THE BEST CONSTANT OF L^P SOBOLEV INEQUALITY CORRESPONDING TO THE PERIODIC BOUNDARY VALUE PROBLEM FOR $(-1)^M (D/DX)^{2M}$

Yoshinori Kametaka; Yorimasa Oshime[†], Kohtaro Watanabe[‡], Hiroyuki Yamagishi[§] Atsushi Nagai[¶] and Kazuo Takemura^{||}

Received December 13, 2006

ABSTRACT. The best constant of the Sobolev inequality

$$\| u(x) \|_{\infty} \le C \| u^{(M)}(x) \|_{p} \qquad (p \ge 1)$$

is given by L^q -norm (1/p+1/q=1) of the well-known Bernoulli polynomials, which is a Green function of a certain periodic boundary value problem for *M*-th order linear ordinary differential equation. The special case of p=2 is treated completely in [1].

1 Conclusion Throughout in this paper, we assume that $p, q \ge 1$, 1/p + 1/q = 1. For $M = 1, 2, 3, \cdots$ we consider a sequence of function spaces

$$H_M = \left\{ u(x) \left| u^{(M)}(x) = (d/dx)^M u(x) \in L^p(0,1), \\ u^{(i)}(1) - u^{(i)}(0) = 0 \quad (0 \le i \le M - 1), \quad \int_0^1 u(x) \, dx = 0 \right\}$$
(1.1)

and L^p Sobolev functionals

$$S_M(u) = \| u(x) \|_{\infty} / \| u^{(M)}(x) \|_p \qquad (u(x) \in H_M)$$
(1.2)

where $\|\cdot\|_p$ and $\|\cdot\|_{\infty}$ are the usual L^p and L^{∞} norms. That is to say

$$\| u(x) \|_{p} = \left(\int_{0}^{1} | u(x) |^{p} dx \right)^{1/p}$$

and

$$\| u(x) \|_{\infty} = \operatorname{ess.sup}_{0 \le x \le 1} | u(x) |$$

To state our conclusion, we need Bernoulli polynomials $b_n(x)$ defined by

$$\begin{cases} b_0(x) = 1\\ b'_n(x) = b_{n-1}(x), \qquad \int_0^1 b_n(x) \, dx = 0 \qquad (n = 1, 2, 3, \cdots) \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification. 46E35, 41E44, 34B27.

 $Key\ words\ and\ phrases.$ best constant, Sobolev inequality, Green function, Bernoulli polynomials, Hölder inequality .

^{*}He has retired at March 2004, and now he is an emeritus professor of Osaka University.

270 Y.KAMETAKA, Y.OSHIME, K.WATANABE, H.YAMAGISHI, A.NAGAI, K.TAKEMURA

They are also defined by the following generating function.

$$\frac{e^{xt}}{t^{-1}(e^t - 1)} = \sum_{j=0}^{\infty} b_j(x) t^j \qquad (|t| < 2\pi)$$
(1.3)

We have

$$b_{0}(x) = 1, \qquad b_{1}(x) = x - \frac{1}{2}, \qquad b_{2}(x) = \frac{1}{2}x^{2} - \frac{1}{2}x + \frac{1}{12}$$

$$b_{3}(x) = \frac{1}{6}x^{3} - \frac{1}{4}x^{2} + \frac{1}{12}x, \qquad b_{4}(x) = \frac{1}{24}x^{4} - \frac{1}{12}x^{3} + \frac{1}{24}x^{2} - \frac{1}{720}$$

$$b_{5}(x) = \frac{1}{120}x^{5} - \frac{1}{48}x^{4} + \frac{1}{72}x^{3} - \frac{1}{720}x$$

$$b_{6}(x) = \frac{1}{720}x^{6} - \frac{1}{240}x^{5} + \frac{1}{288}x^{4} - \frac{1}{1440}x^{2} + \frac{1}{30240}$$

$$b_{7}(x) = \frac{1}{5040}x^{7} - \frac{1}{1440}x^{6} + \frac{1}{1440}x^{5} - \frac{1}{4320}x^{3} + \frac{1}{30240}x$$

$$b_{8}(x) = \frac{1}{40320}x^{8} - \frac{1}{10080}x^{7} + \frac{1}{8640}x^{6} - \frac{1}{17280}x^{4} + \frac{1}{60480}x^{2} - \frac{1}{1209600}$$
...

The main theorem obtained in this paper is as follows.

Theorem 1.1 The best constant of Sobolev inequality or the supremum of Sobolev functional

$$C(M) = \sup_{\substack{u \in H_M \\ u \neq 0}} S_M(u) \tag{1.4}$$

is given by the following formula. (1) If M = 2m - 1 $(m = 1, 2, 3, \dots)$ then we have

$$C(M) = \|b_M(x)\|_q = \left(\int_0^1 |b_M(x)|^q dx\right)^{1/q}$$
(1.5)

where the supremum is attained if we put

$$u(x) = \int_0^1 (-1)^{m-1} \operatorname{sgn}(x-y) \, b_M(|x-y|) \, f(y) \, dy \qquad (0 \le x \le 1)$$
(1.6)

where

$$\operatorname{sgn}(x) = \begin{cases} 1 & (x \ge 0) \\ -1 & (x < 0) \end{cases}$$
(1.7)

$$f(x) = (-1)^m \operatorname{sgn}(b_M(x)) | b_M(x) |^{q-1} \qquad (0 \le x \le 1)$$
(1.8)

(2) If M = 2m $(m = 1, 2, 3, \dots)$ then we have

$$C(M) = \min_{0 \le \alpha \le 1/2} \| b_M(\alpha; x) \|_q = \| b_M(\alpha_0; x) \|_q$$
(1.9)

where

$$b_M(\alpha; x) = b_M(x) - b_M(\alpha) \tag{1.10}$$

In (1.9), α_0 is the unique solution to the equation

$$\int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^{q-1} dx - \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^{q-1} dx = 0$$
(1.11)

in the interval $~0<\alpha<1/2$.

The supremum of $S_M(u)$ is attained for

$$u(x) = \int_0^1 (-1)^{m-1} b_M(|x-y|) f(y) \, dy \qquad (0 \le x \le 1)$$
(1.12)

where

$$f(x) = (-1)^{m-1} \operatorname{sgn}(b_M(\alpha_0; x)) | b_M(\alpha_0; x) |^{q-1} \qquad (0 \le x \le 1)$$
(1.13)

2 Boundary value problems Concerning the solvability, uniqueness and existence of the classical solution to the boundary value problem

BVP

$$(-1)^{[(M+1)/2]} u^{(M)} = f(x) \qquad (0 < x < 1)$$
(2.1)

$$u^{(i)}(1) - u^{(i)}(0) = 0 \qquad (0 \le i \le M - 1)$$
(2.2)

$$\int_{0}^{1} u(x) \, dx = 0 \tag{2.3}$$

we have the following conclusion.

Theorem 2.1 For any bounded continuous function f(x) on an interval 0 < x < 1, satisfying the solvability condition

$$\int_0^1 f(y) \, dy \,=\, 0 \tag{2.4}$$

BVP has one and only one classical solution u(x) given by

$$u(x) = \int_0^1 G(M; x, y) f(y) \, dy \qquad (0 \le x \le 1)$$
(2.5)

where Green function G(M; x, y) is given by

$$G(x,y) = G(M;x,y) = (-1)^{[(M-1)/2]} \left(\operatorname{sgn}(x-y) \right)^M b_M(|x-y|)$$
(2.6)

that is

$$G(2M; x, y) = (-1)^{M-1} b_{2M}(|x-y|)$$
(2.7)

$$G(2M-1;x,y) = (-1)^{M-1} \operatorname{sgn}(x-y) b_{2M-1}(|x-y|) \qquad (0 < x, y < 1)$$
(2.8)

Theorem 2.1 follows at once from the following Lemma.

Lemma 2.1 Green function G(x, y) satisfies the following properties.

(1)
$$G(y,x) = (-1)^M G(x,y)$$
 $(0 < x, y < 1)$ (2.9)

(2)
$$\partial_x^M G(x,y) = (-1)^{\lfloor (M-1)/2 \rfloor} \qquad (0 < x, y < 1, \quad x \neq y)$$
 (2.10)

(3)
$$\left. \partial_x^i G(x,y) \right|_{x=0,1} = (-1)^{\left[(M-1)/2 \right] + M + i} b_{M-i}(y) \qquad (0 < y < 1, \quad 0 \le i \le M - 1)$$

(2.11)

(4)
$$\partial_x^i G(x,y) \Big|_{y=x-0} - \partial_x^i G(x,y) \Big|_{y=x+0} = \begin{cases} 0 & (0 \le i \le M-2) \\ (-1)^{\lfloor (M+1)/2 \rfloor} & (i = M-1) \end{cases}$$

(0 < x < 1) (2.12)

(5)
$$\left. \partial_x^i G(x,y) \right|_{x=y+0} - \left. \partial_x^i G(x,y) \right|_{x=y-0} = \begin{cases} 0 & (0 \le i \le M-2) \\ (-1)^{\lfloor (M+1)/2 \rfloor} & (i=M-1) \end{cases}$$

$$(0 < y < 1) \tag{2.13}$$

(6)
$$\int_0^1 G(x,y) \, dx = 0$$
 (2.14)

Before proof of Lemma 2.1, we show the following Lemma.

Lemma 2.2

(1)
$$b_j(1-x) = (-1)^j b_j(x)$$
 $(j = 0, 1, 2, \cdots)$ (2.15)

(2)
$$b_{2j+1}(0) = -1/2$$
 $(j=0),$ 0 $(j=1,2,3,\cdots)$ (2.16)

(3)
$$(1 - (-1)^j) b_j(0) = 0 \ (j = 0), \quad -1 \ (j = 1), \quad 0 \ (j = 2, 3, 4, \cdots)$$
 (2.17)

Proof of Lemma 2.2 From (1.3), we have

$$\sum_{j=0}^{\infty} b_j (1-x) t^j = \frac{e^{(1-x)t}}{t^{-1}(e^t-1)} = \frac{e^{x(-t)}}{(-t)^{-1}(e^{-t}-1)} = \sum_{j=0}^{\infty} (-1)^j b_j(x) t^j$$

Thus we have (1). Putting x = 0 in (2.15), we have

$$b_{2j+1}(1) = -b_{2j+1}(0) \quad (j = 0, 1, 2, \cdots)$$
(2.18)

From (1.3), we have

$$\sum_{j=0}^{\infty} \left(b_j(1) - b_j(0) \right) t^j = t$$

that is

$$b_j(1) - b_j(0) = 0 \ (j = 0), \quad 1 \ (j = 1), \quad 0 \ (j = 2, 3, 4, \cdots)$$

$$(2.19)$$

Solving (2.18) and (2.19), we have (2). (3) follows from (2). Lemma 2.2 is proved. **Proof of Lemma 2.1** (1) is obious. Differentiating (2.6) i times with respect to x, we have

$$\partial_x^i G(x,y) = (-1)^{[(M-1)/2]} \left(\operatorname{sgn}(x-y) \right)^{M+i} b_{M-i}(|x-y|)$$

(0 < x, y < 1, x \ne y, 0 \le i \le M) (2.20)

(2) follows (2.20). Substituting x = 1, 0 into (2.20), we have

$$\partial_x^i G(x,y) \Big|_{x=1} = (-1)^{\left[(M-1)/2\right]} b_{M-i}(1-y) = (-1)^{\left[(M-1)/2\right]+M-i} b_{M-i}(y) \partial_x^i G(x,y) \Big|_{x=0} = (-1)^{\left[(M-1)/2\right]+M+i} b_{M-i}(y) \qquad (0 < y < 1, \ 0 \le i \le M-1)$$

So we have (3). From (2.20), we have

.

$$\partial_x^i G(x,y) \Big|_{y=x-0} - \partial_x^i G(x,y) \Big|_{y=x+0} = (-1)^{\left[(M-1)/2\right]} (1 - (-1)^{M+i}) b_{M-i}(0) = (-1)^{\left[(M-1)/2\right]} (1 - (-1)^{M-i}) b_{M-i}(0) \qquad (0 < x < 1, \quad 0 \le i \le M-1)$$

By Lemma 2.2 (3), we have (4). (5) is equivalent to (4).

$$\int_{0}^{1} G(x,y) dx = \int_{0}^{1} (-1)^{[(M-1)/2]} \left(\operatorname{sgn}(x-y) \right)^{M} b_{M}(|x-y|) dx = (-1)^{[(M-1)/2]} \left[\int_{0}^{y} (-1)^{M} b_{M}(y-x) dx + \int_{y}^{1} b_{M}(x-y) dx \right] = (-1)^{[(M-1)/2]} \left[-(-1)^{M} b_{M+1}(0) + (-1)^{M} b_{M+1}(y) + b_{M+1}(1-y) - b_{M+1}(0) \right] = (-1)^{[(M+1)/2]} \left(1 - (-1)^{M+1} \right) b_{M+1}(0) = 0$$

which proves (6). This completes the proof of Lemma 2.1.

3 Reproducing kernel In this section, we show that the Green function

$$G(x,y) = G(2M;x,y)$$
 for $M = 1, 2, 3, \cdots$ (3.1)

is a reproducing kernel for H_M and its inner product

$$(u,v)_M = \int_0^1 u^{(M)}(x) \,\overline{v}^{(M)}(x) \, dx$$

For any two functions u = u(x) and v = v(x), we have the following identity

$$u^{(M)} v^{(M)} = \left(\sum_{j=0}^{M-1} (-1)^j u^{(M-1-j)} v^{(M+j)}\right)' + (-1)^M u v^{(2M)}$$
(3.2)

Putting v(x) = G(x, y) with y arbitrarily fixed in 0 < y < 1 and integrating both sides of the above equality on intervals 0 < x < y and y < x < 1, we have the following conclusion.

Lemma 3.1 (1) If $u^{(M)}(x) \in L^p(0,1)$ then we have

$$\int_{0}^{1} u^{(M)}(x) \partial_{x}^{M} G(x, y) dx =$$

$$\int_{0}^{1} u^{(M)}(x) (-1)^{M-1} \left(\operatorname{sgn}(x-y) \right)^{M} b_{M}(|x-y|) dx =$$

$$u(y) - \int_{0}^{1} u(x) dx - \sum_{j=0}^{M-1} \left(u^{(M-1-j)}(1) - u^{(M-1-j)}(0) \right) b_{M-j}(y)$$

$$(0 \le y \le 1)$$
(3.3)

(2) If $u(x) \in H_M$ then we have

$$u(y) = \int_{0}^{1} u^{(M)}(x) \,\partial_{x}^{M} G(x, y) \,dx = \int_{0}^{1} u^{(M)}(x) \,(-1)^{M-1} \left(\operatorname{sgn}(x-y) \right)^{M} b_{M}(|x-y|) \,dx \qquad (0 \le y \le 1)$$
(3.4)

4 The case of odd M Proof of Theorem 1.1 (1) In this section, we treat the case M = 2m - 1 $(m = 1, 2, 3, \dots)$. Applying Hölder inequality to (3.4) we have

$$|u(y)| \le ||b_M(|x-y|)||_q ||u^{(M)}(x)||_p \qquad (0 \le y \le 1)$$
(4.1)

Owing to the property $b_M(1-x) = -b_M(x) \ (0 < x < 1)$, we have

$$|| b_M(|x-y|) ||_q = || b_M(x) ||_q$$

Hence (4.1) is rewritten as follows.

$$\sup_{0 \le y \le 1} |u(y)| \le \|b_M(x)\|_q \|u^{(M)}(x)\|_p$$
(4.2)

This shows that

$$C(M) = \sup_{\substack{u \in H_M \\ u \neq 0}} S_M(u) \le \| b_M(x) \|_q$$

Next we construct u(x) which satisfies

$$S_M(u) = \| b_M(x) \|_q$$

The function

$$f(x) = (-1)^m \operatorname{sgn}(b_M(x)) | b_M(x) |^{q-1} \qquad (0 \le x \le 1)$$
(4.3)

satisfies f(1-x) = -f(x) $(0 \le x \le 1)$ and

$$\int_0^1 f(y)\,dy\,=\,0$$

From Theorem 2.1, the solution u(x) to the boundary value problem

$$\begin{cases} (-1)^m u^{(M)} = f(x) & (0 < x < 1) \\ u^{(i)}(1) - u^{(i)}(0) = 0 & (0 \le i \le M - 1) \\ \int_0^1 u(x) \, dx = 0 \end{cases}$$

is given by

$$u(x) = \int_0^1 (-1)^{m-1} \operatorname{sgn}(x-y) \, b_M(|x-y|) \, f(y) \, dy \qquad (0 \le x \le 1)$$
(4.4)

Note that $u(x) \in H_M$. Interchanging x and y, we have

$$u(y) = \int_0^1 f(x) \, (-1)^m \, \text{sgn}(x-y) \, b_M(|x-y|) \, dx \qquad (0 \le y \le 1)$$

Putting y = 0, we have

$$u(0) = \int_0^1 f(x) \, (-1)^m \, b_M(x) \, dx$$

Substitution of (4.3) into the above equality gives

$$u(0) = \| b_M(x) \|_q^q = \| b_M(x) \|_q \| b_M(x) \|_q^{q/p} = \| b_M(x) \|_q \| f(x) \|_p = \| b_M(x) \|_q \| u^{(M)}(x) \|_p$$

Combining this with (4.2) we have

$$\|b_M(x)\|_q \|u^{(M)}(x)\|_p = u(0) \le \sup_{0\le y\le 1} |u(y)| \le \|b_M(x)\|_q \|u^{(M)}(x)\|_p$$
(4.5)

This shows that u(x) defined by (4.4) satisfies

$$\sup_{0 \le y \le 1} |u(y)| = \|b_M(x)\|_q \|u^{(M)}(x)\|_p$$
(4.6)

which completes the proof of Theorem 1.1(1).

5 The case of even M In this section, we treat the case of M = 2m $(m = 1, 2, 3, \cdots)$. We first investigate the function

$$b_M(\alpha; x) = b_M(x) - b_M(\alpha) \qquad (0 \le x \le 1, \quad 0 < \alpha < 1/2)$$
(5.1)

which we have introduced in Theorem 1.1.

Lemma 5.1 The function $b_M(\alpha; x)$ satisfies the following properties.

(1)
$$b_M(\alpha; 1-x) = b_M(\alpha; x)$$
 $(0 \le x \le 1)$ (5.2)

(2)
$$(-1)^{m-1} b_M(\alpha; x)$$

$$\begin{cases}
> 0 & (0 < x < \alpha) \\
= 0 & (x = \alpha) \\
< 0 & (\alpha < x < 1 - \alpha) \\
= 0 & (x = 1 - \alpha) \\
> 0 & (1 - \alpha < x < 1)
\end{cases}$$
(5.3)

This Lemma follows immediately from the following Lemma.

Lemma 5.2

(1)
$$b_M(1-x) = b_M(x)$$
 $(0 \le x \le 1)$ (5.4)

(2)
$$b_M(0) = (-1)^{m-1} \frac{B_m}{M!}$$
 (5.5)

.

where B_m are Bernoulli numbers. For example

$$B_1 = \frac{1}{6}, \quad B_2 = \frac{1}{30}, \quad B_3 = \frac{1}{42}, \quad B_4 = \frac{1}{30}, \\ B_5 = \frac{5}{66}, \quad B_6 = \frac{691}{2730}, \quad B_7 = \frac{7}{6}, \quad B_8 = \frac{3617}{510}, \quad \cdots$$

(3)
$$(-1)^{m-1}b'_M(x) = (-1)^{m-1}b_{M-1}(x) < 0 \qquad (0 < x < 1/2)$$
 (5.6)

Proof of Lemma 5.2 The proof of (1) and (2) are easy, we omit them. For f(x) = $-b_{M-3}(x)$ the function $u(x) = b_{M-1}(x)$ satisfies

$$\begin{cases} -u'' = f(x) & (0 < x < 1/2) \\ u(0) = u(1/2) = 0 \end{cases}$$

Using positive-valued Green function

$$x \wedge y - 2xy = \min\{x, y\} - 2xy$$

we have the expression

$$(-1)^{m} b_{M-1}(x) = \int_{0}^{1/2} \left(x \wedge y - 2xy \right) (-1)^{m-1} b_{M-3}(y) \, dy > 0$$

(0 < x < 1/2, m = 2, 3, 4, ...) (5.7)

Starting from the fact

 $-b_1(x) > 0$ (0 < x < 1/2)

we can show the following inequalities recurrently.

$$(-1)^m b_{M-1}(x) > 0 \qquad (0 < x < 1/2)$$

This completes the proof of Lemma 5.2.

Proof of Theorem 1.1 (2) For $u(x) \in H_M$ we have $\int_0^1 u^{(M)}(x) dx = 0$. From (3.4) we have

$$u(y) = -\int_0^1 u^{(M)}(x) \, b_M(\alpha; |x-y|) \, dx \qquad (0 \le y \le 1, \quad 0 < \alpha < 1/2)$$
(5.8)

Applying Hölder inequality, we have

$$|u(y)| \le \|b_M(\alpha; |x-y|)\|_q \|u^{(M)}(x)\|_p \qquad (0 \le y \le 1, \quad 0 < \alpha < 1/2)$$
(5.9)

Due to the property $b_M(\alpha; 1-x) = b_M(\alpha; x)$ $(0 < x < 1, 0 < \alpha < 1/2)$, we have

$$\| b_M(\alpha; |x - y|) \|_q = \| b_M(\alpha; x) \|_q$$

and therefore

$$\sup_{0 \le y \le 1} |u(y)| \le \|b_M(\alpha; x)\|_q \|u^{(M)}(x)\|_p$$
(5.10)

At first we investigate the behaviour of

$$g(\alpha) = \|b_M(\alpha; x)\|_q^q = \int_0^1 |b_M(\alpha; x)|^q dx$$
(5.11)

in an interval $~0<\alpha<1/2$. It easy to see

$$g(0) = \int_0^1 \left((-1)^m b_M(0;x) \right)^q dx > 0$$

$$g(1/2) = \int_0^1 \left((-1)^{m-1} b_M(1/2;x) \right)^q dx > 0$$

In general

$$g(\alpha) = \int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^q dx + \int_\alpha^{1-\alpha} \left((-1)^m b_M(\alpha; x) \right)^q dx + \int_{1-\alpha}^1 \left((-1)^{m-1} b_M(\alpha; x) \right)^q dx = 2 \left[\int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^q dx + \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^q dx \right]$$

Noticing that

$$b_M(\alpha; \alpha) = 0, \qquad \frac{\partial}{\partial \alpha} b_M(\alpha; x) = -b_{M-1}(\alpha)$$

we have

$$g'(\alpha) = (-1)^m 2 q b_{M-1}(\alpha) \left[\int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^{q-1} dx - \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^{q-1} dx \right]$$
(5.12)

Note that

$$(-1)^m b_{M-1}(\alpha) > 0 \qquad (0 < \alpha < 1/2)$$

from Lemma 5.2 (3). Differentiating

$$h(\alpha) = \int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^{q-1} dx - \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^{q-1} dx \qquad (5.13)$$

278 Y.KAMETAKA, Y.OSHIME, K.WATANABE, H.YAMAGISHI, A.NAGAI, K.TAKEMURA

with respect to α , noticing the fact $b_M(\alpha; \alpha) = 0$ we have

$$h'(\alpha) = (q-1)(-1)^m b_{M-1}(\alpha) \left[\int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^{q-2} dx + \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^{q-2} dx \right] > 0 \qquad (0 < \alpha < 1/2)$$
(5.14)

Thus we showed that the equation $g'(\alpha) = 0$ that is

$$\int_0^\alpha \left((-1)^{m-1} b_M(\alpha; x) \right)^{q-1} dx - \int_\alpha^{1/2} \left((-1)^m b_M(\alpha; x) \right)^{q-1} dx = 0$$

has only one solution $\alpha = \alpha_0$ in an interval $0 < \alpha < 1/2$. We showed that

$$\min_{0 \le \alpha \le 1/2} \| b_M(\alpha; x) \|_q = \| b_M(\alpha_0; x) \|_q$$
(5.15)

and

$$\int_{0}^{\alpha_{0}} \left((-1)^{m-1} b_{M}(\alpha_{0}; x) \right)^{q-1} dx - \int_{\alpha_{0}}^{1/2} \left((-1)^{m} b_{M}(\alpha_{0}; x) \right)^{q-1} dx = 0$$
 (5.16)

This is equivalent to

$$\int_{0}^{1} \operatorname{sgn}\left(\left(-1\right)^{m-1} b_{M}(\alpha_{0}; x)\right) \left|\left(-1\right)^{m-1} b_{M}(\alpha_{0}; x)\right|^{q-1} dx = 0$$
(5.17)

Now we introduce a new function

$$f(x) = \operatorname{sgn}((-1)^{m-1} b_M(\alpha_0; x)) | (-1)^{m-1} b_M(\alpha_0; x) |^{q-1} \qquad (0 < x < 1) \qquad (5.18)$$

The equality (5.17) means that

$$\int_0^1 f(y)\,dy\,=\,0$$

For this function f(x) the solution u(x) to the boundary value problem

$$\begin{cases} (-1)^m u^{(M)} = f(x) & (0 < x < 1) \\ u^{(i)}(1) - u^{(i)}(0) = 0 & (0 \le i \le M - 1) \\ \int_0^1 u(x) \, dx = 0 \end{cases}$$

is given by

$$u(x) = \int_0^1 (-1)^{m-1} b_M(|x-y|) f(y) \, dy \qquad (0 \le x \le 1)$$
(5.19)

Note that $u(x) \in H_M$. Interchanging x and y we have

$$u(y) = \int_0^1 f(x) (-1)^{m-1} b_M(|x-y|) dx \qquad (0 \le y \le 1)$$

Since the solvability condition $\int_0^1 f(y) \, dy = 0$ holds, we have

$$u(y) = \int_0^1 f(x) \, (-1)^{m-1} \, b_M(\alpha_0; |x-y|) \, dx \qquad (0 \le y \le 1)$$

Putting y = 0, we have

$$u(0) = \int_0^1 f(x) \, (-1)^{m-1} \, b_M(\alpha_0; x) \, dx$$

Noticing (5.18), we have

$$u(0) = \| b_M(\alpha_0; x) \|_q^q = \| b_M(\alpha_0; x) \|_q \| b_M(\alpha_0; x) \|_q^{q/p} = \| b_M(\alpha_0; x) \|_q \| f(x) \|_p = \| b_M(\alpha_0; x) \|_q \| u^{(M)}(x) \|_p$$
(5.20)

From (5.10) we have

$$\sup_{0 \le y \le 1} |u(y)| \le \|b_M(\alpha_0; x)\|_q \|u^{(M)}(x)\|_p$$
(5.21)

Combining this with (5.20), we have

$$\| b_{M}(\alpha_{0}; x) \|_{q} \| u^{(M)}(x) \|_{p} = u(0) \leq \sup_{0 \leq y \leq 1} | u(y) | \leq \| b_{M}(\alpha_{0}; x) \|_{q} \| u^{(M)}(x) \|_{p}$$
(5.22)

This shows

$$\sup_{0 \le y \le 1} |u(y)| = \|b_M(\alpha_0; x)\|_q \|u^{(M)}(x)\|_p$$
(5.23)

This completes the proof of Theorem 1.1 (2).

6 The special cases We show the first three best constants.

Theorem 6.1 (1) In the case of M = 1.

$$C^{q}(1) = \|b_{1}(x)\|_{q}^{q} = \frac{1}{q+1} \left(\frac{1}{2}\right)^{q}$$
(6.1)

Especially if p = q = 2 then we have

$$C^{2}(1) = \|b_{1}(x)\|_{2}^{2} = \frac{1}{12}$$
(6.2)

(2) In the case of M = 2.

$$C^{q}(2) = \min_{0 \le \alpha \le 1/2} \| b_{2}(\alpha; x) \|_{q}^{q} = \| b_{2}(\alpha_{0}; x) \|_{q}^{q} = \frac{1}{2q+1} \left(\frac{1}{2} \alpha_{0} (1-\alpha_{0}) \right)^{q}$$
(6.3)

 $\alpha_0 \ (0 \le \alpha_0 \le 1/2)$ is the unique solution to the equation

$$\int_{0}^{\frac{\alpha_{0}}{1-2\alpha_{0}}} x^{q-1} (1+x)^{q-1} dx = \frac{1}{2} \mathbf{B}(q,q)$$
(6.4)

Especially if p = q = 2 then we have

$$C^{2}(2) = \min_{0 \le \alpha \le 1/2} \|b_{2}(\alpha; x)\|_{2}^{2} = \|b_{2}(\alpha_{0}; x)\|_{2}^{2} = \frac{1}{20} \alpha_{0}^{2} (1 - \alpha_{0})^{2} = \frac{1}{720}$$
(6.5)

 $\alpha_0 \ (0 \le \alpha_0 \le 1/2)$ is the unique solution to the equation

$$6 \alpha_0 (1 - \alpha_0) = 1$$
 that is $\alpha_0 = \frac{3 - \sqrt{3}}{6}$ (6.6)

(3) In the case of M = 3.

$$C^{q}(3) = \|b_{3}(x)\|_{q}^{q} = \frac{1}{2} \left(\frac{1}{48}\right)^{q} \frac{\Gamma(q+1)\Gamma\left(\frac{1}{2}(q+1)\right)}{\Gamma\left(\frac{3}{2}(q+1)\right)}$$
(6.7)

Especially if p = q = 2 then we have

$$C^{2}(3) = \|b_{3}(x)\|_{2}^{2} = \frac{1}{30240}$$
(6.8)

We show the first best function.

Theorem 6.2 In the case of M = 1.

$$u(x) = \begin{cases} \frac{1}{q} \left(\frac{1}{2} - x\right)^{q} & (0 < x < 1/2) \\ \frac{1}{q} \left(x - \frac{1}{2}\right)^{q} & (1/2 < x < 1) \end{cases} - \frac{1}{q(q+1)} \left(\frac{1}{2}\right)^{q}$$
(6.9)

$$u(0) = u(1) = \frac{1}{q+1} \left(\frac{1}{2}\right)^q, \quad u\left(\frac{1}{2} - 0\right) = u\left(\frac{1}{2} + 0\right) = -\frac{1}{q(q+1)} \left(\frac{1}{2}\right)^q \quad (6.10)$$

$$u'(x) = \begin{cases} -\left(\frac{1}{2} - x\right)^{q-1} < 0 & (0 < x < 1/2) \\ \left(x - \frac{1}{2}\right)^{q-1} > 0 & (1/2 < x < 1) \end{cases}$$
(6.11)

$$u'(0) = -u'(1) = -\left(\frac{1}{2}\right)^{q-1}, \qquad u'\left(\frac{1}{2}-0\right) = u'\left(\frac{1}{2}+0\right) = 0$$
 (6.12)

Especially if p = q = 2 then we have

$$u(x) = b_2(x) \qquad (0 < x < 1) \tag{6.13}$$

Acknoledgement One of the authors A. N. is supported by J. S. P. S. Grant-in-Aid for Scientific Research for Young Scientists No. 16740092, K. T. is supported by J. S. P. S. Grant-in-Aid for Scientific Research (C) No. 17540175 and H. Y. is supported by The 21st Century COE Program named "Towards a new basic science : depth and synthesis".

References

- Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai and K.Takemura : Riemann zeta function, Bernoulli polynomials and the best constant of Sobolev inequality, Scientiae Mathematicae Japonicae Online e-2007 (2007) pp. 63-89.
- [2] Y. Kametaka, K. Watanabe, A. Nagai and S. Pyatkov The best constant of Sobolev inequality in an n dimensional Euclidean space, Scientiae Mathematicae Japonicae Online, e-2004 (2004) pp. 295-303.
- [3] Y. Kametaka, K. Watanabe and A. Nagai, The best constant of Sobolev inequality in an n dimensional Euclidean space, Proc. Japan Acad., 81, Ser. A (2005) pp. 1–4.
- [4] K. Watanabe, T. Yamada and W. Takahashi, Reproducing Kernels of $H^m(a, b)$ (m = 1, 2, 3)and Least Constants in Sobolev's Inequalities, Applicable Analysis 82 (2003) pp. 809–820.

*Faculty of Engineering Science, Osaka University 1-3 Matikaneyamatyo, Toyonaka 560-8531, Japan E-mail address: kametaka@sigmath.es.osaka-u.ac.jp

[†]Faculty of Engineering, Doshisha University Kyotanabe 610-0321, Japan E-mail address: yoshime@mail.doshisha.ac.jp

[†]DEPARTMENT OF COMPUTER SCIENCE, NATIONAL DEFENSE ACADEMY 1-10-20 YOKOSUKA 239-8686, JAPAN E-mail address: wata@nda.ac.jp

[§]FACULTY OF ENGINEERING SCIENCE, OSAKA UNIVERSITY 1-3 MATIKANEYAMATYO, TOYONAKA 560-8531, JAPAN E-mail address: yamagisi@sigmath.es.osaka-u.ac.jp

[¶]LIBERAL ARTS AND BASIC SCIENCES COLLEGE OF INDUSTRIAL TECHNOLOGY NIHON UNIVERSITY, 2-11-1 SHINEI, NARASHINO 275-8576, JAPAN E-mail address: a8nagai@cit.nihon-u.ac.jp

^{||}School of Media Science, Tokyo University of Technology 1404-1 Katakura, Hachioji 192-0982, Japan E-mail address: takemura@media.teu.ac.jp