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Abstract. The purpose of this paper is to study weak and strong convergence of a new
implicit iteration process to a common fixed point for a finite family of nonexpansive
mappings in a uniformly convex Banach space. The results obtained in this paper
extend and improve the corresponding results of [C. E. Chidume, N. Shahzad, Strong
convergence of an implicit iteration process for a finite family of nonexpansive mappings,
Nonlinear Anal. 62 (2005) 1149-1156; H.K. Xu, R. Ori, An implicit iterative process for
nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001) 767-773].

1. Introduction

Let X be a normed space and let C be a nonempty subset of X . A mapping T : C → C
is said to be nonexpansive on C if for all x, y ∈ C the following inequality holds:

‖Tx− Ty‖ ≤ ‖x − y‖.
Convergence theorems for nonexpansive mappings have been established by a number of

authors(e.g., [6], [12], [13], [17] and the references therein).The convergence problems of an
implicit iteration process have been studied by Browder [1, 2], Xu and Yin [19], Takahashi
and Kim [16], and Jung and Kim [7], respectively. In 2001, Xu and Ori [18] introduced the
following implicit iteration process for a finite family of nonexpansive mappings {Ti : i ∈ J}
(here J = {1, 2, . . . , N}) with {αn} is a real sequence in (0, 1), and an initial point x0 ∈ C:

x1 = α1x0 + (1 − α1)T1x1,

x2 = α2x1 + (1 − α2)T2x2,

...
xN = αNxN−1 + (1 − αN )TNxN ,

xN+1 = αN+1xN + (1 − αN+1)TN+1xN+1,

...

which can be written in the following compact form:

xn = αnxn−1 + (1 − αn)Tnxn, n � 1,(1.1)

where Tn = Tn(mod N) (here the mod N function takes values in J). Xu and Ori proved the
weak convergence of this process to a common fixed point of the finite family of nonexpansive
mappings in a Hilbert space.
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Recently, Chidume and Shahzad [4] proved that Xu and Ori’s iteration process converges
strongly to a common fixed point for a finite family of nonexpansive mappings if one of the
mappings is semi-compact. Inspired and motivated by these facts, we introduce and study
an implicit iterative scheme for a finite family of nonexpansive mappings in Banach spaces.
The scheme is defined as follows:

Let X be a normed linear space, let C be a nonempty convex subset of X , and let
{Ti : i ∈ J} be a finite family of nonexpansive self-mappings of C. Suppose that {αn} and
{βn} are two real sequences in [0, 1]. Then for an arbitrary x0 ∈ C, the sequence {xn} is
generated as follows:

x1 = α1x0 + β1T1x0 + (1 − α1 − β1)T1x1,

x2 = α2x1 + β2T2x1 + (1 − α2 − β2)T2x2,

...
xN = αNxN−1 + βNTNxN−1 + (1 − αN − βN )TNxN ,

xN+1 = αN+1xN + βN+1TN+1xN + (1 − αN+1 − βN+1)TN+1xN+1,

...

which can be written in the following compact form:

xn = αnxn−1 + βnTnxn−1 + (1 − αn − βn)Tnxn, ∀n ≥ 1,(1.2)

where Tn = Tn(mod N) (here the modN function takes values in J).
We note that Xu and Ori’s iteration is a special case of the above implicit iterative

scheme. If βn ≡ 0, then (1.2) reduces to Xu and Ori’s iteration [18].
The purpose of this paper is to establish strong and weak convergence theorems of the

implicit iterative scheme (1.2) for a finite family of nonexpansive mappings. More precisely,
we prove weak convergence of the implicit iteration process in a uniformly convex Banach
space X such that its dual X∗ has the Kadec-Klee property. The results presented in this
paper extend and improve the corresponding ones announced by Xu and Ori [18], Chidume
and Shahzad [4], and many others.

Now, we recall the well known concepts and results.
A mapping T : C → C is called demi-closed with respect to y ∈ X if for each sequence

{xn} in C and each x ∈ X , xn ⇀ x and Txn → y imply that x ∈ C and Tx = y. A Banach
space X is said to satisfy Opial’s condition [10] if for any sequence {xn} in X , xn ⇀ x
implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ C with x �= y. A Banach space X is said to have the Kadec-Klee property if for
every sequence {xn} in X , xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn−x‖ → 0. A family
{Ti : i ∈ J} of N self-mappings of C with F = ∩N

i=1F (Ti) �= ∅ is said to satisfy condition
(B) on C [4] if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r ∈ (0,∞) such that

max
1�l�N

{‖x − Tlx‖} � f(d(x,F ))

for all x ∈ C; see ([14], p.377) for an example of nonexpansive mappings satisfying condition
(B).

In the sequel, the following lemmas are needed to prove our main results.
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Lemma 1.1 (Lemma 1, [17]). Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ....

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then
(1) limn→∞ an exists.
(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 1.2 (Lemma 1.4, [5]). Let X be a uniformly convex Banach space and Br = {x ∈
X : ‖x‖ ≤ r}, r > 0. Then there exists a continuous, strictly increasing, and convex
function g : [0,∞) → [0,∞), g(0) = 0 such that

‖λx + βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 − λβg(‖x − y‖),
for all x, y, z ∈ Br, and all λ, β, γ ∈ [0, 1] with λ + β + γ = 1.

Lemma 1.3 (Lemma 2.7, [15]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X . Let u, v be two elements of X such that limn→∞ ‖xn −u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xnj} are subsequences of {xn} which converge
weakly to u and v, respectively, then u = v.

Lemma 1.4 (Kaczor [8]). Let X be a real reflexive Banach space such that its dual X∗ has
the Kadec-Klee property. Let {xn} be a bounded sequence in X and x∗, y∗ ∈ ωw(xn); here
ωw(xn) denote the set of all weak subsequential limits of {xn}. Suppose limn→∞ ‖txn +(1−
t)x∗ − y∗‖ exists for all t ∈ [0, 1]. Then x∗ = y∗.

Lemma 1.5 (Browder [1]). Let X be a uniformly convex Banach space, let C be a nonempty
closed convex subset of X and let T : C → X be a nonexpansive mapping. Then I − T is
demi-closed at zero.

We denote by Γ the set of strictly increasing, continuous convex function γ : R
+ → R

+

with γ(0) = 0. Let C be a convex subset of the Banach space X . A mapping T : C → C is
said to be type (γ) if γ ∈ Γ and 0 � α � 1,

γ(‖αTx + (1 − α)Ty − T (αx + (1 − α)y)‖) � ‖x − y‖ − ‖Tx − Ty‖
for all x, y in C.

Lemma 1.6 (Bruck [3] and Oka [9]). Let X be a uniformly convex Banach space and C a
convex subset of X. Then there exists γ ∈ Γ such that for each mapping S : C → C with
Lipschitz constant L,

‖αSx + (1 − α)Sy − S(αx + (1 − α)y)‖ � Lγ−1(‖x − y‖ − 1
L
‖Sx − Sy‖)

for all x, y ∈ C and 0 < α < 1.

2. Main Results

In this section, we prove weak and strong convergence of the implicit iteration process
(1.2) to a common fixed point for a finite family of nonexpansive mappings in a uniformly
convex Banach space.

Lemma 2.1. Let X be a uniformly convex Banach space and let C be a nonempty closed
convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings of C with F =
∩N

i=1F (Ti) �= ∅ (here F (Ti) denotes the set of fixed points of Ti). Let {αn} and {βn} be
real sequences in [0, 1] such that αn + βn is in [0, 1] for all n ≥ 1 and 0 < lim infn→∞ αn ≤
lim supn→∞(αn + βn) < 1. From an arbitrary x0 ∈ C, define the sequence {xn} by (1.2).

(i) If x∗ ∈ F, then limn→∞ ‖xn − x∗‖ exists.
(ii) For all l ∈ J, limn→∞ ‖xn − Tlxn‖ = 0.



224 SORNSAK THIANWAN AND SUTHEP SUANTAI

Proof. Let x∗ ∈ F. (i) For each n ≥ 1, we have

‖xn − x∗‖ = ‖αnxn−1 + βnTnxn−1 + (1 − αn − βn)Tnxn − x∗‖
≤ αn‖xn−1 − x∗‖ + βn‖Tnxn−1 − x∗‖ + (1 − αn − βn)‖Tnxn − x∗‖
≤ αn‖xn−1 − x∗‖ + βn‖xn−1 − x∗‖ + (1 − αn − βn)‖xn − x∗‖
= (αn + βn)‖xn−1 − x∗‖ + (1 − αn − βn)‖xn − x∗‖.

This implies that

‖xn − x∗‖ ≤ ‖xn−1 − x∗‖.

It implies by Lemma 1.1 that limn→∞ ‖xn − x∗‖ exists.
(ii) We shall show that limn→∞ ‖xn−1 − Tnxn‖ = 0. Using Lemma 1.2, we have

‖xn − x∗‖2 = ‖αnxn−1 + βnTnxn−1 + (1 − αn − βn)Tnxn − x∗‖2

= ‖αn(xn−1 − x∗) + βn(Tnxn−1 − x∗) + (1 − αn − βn)(Tnxn − x∗)‖2

≤ αn‖xn−1 − x∗‖2 + βn‖Tnxn−1 − x∗‖2 + (1 − αn − βn)‖Tnxn − x∗‖2

− αn(1 − αn − βn)g(‖xn−1 − Tnxn‖)
≤ αn‖xn−1 − x∗‖2 + βn‖xn−1 − x∗‖2 + (1 − αn − βn)‖xn − x∗‖2

− αn(1 − αn − βn)g(‖xn−1 − Tnxn‖).

Hence

αn(1 − αn − βn)g(‖xn−1 − Tnxn‖) ≤ αn‖xn−1 − x∗‖2 + βn‖xn−1 − x∗‖2

+ (1 − αn − βn)‖xn − x∗‖2 − ‖xn − x∗‖2

≤ αn‖xn−1 − x∗‖2 + βn‖xn−1 − x∗‖2

+ (1 − αn − βn)‖xn−1 − x∗‖2 − ‖xn − x∗‖2

= ‖xn−1 − x∗‖2 − ‖xn − x∗‖2.

If 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1, then there exists a positive integer n0

and η, η
′ ∈ (0, 1) such that 0 < η < αn and αn + βn < η

′
< 1, ∀n ≥ n0. Hence

η(1 − η
′
)g(‖xn−1 − Tnxn‖) ≤ ‖xn−1 − x∗‖2 − ‖xn − x∗‖2, ∀n ≥ n0.

It follows that for m ≥ n0,

m∑

n=n0

g(‖xn−1 − Tnxn‖) ≤ 1
η(1 − η′)

m∑

n=n0

(‖xn−1 − x∗‖2 − ‖xn − x∗‖2).

We get
∑∞

n=n0
g(‖xn−1 − Tnxn‖) < ∞ as m → ∞. This implies that limn→∞ g(‖xn−1

−Tnxn‖) = 0. Since g is strictly increasing, continuous and g(0) = 0, we have limn→∞ ‖xn−1−
Tnxn‖ = 0. Since Tn is nonexpansive, we have
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‖xn − xn−1‖ = ‖αnxn−1 + βnTnxn−1 + (1 − αn − βn)Tnxn − xn−1‖
= ‖αn(xn−1 − xn−1) + βn(Tnxn−1 − xn−1)

+ (1 − αn − βn)(Tnxn − xn−1)‖
= ‖βn(Tnxn−1 − Tnxn + Tnxn − xn−1)

+ (1 − αn − βn)(Tnxn − xn−1)‖
≤ βn‖Tnxn−1 − Tnxn‖ + βn‖Tnxn − xn−1‖

+ (1 − αn − βn)‖Tnxn − xn−1‖
≤ βn‖xn−1 − xn‖ + (1 − αn)‖Tnxn − xn−1‖
≤ βn‖xn−1 − xn‖ + ‖Tnxn − xn−1‖
= βn‖xn−1 − xn‖ + ‖xn−1 − Tnxn‖.

This implies that

(1 − βn)‖xn − xn−1‖ ≤ ‖xn−1 − Tnxn‖.
By lim supn→∞(αn + βn) < 1, there exists a positive integer n0 and β ∈ (0, 1) such that
βn ≤ αn + βn < β, ∀n ≥ n0. Hence, we have

(1 − β)‖xn − xn−1‖ ≤ ‖xn−1 − Tnxn‖.

Let n → ∞. It follows that limn→∞ ‖xn − xn−1‖ = 0. Also limn→∞ ‖xn − xn+l‖ = 0 for all
l ∈ J. Since ‖xn−Tnxn‖ ≤ ‖xn−xn−1‖+‖xn−1−Tnxn‖, we have limn→∞ ‖xn−Tnxn‖ = 0.
Now since for all l ∈ J

‖xn − Tn+lxn‖ ≤ ‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖ + ‖Tn+lxn+l − Tn+lxn‖
≤ ‖xn − xn+l‖ + ‖xn+l − Tn+lxn+l‖ + ‖xn+l − xn‖,

we have that limn→∞ ‖xn − Tn+lxn‖ = 0 for all l ∈ J. Since for each l ∈ J, {‖xn − Tlxn‖}
is a subset of ∪N

l=1{‖xn − Tn+lxn‖}, we have limn→∞ ‖xn − Tlxn‖ = 0 for all l ∈ J. This
completes the proof.

Theorem 2.2. Let X be a uniformly convex Banach space and let C be a nonempty closed
convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings of C with F =
∩N

i=1F (Ti) �= ∅. Suppose that {Ti : i ∈ J} satisfies condition(B). Let {αn} and {βn} be real
sequences in [0, 1] such that αn + βn is in [0, 1] for all n ≥ 1 and 0 < lim infn→∞ αn ≤
lim supn→∞(αn + βn) < 1. From an arbitrary x0 ∈ C, define the sequence {xn} by (1.2).
Then {xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ J}.

Proof. Let x∗ ∈ F. By Lemma 2.1 (i), we have that {xn} is bounded, limn→∞ ‖xn − x∗‖
exists and ‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ for all n ≥ 1. This implies that d(xn, F ) ≤ d(xn−1, F ),
so limn→∞ d(xn, F ) exists. Also, by Lemma 2.1 (ii), limn→∞ ‖xn − Tlxn‖ = 0 for all l ∈ J.
Since {Ti : i ∈ J} satisfies condition(B), we conclude that limn→∞ d(xn, F ) = 0. Next we
show that {xn} is a Cauchy sequence. Since limn→∞ d(xn, F ) = 0, for any ε > 0, there
exists a natural number n0 such that d(xn, F ) < ε

2 for all n ≥ n0. So we can find y∗ ∈ F
such that ‖xn0 − y∗‖ < ε

2 . For all n ≥ n0 and m ≥ 1, we have
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‖xn+m − xn‖ ≤ ‖xn+m − y∗‖ + ‖xn − y∗‖
≤ ‖xn0 − y∗‖ + ‖xn0 − y∗‖
<

ε

2
+

ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since X is complete. Let
limn→∞ xn = z∗. Then z∗ ∈ C. It remains to show that z∗ ∈ F. Let ε

′
> 0 be given. Then

there exists n1 ∈ N such that ‖xn − z∗‖ < ε
′

4 , ∀n ≥ n1. Since limn→∞ d(xn, F ) = 0, there

exists n2 ∈ N and n2 ≥ n1 such that for all n ≥ n2 we have d(xn, F ) < ε
′

4 and in particular

we have d(xn2 , F ) < ε
′

4 . Therefore, there exists w∗ ∈ F such that ‖xn2 −w∗‖ < ε
′

4 . For any
i ∈ J and n ≥ n2, we have

‖Tiz
∗ − z∗‖ ≤ ‖Tiz

∗ − w∗‖ + ‖w∗ − z∗‖
≤ 2‖w∗ − z∗‖
≤ 2(‖w∗ − xn2‖ + ‖xn2 − z∗‖)

< 2(
ε
′

4
+

ε
′

4
) = ε

′
.

This implies that Tiz
∗ = z∗. Hence z∗ ∈ F (Ti) for all i ∈ J and so z∗ ∈ F. This completes

the proof.

We recall that a mapping T : C → C is called semi-compact(or hemicompact) if any
sequence {xn} in C satisfying ‖xn − Txn‖ → 0 as n → ∞ has a convergent subsequence.

Theorem 2.3. Let X be a uniformly convex Banach space and let C be a nonempty closed
convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings of C with F =
∩N

i=1F (Ti) �= ∅. Suppose that one of the mappings in {Ti : i ∈ J} is semi-compact. Let
{αn} and {βn} be real sequences in [0, 1] such that αn + βn is in [0, 1] for all n ≥ 1 and
0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1. From an arbitrary x0 ∈ C, define the
sequence {xn} by (1.2). Then {xn} converges strongly to a common fixed point of the
mappings {Ti : i ∈ J}.
Proof. Suppose that Ti0 is semi-compact for some i0 ∈ J. By Lemma 2.1 (ii), we have
limn→∞ ‖xn − Ti0xn‖ = 0. So there exists a subsequence {xnj} of {xn} such that xnj →
x∗ ∈ C as j → ∞. Now Lemma 2.1 (ii) guarantees that limj→∞ ‖xnj − Tlxnj‖ = 0 for all
l ∈ J and so ‖x∗ − Tlx

∗‖ = 0 for all l ∈ J. This implies that x∗ ∈ F. By Lemma 2.1 (i),
limn→∞ ‖xn − x∗‖ exists and then

lim
n→∞ ‖xn − x∗‖ = lim

j→∞
‖xnj − x∗‖ = 0.

This completes the proof.

For βn ≡ 0, the iterative scheme (1.2) reduces to that of (1.1) and the following results
are directly obtained by Theorem 2.2 and Theorem 2.3, respectively.

Theorem 2.4. (Theorem 3.2, [4]) Let X be a uniformly convex Banach space and let C be
a nonempty closed convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings
of C with F = ∩N

i=1F (Ti) �= ∅. Suppose that {Ti : i ∈ J} satisfies condition (B). Let
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{αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1). From an arbitrary x0 ∈ C, define the sequence {xn}
by

xn = αnxn−1 + (1 − αn)Tnxn, ∀n � 1.

Then {xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ J}.
Theorem 2.5. (Theorem 3.3, [4]) Let X be a uniformly convex Banach space and let C be
a nonempty closed convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings
of C with F = ∩N

i=1F (Ti) �= ∅. Suppose that one of the mappings in {Ti : i ∈ J} is semi-
compact. Let {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1). From an arbitrary x0 ∈ C, define the
sequence {xn} by

xn = αnxn−1 + (1 − αn)Tnxn, ∀n � 1.

Then {xn} converges strongly to a common fixed point of the mappings {Ti : i ∈ J}.
In the next results, we prove the weak convergence of the sequence {xn} defined by (1.2)

in a uniformly convex Banach space satisfying Opial’s condition.

Lemma 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s condition
and let C be a nonempty closed convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-
mappings of C with F = ∩N

i=1F (Ti) �= ∅. Let {αn} and {βn} be real sequences in [0, 1] such
that αn + βn is in [0, 1] for all n ≥ 1 and 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1.
From an arbitrary x0 ∈ C, define the sequence {xn} by (1.2). Then {xn} converges weakly
to a common fixed point of {Ti : i ∈ J}.
Proof. It follows from Lemma 2.1(ii) that limn→∞ ‖xn − Tlxn‖ = 0 for all l ∈ J . Since X
is uniformly convex and {xn} is bounded, we may assume that xn → x∗ weakly as n → ∞,
without loss of generality. By Lemma 1.5, we have x∗ ∈ F (Ti) for all i ∈ J . Hence x∗ ∈ F .
Suppose that there exist subsequences {xnk

} and {xnj} of {xn} converge weakly to y∗ and
z∗, respectively. By Lemma 1.5, y∗, z∗ ∈ F . By Lemma 2.1 (i), we have limn→∞ ‖xn − y∗‖
and limn→∞ ‖xn − z∗‖ exist. It follows from Lemma 1.3 that y∗ = z∗. Therefore {xn}
converges weakly to a common fixed point x∗ in F .

Finally, we will prove weak convergence of the sequence {xn} defined by (1.2) in a
uniformly convex Banach space X whose its dual X∗ has the Kadec-Klee property.

Theorem 2.7. Let X be a uniformly convex Banach space and let C be a nonempty closed
convex subset of X. Let {Ti : i ∈ J} be N nonexpansive self-mappings of C with F =
∩N

i=1F (Ti) �= ∅. Let {αn} and {βn} be real sequences in [0, 1] such that αn + βn is in [0, 1]
for all n ≥ 1. From an arbitrary x0 ∈ C, define the sequence {xn} by (1.2). Then for all
y∗, z∗ ∈ F , the limit limn→∞ ‖txn + (1 − t)y∗ − z∗‖ exists for all t ∈ [0, 1].

Proof. It follows from Lemma 2.1 (i) that the sequence {xn} is bounded. Then there exists
R > 0 such that {xn} ⊂ BR ∩ C. Let an(t) = ‖txn + (1 − t)y∗ − z∗‖, where t ∈ (0, 1).
Then limn→∞ an(0) = ‖y∗− z∗‖ and by Lemma 2.1 (i), limn→∞ an(1) = limn→∞ ‖xn − z∗‖
exists. So we let limn→∞ ‖xn − z∗‖ = r for some positive number r. Let x ∈ C. We note
that for all i = 1, 2, · · · , N, N + 1, the mappings

Sx,i−1 := αix + βiTix + (1 − αi − βi)Ti

are contractions. It follows from the Banach contraction principle that there exists a unique
fixed point yx,i−1 of Sx,i−1 for each i. Hence, we can define Gn : C → C by

Gnx = yx,n, ∀x ∈ C, n ≥ 0;
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see [11]. Using Gn, we can be written the following compact form:

Gnx = αn+1x + βn+1Tn+1x + (1 − αn+1 − βn+1)Tn+1Gnx,

where Tn = Tn(mod N). By the definition of Gn, it easy to see that ‖Gnw−Gnz‖ ≤ ‖w− z‖
for each w, z ∈ C. This implies that Gn is a nonexpansive mapping for all n ≥ 0. Moreover,
we have

‖Gnxn − xn+1‖ = ‖αn+1xn + βn+1Tn+1xn + (1 − αn+1 − βn+1)Tn+1Gnxn − xn+1‖
= ‖(1 − αn+1 − βn+1)Tn+1Gnxn − (1 − αn+1 − βn+1)Tn+1xn+1‖
≤ (1 − αn+1 − βn+1)‖Gnxn − xn+1‖.

This implies that Gnxn = xn+1 for all n ≥ 0. Similarly, Gnx∗ = x∗ for all x∗ ∈ F for
all n ≥ 0. Set Hn,m := Gn+m−1Gn+m−2 · · ·Gn, n, m ≥ 1 and bn,m = ‖Hn,m(txn + (1 −
t)y∗)− (tHn,mxn + (1− t)y∗)‖, where 0 ≤ t ≤ 1. It is easy to see that Hn,mxn = xn+m and
Hn,mx∗ = x∗ for all x∗ ∈ F . It follows from Lemma 1.6 that

bn,m = ‖Hn,m(txn + (1 − t)y∗) − (tHn,mxn + (1 − t)y∗)‖
≤ γ−1(‖xn − y∗‖ − ‖Hn,mxn − Hn,my∗‖)
= γ−1(‖xn − y∗‖ − ‖xn+m − y∗‖).

Hence γ(bn,m) ≤ ‖xn − y∗‖ − ‖xn+m − y∗‖. This implies that limn,m→∞ γ(bn,m) = 0. By
the property of γ, we obtain that limn,m→∞ bn,m = 0. Observe that

an+m(t) = ‖txn+m + (1 − t)y∗ − z∗‖
≤ ‖Hn,m(txn + (1 − t)y∗) − (tHn,mxn + (1 − t)y∗)‖
+ ‖Hn,m(txn + (1 − t)y∗) − z∗‖
≤ bn,m + ‖txn + (1 − t)y∗ − z∗‖ = bn,m + an(t).

Consequently,

lim sup
m→∞

am(t) = lim sup
m→∞

an+m(t)

≤ lim sup
m→∞

(bn,m + an(t))

≤ γ−1(‖xn − y∗‖ − lim
m→∞ ‖xm − y∗‖) + an(t)

and
lim sup

n→∞
an(t) ≤ lim inf

n→∞ an(t).

This implies that limn→∞ an(t) exists for all t ∈ [0, 1]. This completes the proof.

Theorem 2.8. Let X be a uniformly convex Banach space such that its dual X∗ has the
Kadec-Klee property and let C be a nonempty closed convex subset of X. Let {Ti : i ∈ J}
be N nonexpansive self-mappings of C with F = ∩N

i=1F (Ti) �= ∅. Let {αn} and {βn} be real
sequences in [0, 1] such that αn + βn is in [0, 1] for all n ≥ 1 and 0 < lim infn→∞ αn ≤
lim supn→∞(αn + βn) < 1. From an arbitrary x0 ∈ C, define the sequence {xn} by (1.2).
Then {xn} converges weakly to some common fixed point of {Ti : i ∈ J}.
Proof. It follows from Lemma 2.1 (i) that the sequence {xn} is bounded. Then there exists
a subsequence {xnk

} of {xn} converging weakly to a point z∗ ∈ C. By Lemma 2.1 (ii), we
have limk→∞ ‖xnk

− Tlxnk
‖ = 0. Now using Lemma 1.5, we have (I − Tl)z∗ = 0, that is

Tlz
∗ = z∗ for all l ∈ J . Thus z∗ ∈ F . Next we prove that {xn} converges weakly to z∗.

Suppose that {xnj} is another subsequence of {xn} converging weakly to some y∗. Then
y∗ ∈ C and so z∗, y∗ ∈ ωw(xn) ∩ F . By Theorem 2.7, limn→∞ ‖txn + (1− t)y∗ − z∗‖ exists
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for all t ∈ [0, 1]. It follows from Lemma 1.4, we have z∗ = y∗. As a result, ωw(xn) is a
singleton, and so {xn} converges weakly to some fixed point in F .
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