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Abstract. The best constant of the Sobolev inequality

‖u(x) ‖∞ ≤ C
�
�
�u(M)(x)

�
�
�

p
(p ≥ 1)

is given by Lq-norm (1/p+1/q = 1) of the well-known Bernoulli polynomials, which is
a Green fucntion of a certain periodic boundary value problem for M -th order linear
ordinary differential equation. The special case of p = 2 is treated completely in [1].

1 Conclusion Throughout in this paper, we assume that p, q ≥ 1, 1 / p + 1 / q =
1 . For M = 1, 2, 3, · · · we consider a sequence of function spaces

HM =
{

u(x)
∣∣∣∣ u(M)(x) = (d/dx)Mu(x) ∈ Lp(0, 1),

u(i)(1) − u(i)(0) = 0 (0 ≤ i ≤ M − 1),
∫ 1

0

u(x) dx = 0
}

(1.1)

and Lp Sobolev functionals

SM (u) = ‖ u(x) ‖∞
/ ∥∥∥ u(M)(x)

∥∥∥
p

(u(x) ∈ HM ) (1.2)

where ‖ · ‖p and ‖ · ‖∞ are the usual Lp and L∞ norms. That is to say

‖u(x) ‖p =
(∫ 1

0

|u(x) |p dx

)1/p

and

‖ u(x) ‖∞ = ess.sup
0≤x≤1

|u(x) |

To state our conclusion, we need Bernoulli polynomials bn(x) defined by⎧⎪⎨
⎪⎩

b0(x) = 1

b′n(x) = bn−1(x),
∫ 1

0

bn(x) dx = 0 (n = 1, 2, 3, · · · )
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They are also defined by the following generating function.

ext

t−1(et − 1)
=

∞∑
j=0

bj(x) tj (| t | < 2π) (1.3)

We have

b0(x) = 1, b1(x) = x − 1
2
, b2(x) =

1
2

x2 − 1
2

x +
1
12

b3(x) =
1
6

x3 − 1
4

x2 +
1
12

x, b4(x) =
1
24

x4 − 1
12

x3 +
1
24

x2 − 1
720

b5(x) =
1

120
x5 − 1

48
x4 +

1
72

x3 − 1
720

x

b6(x) =
1

720
x6 − 1

240
x5 +

1
288

x4 − 1
1440

x2 +
1

30240

b7(x) =
1

5040
x7 − 1

1440
x6 +

1
1440

x5 − 1
4320

x3 +
1

30240
x

b8(x) =
1

40320
x8 − 1

10080
x7 +

1
8640

x6 − 1
17280

x4 +
1

60480
x2 − 1

1209600
· · ·

The main theorem obtained in this paper is as follows.

Theorem 1.1 The best constant of Sobolev inequality or the supremum of Sobolev func-
tional

C(M) = sup
u∈HM
u �≡0

SM (u) (1.4)

is given by the following formula.
(1) If M = 2m − 1 (m = 1, 2, 3, · · · ) then we have

C(M) = ‖ bM (x) ‖q =
(∫ 1

0

| bM (x) |qdx

)1/q

(1.5)

where the supremum is attained if we put

u(x) =
∫ 1

0

(−1)m−1sgn(x − y) bM ( |x − y| ) f(y) dy (0 ≤ x ≤ 1) (1.6)

where

sgn(x) =
⎧⎨
⎩ 1 (x ≥ 0)

− 1 (x < 0)
(1.7)

f(x) = (−1)m sgn( bM (x) ) | bM (x) |q−1 (0 ≤ x ≤ 1) (1.8)

(2) If M = 2m (m = 1, 2, 3, · · · ) then we have

C(M) = min
0≤α≤1/2

‖ bM (α;x) ‖q = ‖ bM(α0; x) ‖q (1.9)
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where

bM (α;x) = bM (x) − bM (α) (1.10)

In (1.9), α0 is the unique solution to the equation

∫ α

0

(
(−1)m−1 bM (α;x)

)q−1

dx −
∫ 1/2

α

(
(−1)m bM (α;x)

)q−1

dx = 0 (1.11)

in the interval 0 < α < 1/2 .
The supremum of SM (u) is attained for

u(x) =
∫ 1

0

(−1)m−1bM ( |x − y| ) f(y) dy (0 ≤ x ≤ 1) (1.12)

where

f(x) = (−1)m−1 sgn( bM (α0; x) ) | bM (α0; x) |q−1 (0 ≤ x ≤ 1) (1.13)

2 Boundary value problems Concerning the solvability, uniqueness and existence
of the classical solution to the boundary value problem

BVP⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)[ (M+1)/2 ] u(M) = f(x) (0 < x < 1) (2.1)
u(i)(1) − u(i)(0) = 0 (0 ≤ i ≤ M − 1) (2.2)∫ 1

0

u(x) dx = 0 (2.3)

we have the following conclusion.

Theorem 2.1 For any bounded continuous function f(x) on an interval 0 < x < 1 ,
satisfying the solvability condition∫ 1

0

f(y) dy = 0 (2.4)

BVP has one and only one classical solution u(x) given by

u(x) =
∫ 1

0

G(M ; x, y) f(y) dy (0 ≤ x ≤ 1) (2.5)

where Green function G(M ; x, y) is given by

G(x, y) = G(M ; x, y) = (−1)[ (M−1)/2 ]

(
sgn(x − y)

)M

bM ( |x − y| ) (2.6)

that is

G(2M ; x, y) = (−1)M−1 b2M( |x − y| ) (2.7)

G(2M − 1; x, y) = (−1)M−1 sgn(x − y) b2M−1( |x − y| ) (0 < x, y < 1) (2.8)

Theorem 2.1 follows at once from the following Lemma.
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Lemma 2.1 Grren function G(x, y) satisfies the following properties.

(1) G(y, x) = (−1)M G(x, y) (0 < x, y < 1) (2.9)

(2) ∂M
x G(x, y) = (−1)[ (M−1)/2 ] (0 < x, y < 1, x �= y) (2.10)

(3) ∂i
xG(x, y)

∣∣∣∣
x=0,1

= (−1)[ (M−1)/2 ]+M+i bM−i(y) (0 < y < 1, 0 ≤ i ≤ M − 1)

(2.11)

(4) ∂i
xG(x, y)

∣∣∣∣
y=x−0

− ∂i
xG(x, y)

∣∣∣∣
y=x+0

=
⎧⎨
⎩ 0 (0 ≤ i ≤ M − 2)

(−1)[ (M+1)/2 ] (i = M − 1)

(0 < x < 1) (2.12)

(5) ∂i
xG(x, y)

∣∣∣∣
x=y+0

− ∂i
xG(x, y)

∣∣∣∣
x=y−0

=
⎧⎨
⎩ 0 (0 ≤ i ≤ M − 2)

(−1)[ (M+1)/2 ] (i = M − 1)

(0 < y < 1) (2.13)

(6)
∫ 1

0

G(x, y) dx = 0 (2.14)

Before proof of Lemma 2.1, we show the following Lemma.

Lemma 2.2

(1) bj(1 − x) = (−1)jbj(x) (j = 0, 1, 2, · · · ) (2.15)
(2) b2j+1(0) = − 1/2 (j = 0), 0 (j = 1, 2, 3, · · · ) (2.16)

(3)
(
1 − (−1)j

)
bj(0) = 0 (j = 0), −1 (j = 1), 0 (j = 2, 3, 4, · · · ) (2.17)

Proof of Lemma 2.2 From (1.3), we have

∞∑
j=0

bj(1 − x) tj =
e(1−x)t

t−1(et − 1)
=

ex(−t)

(−t)−1(e−t − 1)
=

∞∑
j=0

(−1)jbj(x) tj

Thus we have (1). Putting x = 0 in (2.15), we have

b2j+1(1) = − b2j+1(0) (j = 0, 1, 2, · · · ) (2.18)

From (1.3), we have

∞∑
j=0

(
bj(1) − bj(0)

)
tj = t



THE BEST CONSTANT OF LP SOBOLEV INEQUALITY 273

that is

bj(1) − bj(0) = 0 (j = 0), 1 (j = 1), 0 (j = 2, 3, 4, · · · ) (2.19)

Solving (2.18) and (2.19), we have (2). (3) follows from (2). Lemma 2.2 is proved. �
Proof of Lemma 2.1 (1) is obious. Differentiating (2.6) i times with respect to x, we
have

∂i
xG(x, y) = (−1)[ (M−1)/2 ]

(
sgn(x − y)

)M+i

bM−i( |x − y| )

(0 < x, y < 1, x �= y, 0 ≤ i ≤ M) (2.20)

(2) follows (2.20). Substituting x = 1, 0 into (2.20), we have

∂i
xG(x, y)

∣∣∣∣
x=1

= (−1)[ (M−1)/2 ] bM−i(1 − y) = (−1)[ (M−1)/2 ]+M−i bM−i(y)

∂i
xG(x, y)

∣∣∣∣
x=0

= (−1)[ (M−1)/2 ]+M+i bM−i(y) (0 < y < 1, 0 ≤ i ≤ M − 1)

So we have (3). From (2.20), we have

∂i
xG(x, y)

∣∣∣∣
y=x−0

− ∂i
xG(x, y)

∣∣∣∣
y=x+0

= (−1)[ (M−1)/2 ](1 − (−1)M+i) bM−i(0) =

(−1)[ (M−1)/2 ](1 − (−1)M−i) bM−i(0) (0 < x < 1, 0 ≤ i ≤ M − 1)

By Lemma 2.2 (3), we have (4). (5) is equivalent to (4).∫ 1

0

G(x, y) dx =
∫ 1

0

(−1)[ (M−1)/2 ]

(
sgn(x − y)

)M

bM ( |x − y| ) dx =

(−1)[ (M−1)/2 ]

[∫ y

0

(−1)M bM (y − x) dx +
∫ 1

y

bM (x − y) dx

]
=

(−1)[ (M−1)/2 ]

[
− (−1)M bM+1(0) + (−1)M bM+1(y) + bM+1(1 − y) − bM+1(0)

]
=

(−1)[ (M+1)/2 ]
(
1 − (−1)M+1

)
bM+1(0) = 0

which proves (6). This completes the proof of Lemma 2.1. �

3 Reproducing kernel In this section, we show that the Green function

G(x, y) = G(2M ; x, y) for M = 1, 2, 3, · · · (3.1)

is a reproducing kernel for HM and its inner product

(u, v)M =
∫ 1

0

u(M)(x) v(M)(x) dx

For any two functions u = u(x) and v = v(x), we have the following identity

u(M) v(M) =

⎛
⎝ M−1∑

j=0

(−1)j u(M−1−j) v(M+j)

⎞
⎠

′

+ (−1)M u v(2M) (3.2)

Putting v(x) = G(x, y) with y arbitrarily fixed in 0 < y < 1 and integrating both sides of
the above equality on intervals 0 < x < y and y < x < 1, we have the following conclusion.
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Lemma 3.1 (1) If u(M)(x) ∈ Lp(0, 1) then we have

∫ 1

0

u(M)(x)∂M
x G(x, y) dx =

∫ 1

0

u(M)(x) (−1)M−1

(
sgn(x − y)

)M

bM ( |x − y| ) dx =

u(y) −
∫ 1

0

u(x) dx −
M−1∑
j=0

(
u(M−1−j)(1) − u(M−1−j)(0)

)
bM−j(y)

(0 ≤ y ≤ 1) (3.3)

(2) If u(x) ∈ HM then we have

u(y) =
∫ 1

0

u(M)(x)∂M
x G(x, y) dx =

∫ 1

0

u(M)(x) (−1)M−1

(
sgn(x − y)

)M

bM ( |x − y| ) dx (0 ≤ y ≤ 1) (3.4)

4 The case of odd M Proof of Theorem 1.1 (1) In this section, we treat the
case M = 2m − 1 (m = 1, 2, 3, · · · ). Applying Hölder inequality to (3.4) we have

|u(y) | ≤ ‖ bM ( |x − y| ) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(0 ≤ y ≤ 1) (4.1)

Owing to the property bM (1 − x) = − bM (x) (0 < x < 1) , we have

‖ bM ( |x − y| ) ‖q = ‖ bM (x) ‖q

Hence (4.1) is rewritten as follows.

sup
0≤y≤1

|u(y) | ≤ ‖ bM (x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(4.2)

This shows that

C(M) = sup
u∈HM
u �≡0

SM (u) ≤ ‖ bM(x) ‖q

Next we construct u(x) which satisfies

SM (u) = ‖ bM(x) ‖q

The function

f(x) = (−1)m sgn( bM (x) ) | bM (x) |q−1 (0 ≤ x ≤ 1) (4.3)

satisfies f(1 − x) = − f(x) (0 ≤ x ≤ 1) and

∫ 1

0

f(y) dy = 0
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From Theorem 2.1, the solution u(x) to the boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)m u(M) = f(x) (0 < x < 1)
u(i)(1) − u(i)(0) = 0 (0 ≤ i ≤ M − 1)∫ 1

0

u(x) dx = 0

is given by

u(x) =
∫ 1

0

(−1)m−1 sgn( x − y ) bM ( |x − y| ) f(y) dy (0 ≤ x ≤ 1) (4.4)

Note that u(x) ∈ HM . Interchanging x and y, we have

u(y) =
∫ 1

0

f(x) (−1)m sgn( x − y ) bM ( |x − y| ) dx (0 ≤ y ≤ 1)

Putting y = 0, we have

u(0) =
∫ 1

0

f(x) (−1)m bM (x) dx

Substitution of (4.3) into the above equality gives

u(0) = ‖ bM (x) ‖q
q = ‖ bM (x) ‖q ‖ bM(x) ‖q/p

q = ‖ bM (x) ‖q ‖ f(x) ‖p =

‖ bM (x) ‖q

∥∥∥u(M)(x)
∥∥∥

p

Combining this with (4.2) we have

‖ bM (x) ‖q

∥∥∥u(M)(x)
∥∥∥

p
= u(0) ≤ sup

0≤y≤1
|u(y) | ≤ ‖ bM(x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(4.5)

This shows that u(x) defined by (4.4) satisfies

sup
0≤y≤1

|u(y) | = ‖ bM(x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(4.6)

which completes the proof of Theorem 1.1 (1). �

5 The case of even M In this section, we treat the case of M = 2m (m = 1, 2, 3, · · · ).
We first investigate the function

bM (α;x) = bM (x) − bM (α) (0 ≤ x ≤ 1, 0 < α < 1/2) (5.1)

which we have introduced in Theorem 1.1.

Lemma 5.1 The function bM (α;x) satisfies the following properties.

(1) bM (α; 1 − x) = bM (α;x) (0 ≤ x ≤ 1) (5.2)

(2) (−1)m−1 bM (α;x)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 (0 < x < α)

= 0 (x = α)

< 0 (α < x < 1 − α)

= 0 (x = 1 − α)

> 0 (1 − α < x < 1)

(5.3)
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This Lemma follows immediately from the following Lemma.

Lemma 5.2

(1) bM (1 − x) = bM (x) (0 ≤ x ≤ 1) (5.4)

(2) bM (0) = (−1)m−1 Bm

M !
(5.5)

where Bm are Bernoulli numbers. For example

B1 =
1
6
, B2 =

1
30

, B3 =
1
42

, B4 =
1
30

,

B5 =
5
66

, B6 =
691
2730

, B7 =
7
6
, B8 =

3617
510

, · · ·

(3) (−1)m−1b′M (x) = (−1)m−1bM−1(x) < 0 (0 < x < 1/2) (5.6)

Proof of Lemma 5.2 The proof of (1) and (2) are easy, we omit them. For f(x) =
− bM−3(x) the function u(x) = bM−1(x) satisfies{

− u′′ = f(x) (0 < x < 1/2)
u(0) = u(1/2) = 0

Using positive-valued Green function

x ∧ y − 2xy = min{x, y } − 2xy

we have the expression

(−1)m bM−1(x) =
∫ 1/2

0

(
x ∧ y − 2xy

)
(−1)m−1 bM−3(y) dy > 0

(0 < x < 1/2, m = 2, 3, 4, · · · ) (5.7)

Starting from the fact

− b1(x) > 0 (0 < x < 1/2)

we can show the following inequalities recurrently.

(−1)m bM−1(x) > 0 (0 < x < 1/2)

This completes the proof of Lemma 5.2. �

Proof of Theorem 1.1 (2) For u(x) ∈ HM we have
∫ 1

0

u(M)(x) dx = 0 . From (3.4)

we have

u(y) = −
∫ 1

0

u(M)(x) bM (α; |x − y| ) dx (0 ≤ y ≤ 1, 0 < α < 1/2) (5.8)

Applying Hölder inequality, we have

|u(y) | ≤ ‖ bM (α; |x − y| ) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(0 ≤ y ≤ 1, 0 < α < 1/2) (5.9)
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Due to the property bM (α; 1 − x) = bM (α;x) (0 < x < 1, 0 < α < 1/2) , we have

‖ bM (α; |x − y| ) ‖q = ‖ bM (α;x) ‖q

and therefore

sup
0≤y≤1

|u(y) | ≤ ‖ bM(α;x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(5.10)

At first we investigate the behaviour of

g(α) = ‖ bM (α;x) ‖q
q =

∫ 1

0

| bM (α;x) |q dx (5.11)

in an interval 0 < α < 1/2 . It easy to see

g(0) =
∫ 1

0

(
(−1)m bM (0; x)

)q

dx > 0

g(1/2) =
∫ 1

0

(
(−1)m−1 bM (1/2; x)

)q

dx > 0

In general

g(α) =
∫ α

0

(
(−1)m−1 bM (α;x)

)q

dx +
∫ 1−α

α

(
(−1)m bM (α;x)

)q

dx +

∫ 1

1−α

(
(−1)m−1 bM (α;x)

)q

dx =

2

[∫ α

0

(
(−1)m−1 bM (α;x)

)q

dx +
∫ 1/2

α

(
(−1)m bM (α;x)

)q

dx

]

Noticing that

bM (α;α) = 0,
∂

∂α
bM (α;x) = − bM−1(α)

we have

g′(α) = (−1)m 2 q bM−1(α)

[∫ α

0

(
(−1)m−1 bM (α;x)

)q−1

dx−
∫ 1/2

α

(
(−1)m bM (α;x)

)q−1

dx

]
(5.12)

Note that

(−1)mbM−1(α) > 0 (0 < α < 1/2)

from Lemma 5.2 (3). Differentiating

h(α) =
∫ α

0

(
(−1)m−1 bM (α;x)

)q−1

dx −
∫ 1/2

α

(
(−1)m bM (α;x)

)q−1

dx (5.13)



278 Y.KAMETAKA, Y.OSHIME, K.WATANABE, H.YAMAGISHI, A.NAGAI, K.TAKEMURA

with respect to α, noticing the fact bM (α;α) = 0 we have

h′(α) = (q − 1) (−1)m bM−1(α)

[∫ α

0

(
(−1)m−1 bM (α;x)

)q−2

dx+

∫ 1/2

α

(
(−1)m bM (α;x)

)q−2

dx

]
> 0 (0 < α < 1/2) (5.14)

Thus we showed that the equation g′(α) = 0 that is

∫ α

0

(
(−1)m−1 bM (α;x)

)q−1

dx −
∫ 1/2

α

(
(−1)m bM (α;x)

)q−1

dx = 0

has only one solution α = α0 in an interval 0 < α < 1/2 . We showed that

min
0≤α≤1/2

‖ bM(α;x) ‖q = ‖ bM (α0; x) ‖q (5.15)

and ∫ α0

0

(
(−1)m−1 bM (α0; x)

)q−1

dx −
∫ 1/2

α0

(
(−1)m bM (α0; x)

)q−1

dx = 0 (5.16)

This is equivalent to∫ 1

0

sgn
(
(−1)m−1 bM (α0; x)

) ∣∣ (−1)m−1 bM (α0; x)
∣∣q−1

dx = 0 (5.17)

Now we introduce a new function

f(x) = sgn
(
(−1)m−1 bM (α0; x)

) ∣∣ (−1)m−1 bM (α0; x)
∣∣q−1

(0 < x < 1) (5.18)

The equality (5.17) means that∫ 1

0

f(y) dy = 0

For this function f(x) the solution u(x) to the boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)m u(M) = f(x) (0 < x < 1)
u(i)(1) − u(i)(0) = 0 (0 ≤ i ≤ M − 1)∫ 1

0

u(x) dx = 0

is given by

u(x) =
∫ 1

0

(−1)m−1 bM ( |x − y| ) f(y) dy (0 ≤ x ≤ 1) (5.19)

Note that u(x) ∈ HM . Interchanging x and y we have

u(y) =
∫ 1

0

f(x) (−1)m−1 bM ( |x − y| ) dx (0 ≤ y ≤ 1)
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Since the solvability condition
∫ 1

0

f(y) dy = 0 holds, we have

u(y) =
∫ 1

0

f(x) (−1)m−1 bM (α0; |x − y| ) dx (0 ≤ y ≤ 1)

Putting y = 0, we have

u(0) =
∫ 1

0

f(x) (−1)m−1 bM (α0; x) dx

Noticing (5.18), we have

u(0) = ‖ bM (α0; x) ‖q
q = ‖ bM (α0; x) ‖q ‖ bM (α0; x) ‖q/p

q =

‖ bM (α0; x) ‖q ‖ f(x) ‖p = ‖ bM (α0; x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(5.20)

From (5.10) we have

sup
0≤y≤1

|u(y) | ≤ ‖ bM(α0; x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(5.21)

Combining this with (5.20), we have

‖ bM (α0; x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
= u(0) ≤

sup
0≤y≤1

|u(y) | ≤ ‖ bM (α0; x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(5.22)

This shows

sup
0≤y≤1

|u(y) | = ‖ bM(α0; x) ‖q

∥∥∥ u(M)(x)
∥∥∥

p
(5.23)

This completes the proof of Theorem 1.1 (2). �

6 The special cases We show the first three best constants.

Theorem 6.1 (1) In the case of M = 1.

Cq(1) = ‖ b1(x) ‖q
q =

1
q + 1

(
1
2

)q

(6.1)

Especially if p = q = 2 then we have

C2(1) = ‖ b1(x) ‖2
2 =

1
12

(6.2)

(2) In the case of M = 2.

Cq(2) = min
0≤α≤1/2

‖ b2(α;x) ‖q
q = ‖ b2(α0; x) ‖q

q =
1

2q + 1

(
1
2

α0 (1 − α0)
)q

(6.3)

α0 (0 ≤ α0 ≤ 1/2) is the unique solution to the equation

∫ α0
1−2α0

0

xq−1(1 + x)q−1dx =
1
2

B(q, q) (6.4)
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Especially if p = q = 2 then we have

C2(2) = min
0≤α≤1/2

‖ b2(α;x) ‖2
2 = ‖ b2(α0; x) ‖2

2 =
1
20

α2
0 (1 − α0)2 =

1
720

(6.5)

α0 (0 ≤ α0 ≤ 1/2) is the unique solution to the equation

6 α0 (1 − α0) = 1 that is α0 =
3 −√

3
6

(6.6)

(3) In the case of M = 3.

Cq(3) = ‖ b3(x) ‖q
q =

1
2

(
1
48

)q Γ(q + 1) Γ
(

1
2

(q + 1)
)

Γ
(

3
2
(q + 1)

) (6.7)

Especially if p = q = 2 then we have

C2(3) = ‖ b3(x) ‖2
2 =

1
30240

(6.8)

We show the first best function.

Theorem 6.2 In the case of M = 1.

u(x) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
q

(
1
2

− x

)q

(0 < x < 1/2)

1
q

(
x − 1

2

)q

(1/2 < x < 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− 1
q (q + 1)

(
1
2

)q

(6.9)

u(0) = u(1) =
1

q + 1

(
1
2

)q

, u

(
1
2
− 0

)
= u

(
1
2

+ 0
)

= − 1
q (q + 1)

(
1
2

)q

(6.10)

u′(x) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

1
2
− x

)q−1

< 0 (0 < x < 1/2)

(
x − 1

2

)q−1

> 0 (1/2 < x < 1)

(6.11)

u′(0) = − u′(1) = −
(

1
2

)q−1

, u′
(

1
2
− 0

)
= u′

(
1
2

+ 0
)

= 0 (6.12)

Especially if p = q = 2 then we have

u(x) = b2(x) (0 < x < 1) (6.13)
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