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ABSTRACT. The best constant of the Sobolev inequality

Ju@ e < ¢ [u™@ | @21

P

is given by L?%-norm (1/p+1/q = 1) of the well-known Bernoulli polynomials, which is
a Green fucntion of a certain periodic boundary value problem for M-th order linear
ordinary differential equation. The special case of p = 2 is treated completely in [1].

1 Conclusion Throughout in this paper, we assume that p, ¢ > 1, 1/p+1/q =

1. For M =1,2,3,--- we consider a sequence of function spaces
Hy = {u(m) u™)(z) = (d/dz)Mu(z) € LP(0,1),
‘ ‘ 1
uP(1) —uD0) =0 (0<i<M-1), / u(x)de = o} (1.1)
0
and LP Sobolev functionals
Su(w) = | ul@) o / |u0@) | () € ) (1.2)
where || - ||, and || - || are the usual LP and L> norms. That is to say

ll, = ([ Ju(a) |pdx)1/p

[ u(z)[|oc = ess.sup|u(z)|
0<z<1

and

To state our conclusion, we need Bernoulli polynomials b,,(x) defined by
bo(ib) =1
1
Wy (2) = bus(2), / ba(@)dr =0 (n=1,2,3,--)
0
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They are also defined by the following generating function.

% = JZ:% bi(x)t!  (It] <2m) (1.3)
We have

bo(z) = 1, bl(x)zm—%, bg(x)—%mQ—%x 1—12

bg(l‘):émg—%.xQ—f—%l‘, b4(x):2—14x4—11—2x3+im2—%

b5(x)=%0x5—£m4+%x3—mx

bg(x)=%x6—ﬁx5+%m4—ﬁm2+ﬁ

brle) = 50140 - 14140 m6+14140 - 43120 m3+30;40m

() TR SR NSRS SR S 1

203207 T 100800 T 8640° T 17280 °

The main theorem obtained in this paper is as follows.

60480 © 1209600

Theorem 1.1  The best constant of Sobolev inequality or the supremum of Sobolev func-

tional

C(M) = sup Su(u)
uwEH
uZ0

18 given by the following formula.
(1) If M=2m—1(m=1,2,3,---) then we have

C(M) = [[bp(z)]lq = (/01 | bar(x) |qd$> v

where the supremum is attained if we put

1
u(w) = [ (1" s )bl — ) S)dy 0 <w <)
0
where
sgn(z) = 1 (x >0)
-1 (z <0)
flx) = (=)™ sgn(by(z)) |ba(z) 77" (0<2<1)
(2) If M=2m (m=1,2,3,---) then we have

Q1) = min [lbar(asa) g = |lbas(ooi =)

(1.4)

(1.6)

(1.7)

(1.8)
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where
by (o) = byr(x) — by () (1.10)

In (1.9), «p is the unique solution to the equation

[ (o o))

in the interval 0 < a <1/2.
The supremum of Sy (u) is attained for

-1

do — /al/2 ((—l)mbM(oz;a:)>q_lda: ~0 (1.11)

1
ulz) = / )™ oz —y]) f)dy  (0<z<1) (1.12)
where

fl@) = (=)™ "sgu(bar(aoi @) [ bur(aos2) |71 (0<z < 1) (1.13)

2 Boundary value problems Concerning the solvability, uniqueness and existence
of the classical solution to the boundary value problem

BVP
(—D)[AMHFD21, M) — rz)y (0<a < 1) (2.1)
uP(1) — u(0) =0 (0<i<M-1) (2.2)
/1 u(z)dx = 0 (2.3)

0

we have the following conclusion.

Theorem 2.1  For any bounded continuous function f(z) on an interval 0 < z < 1,
satisfying the solvability condition

/0 fly)dy =0 (2.4)

BVP has one and only one classical solution u(x) given by

1
ulz) = / GM:z.y) f)dy  (0<z<1) (2.5)

where Green function G(M;z,y) is given by

M
Gle,y) = G(Msa,y) = (—1) =D/ (sgn@c—y)) bar(lz — o) (2.6)
that s
G@Miz.y) = (~1)M bonr(Jz — ) (27)
GORM ~Liay) = (- Psgn(e - baa(fr—yl)  O<zmy<1)  (28)

Theorem 2.1 follows at once from the following Lemma.
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Lemma 2.1  Grren function G(z,y) satisfies the following properties.

1) Glyz) = D)"Gy  (O<zy<l)

2) MG(z,y) = (-2 (0<zy<l, z#y)

(4) 9.G(z,y) — 9,G(z,y) = [ o 0<i<
y=x—0 y=x+0
(—1)[(M+1)/2] (i=M—1)
0<z<1)
(5) 9LG(x,y) — 0.G(z,y) = [ o 0<i<
r=y+0 r=y—0
(—1)l(M+1)/2] (i=M—
0<y<1)

(6) /0 G(z,y)de =0

Before proof of Lemma 2.1, we show the following Lemma.

Lemma 2.2

(1) b(1—2) = (=1)’bi(2)  (G=0,1,2,--)

(2) b2a(0) =-1/2 (j=0), 0 (j=1,23,--)

@) (1= (=D)b0) =00=0), -1(G=1), 0(G=234:")
Proof of Lemma 2.2 From (1.3), we have

e(l—z)t er(—t)

bﬂ(l _x) t] = t*l(et _ 1) = (_t),l(e,t _ 1) = Z(—l)]b](ﬂj) t]

e

~

Il
=]
<.

Il
o

Thus we have (1). Putting + = 0 in (2.15), we have
bajt1(1) = =b2541(0) (7 =0,1,2,---)

From (1.3), we have

e

<
Il
o

(bj(l) - bj(0)> th =t

(2.9)

(2.10)

= (~)IM=D2IEM+, )y (0<y<1, 0<i<M-—1)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
(2.16)
(2.17)

(2.18)
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that is
bj(1) =0;(0) =0 (j=0), 1(G=1), 0(=234,-") (2.19)
Solving (2.18) and (2.19), we have (2). (3) follows from (2). Lemma 2.2 is proved. |

Proof of Lemma 2.1 (1) is obious. Differentiating (2.6) ¢ times with respect to z, we
have

M+
0LG(e) = (=D (sgute =) bari(fe )
O<z,y<l, z#y 0<i<M) (2.20)
(2) follows (2.20). Substituting = = 1,0 into (2.20), we have

BiG,y)| = (~DIMD2 gy (1 -y = (—)I DMy )

x=1
0,Glw,y)| = (~DIMDREME L (y) (0<y<1,0<i<M—1)
=0

So we have (3). From (2.20), we have

0,G(z,y) - 9,G(2,y)

y=x—0

= (DI ()M by (0) =

y=z+0
(—DIM=D2I — ()M by (0)  (0<z<1, 0<i<M-1)

By Lemma 2.2 (3), we have (4). (5) is equivalent to (4).
1 1 M
[ etemar = [0 (st ) e = o) de =
0 0
y 1
(_1)[(M71)/2] {/ (—I)M b (y — x) do + / bar(z — ) da:] =
0 y
(—pt=n/2] [— (=DM bar1(0) + (=1 bara(y) + barsar(1 —y) = bars1(0)| =
(_1)[(M+1)/2] (1 _ (_1)JV1+1) bM_H(O) =0
which proves (6). This completes the proof of Lemma 2.1. |
3 Reproducing kernel In this section, we show that the Green function
G(z,y) = G(2M;z,y) for M=1,2,3,--- (3.1)

is a reproducing kernel for Hy; and its inner product
1
(ol = [ a0 (@) 7 (@) de
0

For any two functions u = u(z) and v = v(z), we have the following identity

/
M~—1

wM) (M) — Z (—=1)7 M =170, (M43) (1) M gy (M) (3.2)

j=0
Putting v(z) = G(x,y) with y arbitrarily fixed in 0 < y < 1 and integrating both sides of
the above equality on intervals 0 < x < y and y < < 1, we have the following conclusion.
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Lemma 3.1 (1) If v™)(x) € LP(0,1) then we have
1
/“Wmewm:
0

1 M
a0 0¥ (st =) oo ol o =
0

1 M-1
wl) — | we) de — WM=1-3) (1) _ o (M—1-5) y
W - [ uwa ;;( 0 waMg@>
0<y<1) (3.3)

(2) If u(z) € Hy then we have
1
uw) = [ @) 0 Gy do =
0

1 M
[ 0@ 0¥ (s - ) paille—syas 0 <y<) (3.4)

4 The case of odd M  Proof of Theorem 1.1 (1) In this section, we treat the
case M =2m —1 (m=1,2,3,---). Applying Hélder inequality to (3.4) we have

[u) | < bz =w)) g [u@) | 0<y<) (4.1)

Owing to the property ba(1 —z) = —bup(z) (0 <z < 1), we have
[om(lz = yl) llg = 1om(2)[lq

Hence (4.1) is rewritten as follows.

sup [u(y)| < [ bar(@) llq ||u®(@) | (4.2
0<y<1 p

This shows that

C(M) = sup Sy(u) < [[ba(z)llq
S

Next we construct u(z) which satisfies
Su(u) = [ bar() [lq

The function

fla) = (=1)"sgn(bar(x)) [bar(2) |71 (0< 2 <1) (4.3)

satisfies f(1—2) = — f(z) (0 <z <1) and

1
/ fly)dy =0
0
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From Theorem 2.1, the solution u(z) to the boundary value problem

(=)™ uM) = f(x) (0<z<1)
uD(1) — u0) = 0 (0<i<M—1)
/1 u(x)de = 0
0
is given by
u(z) = /0 (D)™ tsgn(z —y)bu(lz —yl) fly)dy  (0<z<1) (4.4)

Note that u(z) € Hys. Interchanging = and y, we have

/f msen(z —y)by (e —y))de  (0<y<1)

Putting y = 0, we have

) = / F(@) (~1)™ by (2) da

Substitution of (4.3) into the above equality gives
w(0) = [[bar(@) 1§ = bar(@) g 1 bar (@) 1§77 = N oar(@) llg [ f () |l =
lbar@) g [|u® (@) |

Combining this with (4.2) we have

3@ o [0 @] = w(0) < swp Ju)] < [out) 0@ @)

This shows that u(x) defined by (4.4) satisfies

sup [u(y)| = I1bar(@) [y [|u (@) (4.6)
0<y<1 p
which completes the proof of Theorem 1.1 (1). |

5 The case of even M  In this section, we treat the case of M =2m (m =1,2,3,--+).
We first investigate the function

ba(asz) = byr(x) — bar() 0<z<1, 0<a<l/2) (5.1)
which we have introduced in Theorem 1.1.

Lemma 5.1 The function by (a; ) satisfies the following properties.

(1) by(asl—z) = by(osx) (0<z<1) (5.2)
2) (=)™ lby(esz) >0 O<z<a)
=0 (z =)
<0 (a<z<l—a) (5.3)
=0 (r=1-a)
>0 l-a<zx<l)
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This Lemma follows immediately from the following Lemma.

Lemma 5.2

(1) bu(l—2) = by(x) (0<z<1) (5.4)
() bu(0) = (-2 (55)

where By, are Bernoulli numbers. For example

1 1 1 1
B ==, By=—, B3y=—, Bj=—
1 6; 2 305 3 427 4 305
5 691 7 3617
B = — = — = — B = —
T 66 % 21300 T T 6 % h10°
3) (=)™ Wy () = (D)™ by () <0 (0<z<1/2) (5.6)

Proof of Lemma 5.2 The proof of (1) and (2) are easy, we omit them. For f(z) =
—bp—3(x) the function wu(x) =by_1(x) satisfies

—u’" = f(x) 0<zx<1/2)
u(0) = w(1/2) =0

Using positive-valued Green function
x Ay — 2zy = min{z,y} — 2zy

we have the expression

(=1)™bar—1(w) = /01/2 (x Ny — 2$y)(—1)m1 by-3(y)dy > 0

O<ax<1/2, m=2/34,--) (5.7)
Starting from the fact

—bi(z) >0 0<x<1/2)
we can show the following inequalities recurrently.

(=)™ bpr—1(z) > 0 (0<x<1/2)

This completes the proof of Lemma 5.2. |
1

Proof of Theorem 1.1 (2) For u(zx) € Hy; we have / u™)(z)dr = 0. From (3.4)
0

we have
1
u(y) = —/ u™) (2)bar (o |z — y|) da 0<y<1, 0<a<l/2) (5.8)
0
Applying Holder inequality, we have

u)| < [buasle =Dl [[u™@) | ©<y<i 0<a<iz) (69)
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Due to the property ba(o;1—2) = by(o;z) (0<z <1, 0<a<1/2), we have
o (s e =yl llg = [1oar(a;2) [l

and therefore

u™)(z) Hp (5.10)

sup |u(y) | < [[ba(a; ) [lq
0<y<1

At first we investigate the behaviour of

9(@) = [[bar(e;2) I = /0 |y (s 2) |7 dae (5.11)

in an interval 0 < oo < 1/2 . Tt easy to see

g(0) = /01 ((-Um bM(O;x))qda: > 0

9(1/2) = /01 ((‘Uml bM(l/Q;x)) dr > 0

In general

o) = [ (0"t oatasn)) e+ [ (-0 butasz) o +
/ G bM(a;m)qu -
5 Voa ((_1)m1 bM(cv;a:)>qda: + /am ((—1)mbM(a;x))qda:]

Noticing that
0

by (o) = 0, —abM(a;x) = —by-1(a)

we have

/a v ((—1)m bar( m)q_l da:] (5.12)

Note that
(—1)mbM,1(a) >0 (0 <a< 1/2)

from Lemma 5.2 (3). Differentiating

) = [ (0 butesn))

-1

do — /:/2 ((—l)mbM(oz;a:)>q1da: (5.13)
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with respect to «, noticing the fact by (a;a) = 0 we have

—2

H(0) = (4= 1) (~1)™ b1 (o) [ I ((—1>m1bM<a;x>)q du+

/:/Q <(—1)m bM(a;x)>q2 dx] >0 0<a<1/2)

Thus we showed that the equation ¢'(«) = 0 that is

/Oa <(—1)m1bM(a;x))q_ldx - /(11/2 ((—l)mbM(a;x))q_ldx =0

has only one solution a = ap in an interval 0 < o < 1/2 . We showed that

Jmin [ bas(aso) [l = [[baan: o)

[ (o butenn))

This is equivalent to

and

-1

dz — /:/2 <(—1)mbM(a0;x)>q1dx =0

0

1
m— m— -1
/ sgn((—1)" 'bar(ao;z)) | (=)™ L bar(ao; ) |q dr =0
0
Now we introduce a new function
flx) = sgn( (—1)m~! bM(ao;x)) | (=)™ bps(ao; @) |q_1 0<z<1)
The equality (5.17) means that
1
[ swdy =0
0

For this function f(x) the solution u(z) to the boundary value problem

(=)™ M = f(z) (0<z<1)
uD (1) — uP(0) =0 (0<i<M-—1)
/1 u(z)dr =0
0
is given by

1
ulz) = / )™ Vbu(r—y]) f)dy  (0<z<1)

Note that u(x) € Hys. Interchanging x and y we have

u(y) = / f@) ()™ by (e —yl)de (0<y<1)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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1
Since the solvability condition / f(y)dy = 0 holds, we have
0

1
uly) = / F@) (~D)™ V(g [z —y)dr  (0<y<1)

Putting y = 0, we have

1
u(0) = / F(@) (~1)™ Vb (a; 2) de
0
Noticing (5.18), we have

u(0) = [lbar(aos2) ] = [l bar(ao; ) llq | bar(aos ) |37 =

bar a0: ) g || £(@) lp = | bar(eos ) g @) |

From (5.10) we have

swp [ u(y)| < | bar(aoi ) | [[u0 ()|

0<y<1 p
Combining this with (5.20), we have
lbar(aosa) g [|u® (@) || = u(0) <
sup [ uy)| < buraoiz) | [0 (@)||
0<y<1 p
This shows
sup [ uy)| = || bar(aoi ) | [[u0 ()|
0<y<1 p

This completes the proof of Theorem 1.1 (2).
6 The special cases  We show the first three best constants.

Theorem 6.1 (1) In the case of M = 1.

CU(1) = [|bi(x) || = qu1 (%Y

Especially if p = g = 2 then we have

1
(1) = @)1} = 5
(2) In the case of M = 2.
072 = min [[ba(asa) |2 = [ balaoia) |9 = ——— (Lap(1—an))
0<a<1/2 ' q ' q 2¢+1 \2

ap (0 < ag <1/2) is the unique solution to the equation

g

f=rmy 1
/ ° xqfl(l + x)qflda: =5 B(q,q)
0

279

(5.20)

(5.21)

(5.22)

(5.23)

(6.2)

(6.3)
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Especially if p = g = 2 then we have

1 1
: . 2 _ ) 2 _ 201 _ V2 _
Jmin[[be(esa) I3 = [ba(ooia) [§ = 5503 (1-00)? = 5 (65)

C*(2)

ap (0 < ag <1/2) is the unique solution to the equation

6ap(l—ag) =1 that is ap = 3 _6\/§ (6.6)
(3) In the case of M = 3.
1
L e T (5 )
ci3) = llbs(@) If = 5 | 4z (6.7)
2 \ 48 3
I'(5(@+1)
2
Especially if p = q = 2 then we have
1
200\ _ 2 _
() = 163(0) I3 = 55515 (63)
We show the first best function.
Theorem 6.2  In the case of M = 1.
1 1 1 1\?
u(z) = (— - x) O<z<1/2) | ———— <_>
2 1)\ 2
q(g+1) (6.9)

(1/2<2x<1)

QIR
/N

8

|
M| —
~__

2

v = [ - (_ _ x)q_l <0 (0<z<1/2) (6.11)

W 0) = —u/(1) = — (%)ql, u(% —o> = u(% +o> =0 (6.12)

Especially if p = q = 2 then we have
u(z) = ba(x) 0<z<1) (6.13)

Acknoledgement One of the authors A. N. is supported by J. S. P. S. Grant-in-Aid for
Scientific Research for Young Scientists No. 16740092, K. T. is supported by J. S. P. S.
Grant-in-Aid for Scientific Research (C) No. 17540175 and H. Y. is supported by The 21st
Century COE Program named ” Towards a new basic science : depth and synthesis”.



THE BEST CONSTANT OF L¥ SOBOLEV INEQUALITY 281

REFERENCES

[1] Y.Kametaka, H.Yamagishi, K.Watanabe, A.Nagai and K.Takemura : Riemann zeta function,
Bernoulli polynomials and the best constant of Sobolev inequality, Scientiae Mathematicae
Japonicae Online e-2007 (2007) pp. 63-89.

[2] Y. Kametaka, K. Watanabe, A. Nagai and S. Pyatkov The best constant of Sobolev inequality in
an n dimensional Fuclidean space , Scientiae Mathematicae Japonicae Online, e-2004 (2004)
pp- 295-303.

[3] Y. Kametaka, K. Watanabe and A. Nagai, The best constant of Sobolev inequality in an n
dimensional FEuclidean space, Proc. Japan Acad., 81, Ser. A (2005) pp. 1-4.

[4] K. Watanabe, T. Yamada and W. Takahashi, Reproducing Kernels of H™(a,b) (m = 1,2,3)
and Least Constants in Sobolev’s Inequalities, Applicable Analysis 82 (2003) pp. 809-820.

*FACULTY OF ENGINEERING SCIENCE, OSAKA UNIVERSITY
1-3 MATIKANEYAMATYO, TOYONAKA 560-8531, JAPAN
E-mail address: kametaka@sigmath.es.osaka-u.ac.jp

fFACULTY OF ENGINEERING, DOSHISHA UNIVERSITY
KYOTANABE 610-0321, JAPAN

E-mail address: yoshime@mail.doshisha.ac.jp

DEPARTMENT OF COMPUTER SCIENCE, NATIONAL DEFENSE ACADEMY
1-10-20 YOKOSUKA 239-8686, JAPAN
E-mail address: wata@nda.ac.jp

SFACULTY OF ENGINEERING SCIENCE, OSAKA UNIVERSITY
1-3 MATIKANEYAMATYO, TOYONAKA 560-8531, JAPAN
E-mail address: yamagisi@sigmath.es.osaka-u.ac.jp

YLIBERAL ARTS AND BASIC SCIENCES COLLEGE OF INDUSTRIAL TECHNOLOGY
NIHON UNIVERSITY, 2-11-1 SHINEI, NARASHINO 275-8576, JAPAN
E-mail address: a8nagai@cit.nihon-u.ac.jp

IIScHOOL OF MEDIA SCIENCE, TOKYO UNIVERSITY OF TECHNOLOGY
1404-1 KATAKURA, HACHIOJN 192-0982, JAPAN
E-mail address: takemura@media.teu.ac.jp



