(τ).

Proposition 2.1 For every hypersubstitution σ of type τ we get a functor Fσ : Alg(τ) −→
Alg(τ).

Proof. We prove first that Fσ(h) : σ(A) −→ σ(B) is a homomorphism. For the homo-
morphism h : A −→ B, for every n-ary term t of type τ and for the induced term operations
tA and tB we have h(tA(a1, · · · , an)) = tB(h(a1), · · · , h(an)) for every n-tuple (a1, · · · , an)
of elements from A. Then for the term σ(fi) we have:
h(fi

σ(A)(a1, · · · , ani))
= h(σ(fi)A(a1, · · · , ani))
= σ(fi)B(h(a1), · · · , h(ani))
= f

σ(B)
i (h(a1), · · · , h(ani))

and this shows that Fσ(h) = h : σ(A) −→ σ(B) is a homomorphism for every ho-
momorphism h : A −→ B. Now we check the conditions which a functor has to satisfy.
Let h1 : A −→ B and h2 : B −→ C be homomorphisms. Then we have Fσ(h2 ◦ h1) =
h2 ◦ h1 = Fσ(h2) ◦ Fσ(h1) and for the identity homomorphism idA : A −→ A we have
Fσ(idA) = idA = idσ(A) since the algebras A and σ(A) have the same universes.
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Since any functor preserves isomorphisms, we have

Lemma 2.2 Let A and B be algebras of type τ and let σ be a hypersubstitution. If A ∼= B,
then σ(A) ∼= σ(B).

Using the isomorphism of derived algebras we define a binary relation ∼iso on the set
Hyp(τ).

Definition 2.3 σ1 ∼iso σ2 :⇐⇒ ∀A ∈ Alg(τ)(σ1(A) ∼= σ2(A)).

Clearly ∼iso is an equivalence relation on Hyp(τ). There arises the question of whether
∼iso is a congruence relation on the monoid (Hyp(τ); ◦h, σid). To prove this we need some
preparation.

Lemma 2.4 Let σ1, σ2 ∈ Hyp(τ), let A be an algebra of type τ and let t be an n-ary term
of type τ . Then from σ1(A) ∼= σ2(A) there follows

h(σ̂1[t]A(a1, · · · , an)) = σ̂2[t]A(h(a1), · · · , h(an)) (∗)

for an isomorphism h : σ1(A) −→ σ2(A).

Proof. We will give a proof by induction on the complexity of the term t. Let t =
xi ∈ Xn be a variable. Then h(σ̂1[xi]A(a1, · · · , an)) = h(en,A

i (a1, · · · , an)) = h(ai) =
σ̂2[xi]A(h(a1), · · · , h(an)). Let t = fi(t1, · · · , tni). Assume now inductively that (∗) is
satisfied for tj , j = 1, · · · , ni. Then
h(σ̂1[fi(t1, · · · , tni)]A(a1, · · · , an))

= h(σ1(fi)A[σ̂1[t1]A, · · · , σ̂1[tni ]
A](a1, · · · , an))

= σ2(fi)A(h(σ̂1[t1]A(a1, · · · , an)), · · · , h(σ̂1[tni ]A(a1, · · · , an)))
= σ2(fi)A(σ̂2[t1]A(h(a1), · · · , h(an)), · · · ,

σ̂2[tni ]A(h(a1), · · · , h(an)))
= σ2(fi)A(σ̂2[t1]A, · · · , σ̂2[tni ]

A)(h(a1), · · · , h(an))
= (σ̂2(fi(t1, · · · , tni)))A(h(a1), · · · , h(an))
= σ̂2[t]A(h(a1), · · · , h(an)).

Theorem 2.5 The relation ∼iso is a congruence relation on the monoid (Hyp(τ); ◦h, σid).

Proof. We prove that ∼iso is a left and a right congruence on (Hyp(τ); ◦h, σid). As-
sume that σ1 ∼iso σ2 and σ ∈ Hyp(τ). Then for every algebra A we have σ1(A) ∼=
σ2(A), so by Lemma 2.2 it follows that (σ ◦h σ2)(A) = σ(σ1(A)) = σ(σ2(A)) = (σ ◦h

σ2)(A), and thus σ ◦h σ1 ∼iso σ ◦h σ2. If we substitute the term σ(fi) for t in (∗)
from Lemma 2.4 , then we get from σ1(A) ∼= σ2(A) that h((σ̂1[σ(fi)])A(a1, · · · , ani)) =
(σ̂2[σ(fi)])A(h(a1), · · · , h(ani)) for an isomorphism h : σ1(A) −→ σ2(A). From this equa-
tion we obtain h(((σ1 ◦h σ)(fi))A(a1, · · · , ani)) = ((σ2 ◦h σ)(fi))A(h(a1), · · · , h(ani)). Since
((σj ◦h σ)(fi))A, j = 1, 2, are the fundamental operations of the algebras (σj ◦h σ)(A)
and since h : A −→ A is bijective, we have (σ1 ◦h σ)(A) ∼= (σ2 ◦h σ)(A) and then
σ1 ◦h σ ∼iso σ2 ◦h σ.

Let V be a variety of type τ . Then for hypersubstitutions σ1, σ2 ∈ Hyp(τ) we define :

Definition 2.6 σ1 ∼V −iso σ2 :⇐⇒ ∀A ∈ V (σ1(A) ∼= σ2(A)).
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Clearly, ∼iso=∼Alg(τ)−iso. If V1, V2 are varieties of type τ and V1 ⊆ V2, then
∼iso⊆∼V2−iso⊆∼V1−iso. Since from σ1 ∼V σ2 there follows σ1(A) = σ2(A) for all A ∈ V
and since from σ1(A) = σ2(A) we get σ1(A) ∼= σ2(A), we have also ∼V ⊆∼V −iso for every
variety V of algebras of type τ . Moreover, we have P0(V ) ⊆ [σid]V −iso ⊆ P (V ).

Proposition 2.7 Let V be a variety of type τ and let σ1, σ2 ∈ Hyp(τ). Then the following
holds : If s ≈ t ∈ IdV , if σ1 ∼V −iso σ2 and if σ̂1[s] ≈ σ̂1[t] ∈ IdV , then σ̂2[s] ≈ σ̂2[t] ∈ IdV .

Proof. From σ1 ∼V −iso σ2 there follows σ1(A) ∼= σ2(A) for every A in V . By the
conjugate property from σ̂1[s] ≈ σ̂1[t] ∈ IdA we get s ≈ t ∈ Idσ1(A) and by the isomor-
phism σ1(A) ∼= σ2(A) we have also s ≈ t ∈ Idσ2(A) or σ̂2[s] ≈ σ̂2[t] ∈ IdA. Therefore
σ̂2[s] ≈ σ̂2[t] ∈ IdV .

As a consequence we have

Corollary 2.8 The monoid P (V ) of all V -proper hypersubstitutions of type τ is a union
of equivalence classes with respect to ∼V −iso .

The relation ∼V −iso is an equivalence relation and a left-congruence, but in general not a
congruence on (Hyp(τ); ◦h, σid).

Definition 2.9 The cardinality isdp(V ) := |P (V )/∼V −iso | is called the isomorphism de-
gree of proper hypersubstitutions with respect to the variety V .

3 Some General Results We mentioned already that for a solid variety V the relation
∼V is a congruence on (Hyp(τ); ◦h, σid) and therefore, the restriction of ∼V is a congruence
on (P (V ); ◦h, σid). If V is solid, then by Lemma 2.2 the relation ∼V −iso is also a congruence.
Now we want to characterize solid varieties with dp(V ) = 1 and with dp(V ) = 2, respectively.
For dp(V ) = 1 in [6] was proved:

Proposition 3.1 A non-trivial variety V is solid and has dp(V ) = 1 iff τ = (1, · · · , 1, · · · )
and V = Mod{fi(x) ≈ x | i ∈ I}. (This means that every operation symbol is unary and
satisfies the same identity fi(x) ≈ x.)

Now for dp(V ) = 2 we have :

Proposition 3.2 A non-trivial variety V of type τ is solid and has dp(V ) = 2 iff τ = (1)
and V = Mod{f(x) ≈ f(f(x))} or V = Mod{x ≈ f(f(x))}.
Proof. If τ = (1) and V = Mod{x ≈ f(f(x))}, then Hyp(τ) = [σx]∼V ∪ [σf(x)]∼V .
It is easy to check that σx, σf(x) ∈ P (V ) and x ≈ f(x) �∈ IdV . Thus |P (V )/∼V | =
|{[σx]∼V , [σf(x)]∼V }| = 2 and P (V ) = Hyp(τ), i.e. V is solid and dp(V ) = 2. By similar
arguments we get that V = Mod{f(x) ≈ f(f(x))} is solid and dp(V ) = 2. Suppose
now that V is solid and dp(V ) = 2. Let τ = (ni)i∈I with ni ≥ 2 for some i ∈ I. Then
[σx1 ]∼V = [σx2 ]∼V or [σx1 ]∼V = [σfi(x1,x2,··· ,x2)]∼V or [σx2 ]∼V = [σfi(x1,x2,··· ,x2)]∼V . Then
x1 ≈ x2 ∈ IdV or x1 ≈ fi(x1, x2, · · · , x2) ∈ IdV or x2 ≈ fi(x1, x2, · · · , x2) ∈ IdV. Since V is
non-trivial x1 ≈ x2 ∈ IdV is not possible. Since V is solid, it contains the variety RAτ of all
rectangular algebras (see e.g. [4]), i.e. the variety RAτ which is generated by all projection
algebras of type τ . But this is a contradiction since neither x1 ≈ fi(x1, x2, · · · , x2) ∈ IdRAτ

nor x2 ≈ fi(x1, x2, · · · , x2) ∈ IdRAτ . This shows that τ = (1, · · · , 1). Since dp(V ) �= 1 by
Proposition 3.1 there is an i ∈ I such that x ≈ fi(x) �∈ IdV . This shows that Hyp(τ) =
[σx]∼V ∪ [σfi(x)]∼V since dp(V ) = 2 and P (V ) = Hyp(τ). Assume that | I |> 1. Then
there is a j ∈ I \ {i} and σfj(x) ∈ [σx]∼V or σfj(x) ∈ [σfi(x)]∼V , i.e. x ≈ fj(x) ∈ IdV
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or fi(x) ≈ fj(x) ∈ IdV. Applying the hypersubstitutions σ1, σ2 which map fj to fi(x)
and fk to fk(x) for all k �= j and fj to x and fk to fk(x), respectively for all k �= j to
x ≈ fj(x) or to fi(x) ≈ fj(x) we get x ≈ fi(x) ∈ IdV , a contradiction. Thus τ = (1).
Further we have σfi(fi(x)) ∈ [σx]∼V or afi(fi(x)) ∈ [σfi(x)]∼V , i.e. x ≈ fi(fi(x)) ∈ IdV or
fi(x) ≈ fi(fi(x)) ∈ IdV . In the first case we obtain fi

k(x) ≈ fi
k+2l(x) ∈ IdV (where

fi
k(x) := fi(· · · fi(x) · · · )) for k, l ∈ N and in the second case we have fi

k(x) ≈ f l(x) ∈ IdV
for k, l ≥ 1, k, l ∈ N. Assume that x ≈ fi(fi(x)) ∈ IdV and fi

k(x) ≈ fi
k+2l+1(x) ∈ IdV for

some k, l ∈ N. Then both identities give x ≈ fi(x) ∈ IdV , a contradiction. Assume that
fi(x) ≈ fi

2(x) ∈ IdV and x ≈ fi
k(x) ∈ IdV for some 1 ≤ k ∈ N. Then both identities give

x ≈ fi(x) ∈ IdV , a contradiction. Altogether, this shows that V = Mod{f(x) ≈ f(f(x))}
or V = Mod{x ≈ f(f(x))}.

Clearly, if V, V ′ are solid varieties of the same type and V ′ ⊆ V , then dp(V ′) ≤ dp(V ).
The following lemma provides a lower bound of dp(V ) for a solid variety V . Let Hn be the
set of all functions defined on {1, · · · , n} and let Ims be the image of s ∈ Hn.

Lemma 3.3 Let V be a non-trivial solid variety of type τ = (ni)i∈I such that n := max{ni |
i ∈ I} exists. Then dp(V ) ≥ (Πi∈Ini) + nn − n.

Proof. case 1: n = max{ni | i ∈ I} = 1.
Clearly, the variety V ′ = Mod{fi(x) ≈ x | i ∈ I} is contained in any non-trivial solid
variety of type τ = (1, · · · , 1) and has dp(V ′) = 1. Therefore dp(V ) ≥ 1.
case 2: n := max{ni | i ∈ I} > 1.
Then there is a j ∈ I such that nj = n. A hypersubstitution which maps each operation
symbol to a variable is called a projection hypersubstitution. There are exactly Πi∈Ini

different projection hypersubstitutions of type τ = (ni)i∈I . Since V is non-trivial for any
pair σ, σ′ of distinct projection hypersubstitutions we have σ �∼V σ′. Since V is solid, ev-
ery projection hypersubstitution is V -proper and therefore P (V )/∼V contains the Πi∈Ini

pairwise different blocks generated by the projection hypersubstitutions.
Now we consider the hypersubstitutions σj

s which map the n-ary operation symbol fj

to fj(xs(1), · · · , xs(n)) for any s ∈ Hn and fi, i �= j, i ∈ I, to the (fundamental) term
fi(x1, · · · , xni). We show that these hypersubstitutions generate pairwise different blocks
with respect to ∼V . We will verify that
Claim: fj(xs(1), · · · , xs(n)) ≈ fj(xs′(1), · · · , xs′(n)) �∈ IdV for all s, s′ ∈ Hn, s �= s′.
Suppose that there are distinct mappings s, s′ ∈ Hn such that fj(xs(1), · · · , xs(n)) ≈
fj(xs′(1), · · · , xs′(n)) ∈ IdV . From s �= s′ there follows that there is a k ∈ {1, · · · , n}
such that s(k) �= s′(k). Let σ be a projection hypersubstitution with σ(fj) = xk. Then
σ̂[fj(xs(1), · · · , xs(n))] = xs(k) ≈ xs′(k) = σ̂[fj(xs′(1), · · · , xs′(n))] ∈ IdV . But this means
that V is trivial, a contradiction. The claim shows that σj

s �∼V σj
s′ for s �= s′. Therefore

P (V )/∼V contains the nn pairwise different blocks generated by these hypersubstitutions.
Now we want to verify that no projection hypersubstitution can collapse (with respect to
∼V ) with a hypersubstitution of the form σj

s as above if the mapping s is non-constant. Sup-
pose that there are a projection hypersubstitution σ and a non-constant mapping s ∈ Hn

with σ ∼V σj
s. Then we have σ(fj) = xjl

≈ fj(xs(1), · · · , xs(n)) = σj
s(fj) ∈ IdV . Since

|Ims| > 1, there is a k ∈ {1, · · · , n} such that s(k) �= jl and thus xjl
�= xs(k). Let

σ′ be a projection hypersubstitution with σ′(fi) = xs(k). Then σ̂′[xjl
] = xjl

≈ xs(k) =
σ̂′[fj(xs(1), · · · , xs(n))] ∈ IdV , a contradiction since V is non-trivial. Since there are exactly
n hypersubstitutions mapping fj to a term of the form fj(xc, · · · , xc) for some c ∈ {1, · · · , n}
we get dp(V ) ≥ (Πi∈Ini) + nn − n.
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The following generalization of Propositions 3.1 and 3.2 shows how dp(V ) for a solid
variety V can influence the type of V as well as the identities valid in V . We consider the
case that dp(V ) is minimal.

Proposition 3.4 Let V be a non-trivial solid variety of type τ = (ni)i∈I , ni ≥ 1 for all
i ∈ I such that n = max{ni | i ∈ I} exists. If dp(V ) = (Πi∈Ini)+nn−n < ℵ0, then there is
a j ∈ I such that nj = n, while for all other i �= j we have ni = 1 and the identity fi(x) ≈ x
hold in V . Moreover, for all terms t ∈ Wτ (Xn) one of the following conditions is satisfied

(i) ∃ l ∈ {1, · · · , n}(t ≈ xl ∈ IdV ),

(ii) ∃ s ∈ Hn, s is non-constant and t ≈ fj(xs(1), · · · , xs(n)) ∈ IdV .

Proof. Since max{ni | i ∈ I} exists there is a j ∈ I such that nj = n. We show that
ni = 1 for all i ∈ I with i �= j. We may assume first that n > 1. Suppose that there is a
k ∈ I with k �= j and nk > 1. Let idn ∈ Hn be the identity mapping and let σ′′ be the
hypersubstitution defined by σ′′(fj) = fj(x1, · · · , xn) and σ′′(fi) = xni for all i ∈ I\{j}. By
the claim in the proof of Lemma 3.3 we have σ′′ �∼V σj

s for all s ∈ Hn \{idn} where σj
s is the

hypersubstitution mapping fj to fj(xs(1), · · · , xs(n)), s ∈ Hn and fi to fi(x1, · · · , xni) for
any i �= j, i ∈ I, which was used in the proof of Lemma 3.3. Since V is solid and n, nk > 1 we
have xm ≈ fj(x1, · · · , xn) �∈ IdV for all m ∈ {1, · · · , n} and xl ≈ fk(x1, · · · , xnk

) �∈ IdV for
all l ∈ {1, · · · , nk} . Then there follows σ′′(fk) = xnk

≈ fk(x1, · · · , xnk
) = σj

idn
(fk) �∈ IdV

for every k �= j and σ′′(fj) = fj(x1, · · · , xn) ≈ xjl
= σ(fj) �∈ IdV for 1 ≤ jl ≤ nj ≤ n

and any nj-ary projection hypersubstitution σ. We obtain σ′′ �∼V σj
idn

and σ′′ �∼V σ. This
means, [σ′′]∼V �∈ {[σ]∼V | σ is a projection hypersubstitution }∪ {[σj

s]∼V | s ∈ Hn, s �= idn}
and dp(V ) > (Πi∈Ini) + nn − n, a contradiction. Therefore nk = 1 for all k ∈ I \ {j},
i.e. τ = (1, · · · , n, 1, · · · ). We want to show that V satisfies the identities fi(x) ≈ x for
every i �= j, i ∈ I. Let σ′′′ be the hypersubstitution defined by σ′′′(fj) = fj(x1, · · · , xn) and
σ′′′(fi) = x1 for all i ∈ I \ {j}. Clearly, σ′′′ �∼V σ for any projection hypersubstitution σ
since xm ≈ fj(x1, · · · , xn) �∈ IdV for all 1 ≤ m ≤ n. Further, σ′′′ �∼V σj

s for all s ∈ Hn\{idn}
by the claim in the proof of Lemma 3.3. Since Hyp(τ)/∼V = {[σ]∼V | σ is a projection
hypersubstitution } ∪ {[σj

s]∼V | s ∈ Hn and |Ims| > 1} thus (by the proof of Lemma
3.3) we must have σ′′′ ∼V σid. Now, for t ∈ Wτ (Xn) we have to verify (i) or (ii). We
define the hypersubstitution σt by σt(fj) := t and σt(fi) := fi(x1) for all i ∈ I \ {j}.
From Hyp(τ)/∼V = {[σ]∼V | σ is a projection hypersubstitution } ∪ {[σj

s]∼V | s ∈ Hn

and |Ims| > 1} follows that there is a projection hypersubstitution σ with σt ∼V σ or
that there is a non-constant mapping s ∈ Hn with σt ∼V σj

s . In the first case we have
σt(fj) = t ≈ xjl

= σ(fj) ∈ IdV for some 1 ≤ jl ≤ n and in the second case we have
σt(fj) = t ≈ fj(xs(1), · · · , xs(n)) = σj

s(fj) ∈ IdV . If n = 1, then by Proposition 3.1 we get
V = Mod{fi(x) ≈ x | i ∈ I} and from these equations for any t ∈ Wτ (X1) we can derive
the identities t ≈ x1.

We next show that the converse is also satisfied. Altogether we have

Theorem 3.5 Let V be a non-trivial solid variety of type τ = (ni)i∈I , ni ≥ 1 for all i ∈ I
such that n = max{ni | i ∈ I} exists. Then dp(V ) = (Πi∈Ini) + nn − n < ℵ0 if and only if
the following conditions are satisfied :

(i) There is a j ∈ I such that nj = n and ni = 1 for all i ∈ I, i �= j.

(ii) fi(x) ≈ x ∈ IdV for any unary operation symbol fi, i �= j.
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(iii) For any term t ∈ Wτ (Xn) one of the following conditions holds:

(a) ∃ l ∈ {1, · · · , n}(t ≈ xl ∈ IdV ),

(b) ∃ s ∈ Hn with | Ims |> 1(t ≈ fj(xs(1), · · · , xs(n)) ∈ IdV )
(where fj is the n-ary operation symbol).

Proof. For the type τ = (1, · · · , 1, n, 1, · · · , 1, · · · ) we have Πi∈Ini + nn − n = nn.
Therefore we have to show that dp(V ) = nn if V satisfies all conditions given in the theorem.
Let fj be the n-ary operation symbol and let xl ∈ {x1, · · · , xn}. For the n-ary term
t = fj(xl, · · · , xl) by (iii)

we have the following possibilities: for each l ∈ {1, · · · , n}, we have fj(xl, · · · , xl) ≈
xp ∈ IdV for some 1 ≤ p ≤ n or fj(xl, · · · , xl) ≈ fj(xs(1), · · · , xs(n)) ∈ IdV for some
s ∈ Hn with |Ims| > 1. The latter case is impossible by the solidity of V , and in the former
case we can rule out p �= l again by the solidity of V . Therefore fj(xl, · · · , xl) ≈ xl ∈ IdV
for l ∈ {1, · · · , n}. The identities fi(x) ≈ x ∈ IdV for all i ∈ I \ {j} and the identity
fj(x, · · · , x) ≈ x ∈ IdV show that Wτ (X1)/IdV = {[x]IdV }. This means that Hyp(τ)/∼V

contains precisely all classes of hypersubstitutions mapping fi to x1 for every i ∈ I, i �= j
and fj to one of the terms fj(xs(1), · · · , xs(n)) for s ∈ Hn. Since all these hypersubstitutions
are proper we have dp(V ) = nn. Together with Proposition 3.4 we have a proof of Theorem
3.5.

The variety RAτ generated by the set of all projection algebras of type τ is called the variety
of rectangular algebras. RAτ is for any type τ the least non-trivial solid variety of type τ .
For type τ = (1, · · · , n, · · · , 1) we obtain dp(RAτ ) = nn.
One could also consider the cardinality of P (V ) instead of |P (V )/∼V |.
Definition 3.6 sdp(V ) := |P (V )| is called the strict degree of proper hypersubstitutions
with respect to the variety V .

Example 3.7 Let cvα(t) be the total number of occurrences of the variable α ∈ X in the
term t. If α = xi we will write for short cvi(t) instead of cvxi(t). Then we will show
that for the type (2) variety V = Mod{(xy)(zw) ≈ x(y(zw))}, we have sdp(V ) = 3. Let
σt ∈ P (V ) be the hypersubstitution which maps the binary operation symbol f to the binary
term t. Then σ̂t[(xy)(zw)] ≈ σ̂t[x(y(zw))] ∈ IdV where cvx(σ̂t[(xy)(zw)]) = (cv1(t))2 and
cvx(σ̂t[x(y(zw)]) = cv1(t). Since for every identity u ≈ v in V the numbers cvα(u) and
cvα(v) for all α ∈ X are equal, we have cv1(t) ≤ 1. Moreover, we have cvw(σ̂t[(xy)(zw)]) =
(cv2(t))2 and cvw(σ̂t[x(y(zw)]) = (cv2(t))3 by the previous argument we get cv2(t) ≤ 1.
Therefore, P (V ) ⊆ {σx1 , σx2 , σx1x2 , σx2x1}. It is easy to see that only σx1 , σx2 and σx1x2

are V -proper; P (V ) = {σx1 , σx2 , σx1x2} and sdp(V ) = 3. Since in V there are only regular
identities and since V is non-trivial, none of the equations x1 ≈ x2, x1 ≈ x1x2, x2 ≈ x1x2 is
an identity in V and thus we have also dp(V ) = 3.

Now we look for the largest number dp(V ). The case that the index set I is finite is
especially important. For this case we want to prove that dp(V ) ≤ ℵ0. For the proof we
need some preparation. First of all we want to assign to each n-ary term t a natural number
which we call the label of t.

Definition 3.8 Let τ = (ni)i∈I be a type where I is at most countably infinite. Let
s : I −→ N be an injection. Then we define the sequence labs as follows:

(i) labs(xk) = k for each variable xk ∈ Xn.
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(ii) If xk1 , · · · , xkni
∈ Xn and if fi is an ni-ary operation symbol,

then labs(fi(xk1 , · · · , xkni
)) = s(i)k1 · · · kni .

(iii) If t1, · · · , tnj are n-ary terms for some natural number n ≥ 1 and if fj is an nj-ary
operation symbol, then labs(fj(t1, · · · , tnj )) = s(j)labs(t1) · · · labs(tnj ).

In this way, to each term t we associate a natural number. It is easy to see that labs(t) �=
labs(t′) whenever t �= t′. This means that the mapping which maps each term to its label is
one-to-one. Then we have

Proposition 3.9 Let τ = (ni)i∈I be a type which is at most countably infinite. Then
|Wτ (Xn)| = ℵ0 for each n ≥ 1. Moreover, |Wτ (X)| = ℵ0.

Proof. The labelling of every n-ary term defines a one-to-one mapping labs : Wτ (Xn) −→
N. Therefore, |Wτ (Xn)| ≤| N |= ℵ0. But even if the type contains only one operation sym-
bol, for each natural number n there is a term t ∈ Wτ (Xn) such that in t the operation

symbol occurs n times. Thus, |Wτ (Xn)| = ℵ0. Since Wτ (X) :=
∞⋃

n=1
Wτ (Xn) is a countable

union of the countable sets Wτ (Xn), it is countable.

It is well-known that for a countable set A and a natural number l the set

[A]l := {S ⊆ A | |S| ≤ l}
is also countable. We use this fact to prove the following theorem.

Theorem 3.10 Let τ = (ni)i∈I be a finite type, i.e. I is a finite set. Then |Hyp(τ)| ≤ ℵ0.

Proof. Since I is finite, there is a natural number l such that |{fi | i ∈ I}| = l. Any
hypersubstitution of type τ maps each ni-ary operation symbol to an ni-ary term. Let
n := max{ni | i ∈ I}. Then σ({fi | i ∈ I}) ⊆ Wτ (Xn) and |σ({fi | i ∈ I})| ≤ l. Since by
Proposition 3.9 the set Wτ (Xn) is countable, we get |Hyp(τ)| ≤ ℵ0.

Since P (V ) ⊆ Hyp(τ), |P (V )/∼V | ≤ |P (V )| and |P (V )/∼V −iso | ≤ |P (V )| we have :

Corollary 3.11 Let τ = (ni)i∈I be a finite type. Then for any variety V of type τ , dp(V ) ≤
ℵ0, sdp(V ) ≤ ℵ0 and isdp(V ) ≤ ℵ0.

The variety Alg(τ) of all algebras of type τ is solid, thus Hyp(τ) = P (Alg(τ)). As-
sume that τ = (n). Then |Hyp(τ)| = |Wτ (Xn)| = ℵ0 and |P (Alg(τ))| = ℵ0. Since
s ≈ t ∈ IdAlg(τ) iff s = t the relation ∼Alg(τ) is the diagonal and thus |P (Alg(τ))| =
|P (Alg(τ))/∼Alg(τ) | = ℵ0. This shows dp(V ) = sdp(V ) = ℵ0 and isdp(V ) ≤ ℵ0.
Now we want to give an example of a variety V of type τ = (2) such that isdp(V ) =
|P (Alg(V ))/∼Alg(V ) | = ℵ0.

Proposition 3.12 For the variety V = Mod{f(x, x) ≈ x} of type τ = (2) there holds
isdp(V ) = ℵ0.

Proof. We inductively define a sequence (σk)k≥1,k∈N of hypersubstitutions as follows

(i) σ1(f) := f(x1, x2)

(ii) σk+1(f) := f(σk(f), x2) for k ∈ N, k ≥ 1.
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It is easy to see that V is solid and therefore P (V ) = Hyp(τ) and thus σk ∈ P (V ) for
all k ≥ 1, k ∈ N. Now we prove that for k �= l we have σk �∼V −iso σl. For each natural
number n ≥ 1 we define the following algebra Sn = (Sn; fn). Let Sn := {a1, · · · , an+2}
be an (n + 2)-element set and let the binary operation fn : Sn × Sn −→ Sn, for each pair
ai, aj , i, j ∈ {1, · · · , n + 2} be defined as follows

fn(ai, aj) =

⎧⎪⎪⎨
⎪⎪⎩

ai if i = j
ai+1 for 1 ≤ j < n and j + 1 ≤ i ≤ n,
aj+1 for 1 ≤ i < n and i + 1 ≤ j ≤ n,
an+2 otherwise.

Since fn is idempotent Sn belongs to the variety V . For 1 ≤ k < l ∈ N we want to show
that σk(Sl) �∼= σl(Sl). Let 1 ≤ i < l and i + 1 ≤ j, so that we are considering only the last
two cases in the general definition for fl. Then we prove by induction on r that

σr(f)Sl(ai, aj) =
{

al+2 if r + j > l + 1
ar+j if r + j ≤ l + 1. (∗)

For r = 1 we have

σ1(f)Sl(ai, aj) = fl(ai, aj) =
{

al+2 if j > l , i.e. r + j > l + 1
aj+1 if j ≤ l , i.e. r + j ≤ l + 1.

Inductively, we assume now that

σp(f)Sl(ai, aj) =
{

al+2 if p + j > l + 1
ap+j if p + j ≤ l + 1.

Then we have
σp+1(f)Sl(ai, aj) = fl(σp(f)Sl(ai, aj), aj)

=
{

fl(al+2, aj) if p + j > l + 1
fl(ap+j , aj) if p + j ≤ l + 1.

Since p + j > l + 1 implies p + 1 + j > l + 1, we get fl(al+2, aj) = al+2. Moreover, we
have

fl(ap+j , aj) =
{

al+2 if p + j > l , i.e. p + 1 + j > l + 1
ap+1+j if p + j ≤ l and p + 1 + j ≤ l + 1.

This proves (∗) and for i, j ∈ {1, · · · , l + 2} there holds

σl(f)Sl(ai, aj) =
{

al+2 if i �= j
ai if i = j.

But for k < l we have al+2 �= ak+2 = σk(f)Sl(a1, a2). This prove σk(Sl) �∼= σl(Sl) and thus
σk �∼V −iso σl. Because of Corollary 3.11 we have isdp(V ) = ℵ0.

Since ∼V is a subrelation of ∼V −iso we have

Corollary 3.13 For V = Mod{f(x, x) = x} we have dp(V ) = ℵ0.

In the next section we consider varieties of bands.
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4 The Degree of Proper Hypersubstitutions for Varieties of Bands and Me-
dial Semigroups Bands are idempotent semigroups. Let B be the variety of all bands.
There are a countably infinite number of subvarieties of B, and the structure of the lattice
they form has been completely determined ([2], [8], [9]). The diagram of the lattice of all
varieties of bands shown below is due to Gerhard and Petrich ([10]). Each of these varieties
is defined by the associative and idempotent laws, plus one additional identity. We will be
particularly interested in several of these varieties listed here and shown by the diagram

  

      

     

   

   
 SL RZ       LZ

TR

RNLN  
   RB

NBLReg RReg

RQNLQN

RegB

 

TR = Mod{x1 ≈ x2},
LZ = Mod{x1x2 ≈ x1},
RZ = Mod{x1x2 ≈ x2},
SL = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x2x1},
RB = Mod{x1(x2x3) ≈ (x1x2)x3 ≈ x1x3, x1

2 ≈ x1},
NB = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3x4 ≈ x1x3x2x4},
RegB = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x1x3x1

≈ x1x2x3x1},
LN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x3x2},
RN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x2x1x3},
LReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x1x2x1},
RReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x2x1x2},
LQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x2x1x3},
RQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2x3 ≈ x1x3x2x3}.

First of all we show that every variety V of bands satisfies ∼V =∼V −iso .

Proposition 4.1 For each variety of bands we have ∼V =∼V −iso .

Proof. We have to show that ∼V −iso⊆∼V . We denote by S1(S2) a two-element left-zero
(right-zero) semigroup and by S3 a two-element semilattice. We denote the hypersubstitu-
tion by σt which maps our binary operation symbol to the term t. If B is the variety of all
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bands, then Hyp(2)/∼B= {[σx1 ]∼B , [σx2 ]∼B , [σx1x2 ]∼B , [σx2x1 ]∼B , [σx1x2x1 ]∼B , [σx2x1x2 ]∼B}.
The variety NB is the least variety of bands which contains S1 and S2 and S3. There-
fore, for each variety V of bands we have either S1,S2,S3 ∈ V (if NB ⊆ V ) or V ∈
{TR, LZ, RZ, SL, RB, LN, RN, LReg, RReg} (if NB �⊆ V ). The following isomorphisms
are easy to check:

σx1 [S1] ∼= S1 σx1 [S2] ∼= S1 σx1 [S3] ∼= S1

σx2 [S1] ∼= S2 σx2 [S2] ∼= S2 σx2 [S3] ∼= S2

σx1x2 [S1] ∼= S1 σx1x2 [S2] ∼= S2 σx1x2 [S3] ∼= S3

σx2x1 [S1] ∼= S2 σx2x1 [S2] ∼= S1 σx2x1 [S3] ∼= S3

σx1x2x1 [S1] ∼= S1 σx1x2x1 [S2] ∼= S1 σx1x2x1 [S3] ∼= S3

σx2x1x2 [S1] ∼= S2 σx2x1x2 [S2] ∼= S2 σx2x1x2 [S3] ∼= S3.

Using this list of isomorphisms it is easy to check that for any two hypersubstitutions
σ1, σ2 ∈ {σx1 , σx2 , σx1x2 , σx2x1 , σx1x2x1 , σx2x1x2} with σ1 �∼V σ2 there is an i ∈ {1, 2, 3}
such that σ1[Si] �∼= σ2[Si], i.e. with σ1 �∼V −iso σ2. Let σ1, σ2 ∈ Hyp(2) with σ1 ∼V −iso σ2.
Then σ1, σ2 belong to one of the six classes with respect to ∼V , i.e. there are σ1

′, σ2
′ ∈

{σx1 , σx2 , σx1x2 , σx2x1 , σx1x2x1 , σx2x1x2} with σ1 ∼V σ1
′ and σ2 ∼V σ2

′. From ∼V ⊆∼V −iso

we obtain σ1 ∼V −iso σ1
′ and σ2 ∼V −iso σ2

′ and thus σ1
′ ∼V −iso σ2

′. By the previous
considerations we have σ1

′ ∼V σ2
′ and then also σ1 ∼V σ2. This shows ∼V −iso⊆∼V .

Now we determine dp(V ) (and thus isdp(V )) for each variety V of bands. Since the
2-generated free algebra over the variety of bands contains 6 elements, for each variety V
of bands we have dp(V ) ≤ 6. In the following theorem we need the concept of a dualsolid
variety of type τ = (2). The variety V of type τ = (2) is dualsolid if σ̂x2x1 [s] ≈ σ̂x2x1 [t] ∈ IdV
for every identity s ≈ t satisfied in V .

Theorem 4.2 Let V be a variety of bands. Then
dp(V ) = 1 iff V ∈ {TR, LZ, RZ, SL},
dp(V ) = 2 iff V ∈ {LN, RN, LReg, RReg},
dp(V ) = 3 iff V is not dual solid and V �∈ {LZ, RZ,
LN, RN, LReg, RReg, LQN, RQN},
dp(V ) = 4 iff V is dual solid and either V �∈ {TR, SL, NB, RegB} or V ∈ {LQN, RQN},
dp(V ) = 6 iff V ∈ {NB, RegB}.

Proof. It is easy to see that dp(TR) = dp(LZ) = dp(RZ) = dp(SL) = 1. Further,
Hyp(2) = [σx1 ]∼LN ∪ [σx2 ]∼LN ∪ [σx1x2 ]∼LN ∪ [σx2x1 ]∼LN since x1x2x1 ≈ x1x2, x2x1x2 ≈
x2x1 ∈ IdLN and x1 ≈ x2, x1 ≈ x1x2, x1 ≈ x2x1, x1x2 ≈ x2x1 �∈ IdLN. The hypersubstitu-
tions σx1 and σx1x2 are LN -proper. If we apply σ̂x2 to x1x2x3 ≈ x1x3x2 we obtain x3 ≈ x2

which is not satisfied in LN and applying σ̂x2x1 to x1x2x3 ≈ x1x3x2 give x3x2x1 ≈ x2x3x1

which is also not satisfied. Therefore P (LN)/ ∼LN |P(LN)
= {[σx1 ]∼LN , [σx1x2 ]∼LN } and

dp(LN) = 2. Similarly we show that dp(RN) = 2. We show in a similar way that
dp(LReg) = dp(RReg) = 2. From the properties of the basis of the identities in NB
there follows that in NB there are only outermost and regular identities. It is easy to check
that Hyp(2) = [σx1 ]∼NB ∪ [σx2 ]∼NB ∪ [σx1x2 ]∼NB ∪ [σx2x1 ]∼NB ∪ [σx1x2x1 ]∼NB ∪ [σx2x1x2 ]∼NB

and that this is a partition of Hyp(2). Since NB is solid, we get dp(NB) = 6. In a sim-
ilar way we prove that dp(RegB) = 6. It is clear that Hyp(2) = [σx1 ]∼RB ∪ [σx2 ]∼RB ∪
[σx1x2 ]∼RB ∪ [σx2x1 ]∼RB and that there is no collapsing of these classes since all identi-
ties in RB are outermost. Since RB is solid, we get P (RB) = Hyp(2) and this gives
dp(RB) = 4. Now we consider the varieties LQN and RQN . It is easy to check that
Hyp(2) = [σx1 ]∼LQN ∪[σx2 ]∼LQN ∪[σx1x2 ]∼LQN ∪[σx2x1 ]∼LQN ∪[σx1x2x1 ]∼LQN ∪[σx2x1x2 ]∼LQN .
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Since from the identity basis we can only derive regular and outermost identities σx1 , σx2 are
LQN -proper. The identity hypersubstitution is also LQN -proper. We show that σx1x2x1

is LQN -proper. If we apply σ̂x1x2x1 to the associative law or to x1x2x3 ≈ x1x2x1x3 we
obtain x1x2x3x2x1 ≈ x1x2x1x3x1x2x1 which is a consequence of x1x2x3 ≈ x1x2x1x3 ∈
IdLQN . If we apply σ̂x1x2x1 to the idempotent law we get an identity which is satisfied in
LQN . The hypersubstitution σx2x1x2 is not LQN -proper since the application to x1x2x3 ≈
x1x2x1x3 gives x3x2x1x2x3 ≈ x3x1x2x1x2x1x3. ¿From this identity we can derive the me-
dial law which is not satisfied in LQN . Altogether we have |P (LQN )/∼LQN |P (LQN) | =
|{[σx1 ]∼LQN , [σx2 ]∼LQN , [σx1x2 ]∼LQN , [σx1x2x1 ]∼LQN }| = 4 = dp(LQN ). In a similar way we
show that dp(LQN ) = 4. Let now V be a dual solid variety different from TR, SL, RB, NB
and RegB. Then we have Hyp(2) = [σx1 ]∼V ∪[σx2 ]∼V ∪[σx1x2 ]∼V ∪[σx2x1 ]∼V ∪[σx1x2x1 ]∼V ∪
[σx2x1x2 ]∼V . Since V is dual solid, the hypersubstitutions σx1x2 and σx2x1 are V -proper. As
a consequence of V �= TR, SL and since V is dual solid we have σx1 , σx2 ∈ P (V ). The ap-
plication of σx1x2x1 to the associative law provides x1x2x3x2x1 ≈ x1x2x1x3x1x2x1. ¿From
this equation we derive x1x2x3x1 ≈ x1x2x1x3x1 in the following way

x1x2x3x1 ≈ x1x2x3x3x2x3x1

≈ x1x2x3x1x3x1x2x3x1

≈ x1x2x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x2x1x3x1

≈ x1x2x1x3x1x1x2x1x3x1

≈ x1x2x1x3x1.

This shows V ⊆ RegB. But TR, SL, RB, NB and RegB are the only dual solid sub-
varieties of RegB. Since V is different from these varieties we have σx1x2x1 �∈ P (V ).
The same argument shows σx2x1x2 �∈ P (V ). Since RB ⊆ V the set IdV of all identi-
ties satisfied in V consists only of outermost identities and this shows |P (V )/∼V |P (V )

| = |{[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V , [σx2x1 ]∼V }| = 4, i.e. dp(V ) = 4. Finally, if V is a not
dual solid variety different from LZ, RZ, LN, RN, LReg, RReg, LQN, RQN, then Hyp(2) =
[σx1 ]∼V ∪ [σx2 ]∼V ∪ [σx1x2 ]∼V ∪ [σx2x1 ]∼V ∪ [σx1x2x1 ]∼V ∪ [σx2x1x2 ]∼V . We can prove that
σx2x1 , σx1x2x1 , σx2x1x2 �∈ P (V ). Then |P (V )/∼V |P (V ) |
= |{[σx1 ]∼V , [σx2 ]∼V , [σx1x2 ]∼V }| = 3, i.e. dp(V ) = 3. Since there are no more varieties of
bands, in each case we have also the opposite direction.

A semigroup is called medial if the medial law x1x2x3x4 ≈ x1x3x2x4 is satisfied as an
identity. We consider varieties of medial semigroups satisfying the identities x2

1x2 ≈ x1x
2
2 ≈

x1x2, i.e. all subvarieties of the variety Vbig := Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x3x4 ≈
x1x3x2x4, x

2
1x2 ≈ x1x

2
2 ≈ x1x2}. The two-generated free algebra over this variety consists

exactly of the classes [x1]∼Vbig
, [x2]∼Vbig

,

[x1x2]∼Vbig
, [x2x1]∼Vbig

, [x2
1]∼Vbig

, [x2
2]∼Vbig

, [x1x2x1]∼Vbig
, [x2x1x2]∼Vbig

.
Therefore, for any V ⊆ Vbig we have |Hyp(2)/∼V | ≤ 8 and then also dp(V ) ≤ 8. If V is also
a variety of bands, then V ⊆ NB since NB is the greatest medial and idempotent variety
of semigroups. In this case the degree of proper hypersubstitution is given by Theorem
4.2. Therefore we may assume that V �⊆ NB. Therefore [σx1 ]∼V �= [σx1x2 ]∼V , [σx1 ]∼V �=
[σx2x1 ]∼V , [σx1 ]∼V �= [σx2

1
]∼V , [σx1 ]∼V �= [σx2 ]∼V . The identities of Vbig have a particular

form. An equation s ≈ t of terms of an arbitrary type τ is called normal if either both
terms s and t are equal to the same variable or none of them is a variable. A variety in
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which all identities are normal is called a normal variety. The concept of normalization was
first studied by Mel’nik([12]) and P�lonka ([13]) and later by Graczyńska ([11]), Chajda ([3]
and Denecke/Wismath ([7]).
Let N(τ) be the set of all normal equations of type τ . If V is a variety of type τ , we
may consider all normal identities valid in V , i.e. IdV ∩ N(τ) and the variety N(V ) :=
Mod{IdV ∩ N(τ)}. The variety N(V ) is called the normalization of V . By definition of
N(V ) we have N(V ) = V ∨ ModN(τ). Here ModN(τ) is the least normal variety of type
τ . It is easy to see that for type τ = (2) the variety N(τ) agrees with the variety Z of all
zero-semigroups. Therefore the normalization of any variety V of semigroups is given by
N(V ) = V ∨ Z. Let L(V ) be the lattice of all subvarieties of the non-normal variety V . E.
Graczyńska proved in [11] that the lattice L(N(V )) is isomorphic to the direct product of
the lattice L(V ) and a two-element chain. Our first observation is:

Proposition 4.3 Vbig is the normalization of the variety NB, i.e. Vbig = NB ∨ Z.

Proof. Since any identity in Vbig is normal, outermost and regular we have NB ∨ Z ⊆
Vbig. It is easy to see that every normal, outermost and regular equation is an identity in
Vbig. Therefore, Id(NB ∨ Z) ⊆ IdVbig , i.e NB ∨ Z ⊇ Vbig .

By Graczyńska’s result ([11]) the subvariety lattice L(Vbig) is given by the direct product of
L(NB) and {TR, Z}. Since the subvariety lattice of NB is completely known, L(Vbig) con-
sists of the following varieties. It is easy to calculate the degree of proper hypersubstitutions
for every subvariety of Vbig .

variety defining system degree
of identities of proper

hyper-
substitution

Z ∨ TR = Z = Mod{xy ≈ zt} 1
Z ∨ LZ = Mod{ass., xy ≈ xz} 2
Z ∨ RZ = Mod{ass., xy ≈ zy} 2
Z ∨ SL = Mod{ass., xy ≈ yx, xy ≈ x2y ≈ xy2} 1
Z ∨ RB = Mod{ass., xy ≈ xzy} 6
Z ∨ LN = Mod{ass., zxy ≈ zyx, xy ≈ x2y ≈ xy2} 3
Z ∨ RN = Mod{ass., xyz ≈ yxz, xy ≈ x2y ≈ xy2} 3
Z ∨ NB = Vbig 8.
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