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Abstract. The vast majority of work done on inventory system is based on the critical

assumption of fully observed inventory inventory level dynamics and demand. Modern

technology, like the internet, offers a tremendous number of opportunities to businesses

to collect imperfect but useful information which helps them planning efficiently to meet

future demand. A good example is the internet. Visits to commercial web sites constitute

a source of partial information on future demands of one or more of the commodities (or

services) offered by companies. Many factors contribute to make inventories hard to be

fully observed by the management. Using Hidden Markov Models techniques we exploit

partial information on inventory systems to estimate the current inventory level as well

as future demands. The parameters of the model are updated via the EM algorithm.

1. Introduction

Modern technology, like the internet, offers a tremendous number of opportunities to

businesses to collect useful information which helps them planning efficiently to meet future

demand. Visits to commercial web sites constitute a source of partial information on future

demands of one or more of the commodities (or services) offered by companies. Warnings by

e-mail (or by some other means such as mobile phone short message service) of customers

on change in the price of a commodities provide a source of potential sales.

Another way of acquiring partial information on future demand is provided by a company

that uses sales representatives to market its products. Each contact of a sales representative

with a customer yields a potential demand. Sometimes sales representatives prepare sales

vouchers as means for quoting the customers showing willingness to buy. Since it usually

takes some time for a potential sale to be materialized, the collection of sales representatives’

information as to the number of customers interested in a product (such as the number of

outstanding sales vouchers) can generate an indication about the future sales of that product

[21].

Treharne and Sox [22] discuss a non-stationary demand situation where the demand is

partially observed. They model the demand as a composite-state, partially observed Markov

Decision Process.
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Another example is provided by DeCroix and Mookerjee [15] who consider a periodic

review problem in which there is an option of purchasing demand information at the begin-

ning of each period. They consider two levels of demand information: Perfect information

allows the decision maker to know the exact demand of the coming period, whereas the

imperfect one identifies a particular posterior demand distribution.

Karaesmen, Buzacott, and Dallery [17] consider a capacitated problem under partial

information on demand and stochastic lead times. They model the problem via a discrete

time make-to-stock queue.

Many factors contribute to make inventories hard to be fully observed by the man-

agement. Among these factors are thefts, shoplifting, damaged or misplaced items, low

production yield processes [23], perished items [20] etc.

An earlier literature review on partially observed systems can be found in Monahan [19].

Since then, there have not been much research activity in the study of partially observed

inventories.

Bensousan et al. [9, 10, 11, 12, 13], Treharne and Sox [22] study partially observed

demands in the context of discrete time optimal control. In their studies, the demand is

Markov modulated but the underlying demand state is unobserved. Another example of a

Markov modulated model is discussed in Beyer et al. [14].

Models discussing filtering and parameter estimation using hidden Markov models tech-

niques are consider by Aggoun et al. [2, 3, 4, 5] and Aggoun [1].

In this article we extend the model discussed in Aggoun [1]. We consider a discrete-time,

discrete state inventory model with unobserved inventory level and perished items where

the demand is a partially observed finite-state process modulated by a Markov chain. This

information is made available at the beginning of each period. These two processes, in turn

modulate a replenishment process. In other words the amount to be ordered and stocked

to satisfy the (estimated) demand which must be met, say in the next period, relies on the

partial information on futures sales collected and made available in the current period.

For the sake of simplicity and to be dealing with only finite state processes, we assume

that information does not accumulate without bound. That is, information on potential

sales from earlier periods are discarded.

This article is divided into six sections and is organized as follows. In §2 we define the

model. In §3 we describe the reference probability method used in computing our filters. In

§4 and §5 we derive filters for various quantities of interest. The parameters of the model

are re-estimated via the EM algorithm in §6.

2. Model Description

For the benefit of the reader we briefly recall few facts about finite-state-homogeneous

Markov chains.
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Definition 1. A discrete-time stochastic process {ηn}, with finite-state space S = {s1, s2, . . . , sL},
defined on a probability space (Ω,F , P ) is a Markov chain if

P (ηn+1 = sin+1 | η0 = si0 , . . . , ηn = sin) = P (ηn+1 = sin+1 | ηn = sin),

for all n ≥ 0 and all states si0 , . . . , sin , sin+1 ∈ S.

{ηn} is a homogeneous Markov chain if

P (ηn+1 = sj | ηn = si)
�
= πji

is independent of n.

The matrix Π = {πji} is called the probability transition matrix of the homogeneous

Markov chain and it satisfies the property
∑N

j=1 πji = 1.

Note that our transition matrix Π is the transpose of the traditional transition matrix

defined elsewhere. The convenience of this choice will be apparent later.

Consider the filtration {Fn} = σ{η0, η1, . . . , ηn}.
Write Yn = (I(ηn=s1), I(ηn=s2), . . . , I(ηn=sL)), where I(A) is the usual indicator function

of a set A.

Since at each time n only one entry of the vector Yn is not 0 and equal to 1, then Y is a

discrete-time Markov chain with state space the set of unit vectors e1 = (1, 0, . . . , 0)′, . . . , eN =

(0, . . . , 1)′ of R
L. However, the probability transitions matrix of Y is Π. We can write:

E[Yn | Fn−1] = E[Yn | Yn−1] = ΠYn−1,

from which we conclude that ΠYn−1 is the predictable part of Yn, given the history of Y up

to time n − 1 and the non-predictable or ‘noise’ part of Yn must be Mn
�
= Yn − ΠYn−1. In

fact it can be easily shown that Mn ∈ R
N is a mean 0, Fn-vector martingale and we have

the semimartingale (or Doob decomposition) representation of the Markov chain {Yn} (see

[6, 16]):

Yn = ΠYn−1 + Mn.(2.1)

With Y one of the unit (column) vectors ei, 1 ≤ i ≤ N , prime denoting transpose, and

using the inner product notation 〈a, b〉 = a′b, this idempotent property allows us to write the

square Y Y ′ as
∑N

i=1 〈Y, ei〉 eie
′
i and so obtain closed (finite-dimensional), recursive filters in

Section 6.

More generally, any real function f (Y ) can be expressed as a linear functional f (Y ) =

〈f, Y 〉 where 〈f, ei〉 = f (ei) = fi and f = (f1, . . . , fN ). Thus with Y i = 〈Y, ei〉,

f (Y ) =
N∑

i=1

f (ei)Y i =
N∑

i=1

fiY
i.(2.2)

Our model consists of the following components.
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1. Let Yn be the number of potential demands available at the beginning of period n.

Let I1, . . . , IL be a partition of the set of natural numbers {0, 1, 2, . . .}.
For 1 ≤ i, j ≤ L, write

pji = P (Yn ∈ Ij | Yn−1 ∈ Ii),

and P = (pji),
L∑

j=1

pji = 1. Again the unusual notation pji instead of pji is used

for convenience. Therefore the process Y is an L-state discrete-time Markov process

Y = {Yk, 1 ≤ k}.
Without any loss of generality, as explained above, we shall identify the state space

of Y with the canonical basis L = {e1, e2, . . . , eL}. Again the essential point of this

canonical representation of a Markov chain, is that the state dynamics can be written

down in the form

Yn = AYn−1 + Vn.(2.3)

Here V is a (P, σ{Y1, Y2, . . . , Yn})-martingale increment and A ∈ R
L×L is a matrix of

state transition probabilities such that P (Yn = j | Yn−1 = i) ∆= aji.

The physical interpretation of this representation is that we are assuming that at

each period n, the number of potential demands Yn is not completely independent of

the past. However the dependence we assume (dependence on Yn−1) is the simplest

mathematical scenario.

2. Similarly we assume that the actual demand process D is a finite-state process with N

states {d1, . . . , dN}. Without loss of generality, we identify the state space {d1, . . . , dN}
with the sets of standard unit vectors {f1, f2, . . . , fN} of R

N . We shall assume that:

P (Dn = fm | D1, . . . , Dn−1, Y0, Y1, . . . , Yn−1 ) = P (Dn = fm | Dn−1, Yn−1).

Write bm�i = P (Dn = fm | Dn−1 = f�, Yn−1 = ei) and

B = {bm�i}, m, � = 1, . . . , N ; i = 1, . . . , L.

Therefore
N∑

m=1

bm�i = 1 and we have the semimartingale representation

Dn = BDn−1 ⊗ Yn−1 + Wn.(2.4)

Here Wn is a sequence of martingale increments. For (column) vectors x ∈ R
L, y ∈ R

N

their tensor or Kronecker product x ⊗ y is the vector xy′ ∈ R
LN .

Note here that the actual demand Dn, at time n, is related to the actual demands

{Dk, k < n} as well as potential demands {Yk, k < n} observed in the past but,

again, we are assuming the mathematically simplest kind of dependence between

these stochastic processes.
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3. Each item in the stock at the beginning of the n-th period is assumed to be perished

(damaged, stolen etc.) with probability (1 − α) independently of the other items,

where 0 < α < 1 or is intact with probability α.

We shall be using the Binomial thining operator “ ◦ ” which is well-known in Time

Series Analysis [7], [18]. This operator is defined as follows.

For any nonnegative integer-valued random variable X and α ∈ (0, 1), α ◦ X =
X∑

j=1

Yj , where Y1, Y2, . . . is a sequence of of i.i.d. random variables independent of

X , such that P (Yj = 1) = 1 − P (Yj = 0) = α. Now let Xn be an integer-valued

random variable representing the number of items in stock at the beginning of period

n in the inventory with dynamics

Xn = α ◦ Xn−1 + Un−1 −
N∑

�=1

d�〈Dn−1, f�〉,(2.5)

with X0 constant (integer) or its distribution known. If Xn−1 is negative then α ◦
Xn−1 = 0. Note that a negative Xn is interpreted as shortage.

Equation (2.5) simply means that the inventory level available at the beginning of

the n-th period is whatever survived from earlier periods plus a certain replenishment

minus one of the possible demands {d1, . . . , dN} which incurred in the previous period.

4. A replenishment process U such that for n ≥ 1,

P (Un = u | σ{Uk, Xk, Yk, Dk, k ≤ n − 1}) = ξ(u, Un−1, Xn−1, Yn−1, Dn−1).

It is natural to assume that the replenishment at time n, Un, depends on the

information available at time n − 1.

5. As in [9] we suppose there is a finite storage capacity a, the inventory can take values

in the interval [0, a]. This interval can be partitioned into M + 2 disjoint intervals,

namely,

I0 := [a0, a0]; I1 := (a0, a1]; I2 := (a1, a2]; . . . ; IM := (aM−1, aM ];

IM+1 := [aM , aM ], for 0 = a0 < a1 < · · · < aM = a. The observations process is then

Zn = z, if Xn ∈ Iz , 0 ≤ z ≤ M + 1.

In practice, the interval observations as defined above would happen when the inven-

tory is stored in modules, e.g., bins, shelves or different locations. The manager can

see empty and full bins by simply walking in the storage area. In a typical case, the

bins may be prioritized in such a way that items in bin i are not used until items in

bin i + 1 are finished. Then a1 would be the first bin’s capacity, a2 would be the first

and second bins’ cumulative capacity, etc. If three bins are full, the fourth is semi-full

and the others are empty, the manager would conclude In ∈ I4 = (a3, a4] and observe

the signal Zn = 4.

Process Z is a discrete-time Markov Chain with the state space {0, 1, . . . , M + 1}
which we identify with the sets of standard unit vectors {g0, . . . , gM+1} of R

M+2.
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Write P [Zn = gs | Zn−1 = gr] = crs, and C = {crs}, r, s = 0, . . . , M + 1.

Write the following complete filtration Yn = σ{Zk, Uk, Yk, k ≤ n},
Gn = σ{Xk, Zk, Uk, Yk, Dk, k ≤ n}.

3. Reference Probability

In our context, the objective of the method of reference probability is to choose a measure

P , on the measurable space (Ω,F), under which:

(i) Process D is a sequence of i.i.d. random variables uniformly distributed on the set

{f1, f2, . . . , fN}, that is P (Dn | Gn−1) =
1
N

.

(ii) Process Y is a sequence of i.i.d. random variables uniformly distributed on the set

{e1, e2, . . . , eL}, that is P (Yn | Gn−1) =
1
L

.

(iii) Process Z is a sequence of i.i.d. random variables uniformly distributed on the set

{g0, g2, . . . , gM+1}, that is P (Zn = gs | Gn−1) =
1

M + 2
.

(iv) Process U is a sequence of independent random variables such that P (Un = u |
Gn−1) = ξn(u).

Further, under the measure P , the dynamics for X are unchanged.

This mathematical trick is the key to the derivation of our results.

The probability measure P is referred to as the ’real world’ probability measure, that is,

under this probability measure

P

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yn = AYn−1 + Vn,

Dn = BDn−1 ⊗ Yn−1 + Wn,

Zn = CZn−1 + Mn,

P (Un = u | Gn−1) = ξ(u, Un−1, Xn−1, Yn−1, Dn−1).

(3.1)

Definition 2. Denote by Γ = {Γk, 0 ≤ k} the stochastic process whose value at n is given

by

Γn =
n∏

k=0

γn,(3.2)

where γ0 = 1 and

γk =
ξk(Uk, Uk−1, Xk−1, Yk−1, Dk−1)

ξk(Uk)

L∏
i,j=1

(Laji)〈Yk,ej〉〈Yk−1,ei〉

N∏
m,�=1

L∏
i=1

(Nbm�i)〈Dn,fm〉〈Dk−1,f�〉〈Yk−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zk−1,gr〉〈Zk,gs〉.

(3.3)

Note that the notation 〈Yk, ei〉 is equivalent to the indicator function

I(Yk = ei).
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We define the ’real world’ measure P in terms of P , by setting
dP

dP

∣∣∣∣
Gn

∆= Γn. The existence

of P follows from Kolmogorov Extension Theorem.

Lemma 1. Under the reference probability measure P , E[γk | Gk−1] = 1, where E denotes

expectation under P .

Proof. In view of (3.3) and the distributions assumptions under E

E[γk | Gk−1]

=
L∑

i,j=1

N∑
m,�=1

NLajibm�i〈Dk−1, f�〉〈Yk−1, ei〉

M+1∑
r,s=0

(M + 2)csri〈Zk−1, gr〉〈Zk, gs〉

E[
∑

u

ξk(u, Uk−1, Xk−1, ei, f�)
ξk(u)

ξk(u)〈Yn, ej〉〈Dn, fm〉〈Zk, gs〉 | Gk−1]

=
L∑

i,j=1

aji

N∑
m,�=1

L∑
i=1

bm�i〈Dk−1, f�〉〈Yk−1, ei〉

M+1∑
r,s=0

csri〈Zk−1, gr〉〈Zk, gs〉 = 1

4. Recursive Estimation

What we wish to do now is to derive, under the ‘ideal’ reference probability measure P

a recursive formula for the unnormalized conditional joint distribution of the demand and

the inventory given the observed data at each epoch n. Using Bayes’ Theorem [16, 6]

E
[
〈Dn, fv〉I(Xn = x) | Yn

]
=

E
[
Γn〈Dn, fv〉I(Xn = x) | Yn

]
E
[
Γn | Yn

] .

Write E
[
Γn〈Dn, fv〉I(Xn = x) | Yn

]
= ρn(v, x).

Theorem 1. Denote by ρ0(v, x), the initial probability distribution of (D0, X0). The un-

normalised probability ρn(v, x), satisfies the recursion

ρn(v, x)

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉I(as−1 < x ≤ as)

N∑
�=1

L∑
i=1

bv�i〈Yn−1, ei〉
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
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× ξn(Un, Un−1, z, ei, f�)
ξn(Un)

ρn−1(�, z),

where

Bin(z, α, x + d� − Un−1) =
(

z

x + d� − Un−1

)
(α)x+d�−Un−1(1 − α)z−x−d�+Un−1 .

Proof. In view of (3.3), (3.2) and de independence assumptions under P

ρn(v, x)

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

E
[
Γn−1〈Dn, fv〉

N∏
m,�=1

L∏
i=1

(Nbm�i)〈Dn,fm〉〈Dn−1,f�〉〈Yn−1,ei〉

ξn(Un, Un−1, Xn−1, Yn−1, Dn−1)
ξn(Un)

I(Xn = x) | Yn

]
=

L∏
i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�=1

L∑
i=1

bv�i〈Yn−1, ei〉E
[
Γn−1〈Dn−1, f�〉

ξn(Un, Un−1, Xn−1, ei, f�)
ξn(Un)

I(α ◦ Xn−1 + Un−1 −
N∑

�=1

d�〈Dn−1, f�〉 = x)

I(as−1 < x ≤ as)I(ar−1 < Xn−1 ≤ ar) | Yn

]
=

L∏
i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�=1

L∑
i=1

bv�i〈Yn−1, ei〉E
[
Γn−1〈Dn−1, f�〉

ξn(Un, Un−1, Xn−1, ei, f�)
ξn(Un)

I(α ◦ Xn−1 = −Un−1 + d� + x)

I(as−1 < x ≤ as)I(ar−1 < Xn−1 ≤ ar) | Yn−1

]
=

L∏
i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�=1

L∑
i=1

bv�i〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
ξn(Un, Un−1, z, ei, f�)

ξn(Un)
E
[
Γn−1〈Dn−1, f�〉I(Xn−1 = z) | Yn−1

]
=

L∏
i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉
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N∑
�=1

L∑
i=1

bv�i〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
ξn(Un, Un−1, z, ei, f�)

ξn(Un)
ρn−1(�, z).

Here

Bin(z, α, x + d� − Un−1) =
(

z

x + d� − Un−1

)
(α)x+d�−Un−1(1 − α)z−x−d�+Un−1 .

5. Parameter Updating

In this section we show how, using the expectation maximization (EM) algorithm, the

parameters of the model can be estimated. In fact, it is a conditional pseudo log-likelihood

that is maximized, and the new parameters are expressed in terms of the recursive estimates

obtained in Section 6. We begin by describing the EM algorithm.

The basic idea behind the EM algorithm is as follows [8]. Let {Pθ, θ ∈ Θ} be a family of

probability measures on a measurable space (Ω,G) all absolutely continuous with respect

to a fixed probability measure P0 and let Y ⊂ G. The likelihood function for computing an

estimate of the parameter θ based on the information available in Y is L (θ) = E0

[
dPθ

dP0
| Y
]
,

and the maximum likelihood estimate (MLE) is defined by θ̂ ∈ argmaxθ∈ΘL (θ) .

The reasoning is that the most likely value of the parameter θ is the one that maximizes

this conditional expectation of the density.

In general, the MLE is difficult to compute directly, and the EM algorithm provides an

iterative approximation method:

1. Set p = 0 and choose θ̂0.

2. (E-step) Set θ∗ = θ̂p and compute Q (·, θ∗), where Q (θ, θ∗) = Eθ∗
[
log dPθ

dPθ∗

∣∣∣ Y ] .

3. (M-step) Find θ̂p+1 ∈ argmaxθ∈ΘQ (θ, θ∗) .

4. Replace p by p + 1 and repeat beginning with Step 2 until a stopping criterion is

satisfied.

The sequence generated
{
θ̂p, p ≥ 0

}
gives non decreasing values of the likelihood function

to a local maximum of the likelihood function: it follows from Jensen’s Inequality that

log L
(
θ̂p+1

)
− log L

(
θ̂p

)
≥ Q

(
θ̂p+1, θ̂p

)
,

with equality if θ̂p+1 = θ̂p. We call Q (θ, θ∗) a conditional pseudo-log-likelihood.

Our model is determined by the set of parameters

θ := (aji, 1 ≤ i, j ≤ L, csr, 0 ≤ r, s ≤ M + 1, bm�i, 1 ≤ m, � ≤ N)

Suppose our model is determined by such a set θ and we wish to determine a new set

θ̂ =
(
âji(n), 1 ≤ i, j ≤ L, ĉsr(n), 0 ≤ r, s ≤ M + 1, b̂m�i(n), 1 ≤ m, � ≤ N

)



256 LAKHDAR AGGOUN AND ALI BENMERZOUGA

which maximizes the conditional pseudo-log-likelihoods defined below. To replace the pa-

rameters aji by âji(n) in the Markov chain Y and the parameters csr by ĉsr(n) in the

Markov chain Z we define

Γn =
n∏

k=1

L∏
i,j=1

[
âji(n)

aji

]〈Yk,ej〉〈Yk−1,ei〉 M+1∏
r,s=0

[
ĉsr(n)

csr

]〈Zk,gs〉〈Zk−1,gr〉
.

In case aji = 0, take âji(n) = 0 and
âji(n)

aji
= 1. The same thing holds for the parameter

csr. Set
dPθ̂

dPθ

∣∣∣∣
Gn

= Γn.

Theorem 2. The new estimates of the parameters âsr(n) and ĉsr(n) given the observations

up to time n are given, when defined, by

âji(n) =
Tij

n

Ji
n

, ĉsr(n) =
T rs

n

J r
n

,

where T
(j,i)
n , is a discrete time counting process for the transitions ei → ej of the (ob-

served) markov chain Y , where i 
= j,

T (j,i)
n =

n∑
k=1

〈Yk−1, ei〉〈Yk, ej〉,

J i
n is the cumulative sojourn time spent by the Markov chain Y in state ei,

J i
n =

n∑
k=1

〈Yk−1, ei〉,

T (s,r)
n is a discrete time counting process for the transitions gr → gs of the process Z, where

r 
= s,

T (s,r)
n =

n∑
k=1

〈Zk−1, gr〉〈Zk, gs〉,

and J r
n , the cumulative sojourn time spent by the process Z in state gr, is

J r
n =

n∑
k=1

〈Zk−1, gr〉.

Proof. Consider the parameter aji.

log Γn =
L∑

i,j=1

n∑
k=1

〈Yn, ej〉 〈Y�−1, ei〉 [log âji(n) − log aji]

=
L∑

i,j=1

Tij
n log âji(n) + R (a)(5.1)

where R (a) is independent of â.

Now the âji(n) must satisfy
L∑

j=1

âji(n) = 1.(5.2)
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Observe that
L∑

j=1

Tij
n = Ji

n(5.3)

We wish, therefore, to choose the âji(n) to maximize (5.1) subject to the constraint (5.2).

Write λ for the Lagrange multiplier and put

L (â, λ) =
L∑

i,j=1

Tij
n log âji(n) + R̂ (a) + λ

(
L∑

s=1

âji(n) − 1

)
.

Differentiating in λ and âji(n), and equating the derivatives to 0, we have the optimum

choice of âji(n) is given by the equations

1
âji(n)

Tij
n + λ = 0(5.4)

L∑
s=1

âji(n) = 1.(5.5)

From (5.3)–(5.5) we see that λ = −Jr
n so the optimum choice of âji(n), 1 ≤ i, j ≤ L, is

âji(n) =
Tij

n

Ji
n

.

Remark 1. Since each of the Markov chains Y and Z jumps at most n times up to time

n, we have:

0 ≤ Tij
n ≤ Ji

n ≤ n, 0 ≤ T rs
n ≤ J r

n ≤ n.

Notation 1. For any process φn, n ∈ N, write φ̂n = E [ φn | Yn ] for its Y-optional projec-

tion.

Consider now the parameters bm�i in the matrix B. To replace the parameters bm�i by

b̂m�i(n) we must now consider the Radon-Nikodym derivative

Γ̃n =
n∏

k=1

N∏
m,�=1

L∏
i=1

[
b̂m�i(n)

bm�i

]〈Dn,fm〉〈Dn−1,f�〉〈Yn−1,ei〉
.

Now we introduce a new probability by setting
dPθ̂

dPθ

∣∣∣∣
Gn

= Γ̃n. Then

E
[
log Γ̃n | Yn

]
=

L∑
r=1

n∑
s=1

Ĝm�i
n log b̂m�i(n) + R (b)(5.6)

where R (b) is independent of b̂. Now the b̂m�i(n) must also satisfy

N∑
m=1

b̂m�i(n) = 1.(5.7)

Observe that
N∑

m=1

Gm�i
n = S �i

n and conditional form
N∑

s=1

Ĝm�i
n = Ŝ �i

n

We wish, therefore, to choose the b̂m�i(n) to maximize (5.6) subject to the constraint (5.7).

Following the same procedure as above we obtain:
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Theorem 3. The maximum log likelihood estimates of the parameters b̂m�i(n) given the

observation up to time n are given, when defined, by b̂m�i(n) =
qn(Gm�i

n )
qn(S �i

n )
,

where Gmli
n is the number of times the process D jumps from state fl to state fm while the

Markov chain Y is in state ei,

Gmli
n =

n∑
k=1

〈Dk−1, fl〉〈Dk, fm〉〈Yk−1, ei〉,

and S li
n is the number of times the process D is in state fl while the Markov chain Y is in

state ei,

S li
n =

n∑
k=1

〈Dk−1, fl〉〈Yk−1, ei〉.(5.8)

Remark 2. The revised parameters give new probability measures for the model. The se-

quences of densities Γn and Γ̃n are improved by construction, and the model parameters are

updated or tuned to the observations.

6. Finite-Dimensional Filters for Gmli
n and S li

n

Rather than directly estimating the quantities, Gmli
n , and S li

n recursive forms can be found

by estimating the related product-quantities, Gmli
n DnI(Xn = x) ∈ R

N and S li
n DnI(Xn =

x) ∈ R
N . The outputs of these filters can then be manipulated to marginalise out the

process (X, D), resulting in filtered estimates of the quantities of primary interest.

Write qn(Gmli
n DnI(Xn = x))

�
= E

[
ΓnGmli

n DnI(Xn = x) | Yn

]
.

Lemma 2. The process qn(Gmli
n DnI(Xn = x)) is computed recursively by the dynamics

qn(Gmli
n DnI(Xn = x))

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�,m=1

L∑
i=1

bm�i〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
ξn(Un, Un−1, z, ei, f�)

ξn(Un)
〈qn(Gmli

n−1Dn−1I(Xn−1 = z)), f�〉fm

+
L∏

j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

bmli〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+dl−Un−1
ar−1<z≤ar

Bin(z, α, x + dl − Un−1)
ξn(Un, Un−1, z, ei, fl)

ξn(Un)
ρn−1(l, z)fm
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Proof. First note that Gmli
n = Gmli

n−1 + 〈Dn−1, fl〉〈Dn, fm〉〈Yn−1, ei〉. Therefore

qn(Gmli
n DnI(Xn = x)) = E

[
ΓnGmli

n−1DnI(Xn = x) | Yn

]
+ E

[
Γn〈Dn−1, fl〉〈Dn, fm〉〈Yn−1, ei〉DnI(Xn = x) | Yn

]
The first expectation yields:

E
[
ΓnGmli

n−1DnI(Xn = x) | Yn

]
=

L∏
i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�,m=1

L∑
i=1

bm�i〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
ξn(Un, Un−1, z, ei, f�)

ξn(Un)
〈qn(Gmli

n−1Dn−1I(Xn−1 = z)), f�〉fm

The second expectation is simply

E
[
Γn〈Dn−1, fl〉〈Dn, fm〉〈Yn−1, ei〉DnI(Xn = x) | Yn

]
=

L∏
j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

bmli〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+dl−Un−1
ar−1<z≤ar

Bin(z, α, x + dl − Un−1)
ξn(Un, Un−1, z, ei, fl)

ξn(Un)
ρn−1(l, z)fm.

Write qn(S li
n DnI(Xn = x))

�
= E

[
ΓnS li

n Dn | Yn

]
.

A similar argument yields the following results.

Lemma 3. The process qn(S li
n DnI(Xn = x)) is computed recursively by the dynamics

qn(S li
n DnI(Xn = x))

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉

N∑
�,m=1

L∑
i=1

bm�i〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+d�−Un−1
ar−1<z≤ar

Bin(z, α, x + d� − Un−1)
ξn(Un, Un−1, z, ei, f�)

ξn(Un)
〈qn(S li

n−1Dn−1I(Xn−1 = z)), f�〉fm

+
L∏

j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
M+1∏
r,s=0

((M + 2)csr)〈Zn−1,gr〉〈Zn,gs〉
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N∑
m=1

bmli〈Yn−1, ei〉I(as−1 < x ≤ as)
∑

z≥x+dl−Un−1
ar−1<z≤ar

Bin(z, α, x + dl − Un−1)
ξn(Un, Un−1, z, ei, fl)

ξn(Un)
ρn−1(l, z)fm.

The filter recursions given above provide updates to estimate product processes, each

involving the process (X, D). What we would like to do, is manipulate these filters so as

to remove the dependence upon the process (X, D). Let Φn be any of our processes. Then

with 1 = (1, 1, . . . , 1)∑
x

〈qn(ΦnDnI(Xn = x)),1〉 =
∑

x

〈E
[
ΓnΦnDnI(Xn = x) | Yn

]
,1〉

=
∑

x

E
[
ΓnΦnI(Xn = x)〈Dn,1〉 | Yn

]
= E

[
ΓnΦn

∑
x

I(Xn = x) | Yn

]
= qn(Φn).

It follows that our quantities of interest are computed by

qn(Gmli
n ) =

∑
x

〈qn(Gmli
n DnI(Xn = x)),1〉,

qn(S li
n ) =

∑
x〈qn(S li

n DnI(Xn = x)),1〉.
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