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PROPERTIES OF THE COMPLEX MATRIX VARIATE DIRICHLET
DISTRIBUTION

ARrJUN K. GuprTA, DAYA K. NAGAR AND ELIZABETH BEDOYA
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ABSTRACT. In this paper, several properties of the complex matrix variate Dirichlet
type I distribution are studied. Also, the asymptotic expansion of the probability
density function of the complex matrix variate Dirichlet distribution is derived.

1 Introduction. Let X be an m xm random Hermitian positive definite matrix such that
all its eigenvalues are in the open interval (0,1). Then, X is said to have a complex matrix
variate beta type I distribution with parameters (a1, as), denoted as X ~ CB. (a1, a2), if
its p.d.f. is given by

(1) {B(a1,a2)} tdet(X)m "™ det (I, — X)®=~™,

where a; >m —1, as >m — 1, Bm(al, as) = Fm(al)fm(ag)/f‘m(al + ag) and

(2) [(a) = 7m(m=1/2 ﬁf(a —i+1),Re(a) >m — 1.

i=1

As an n matrix variate generalization of the density in (1), we define the complex matrix
variate Dirichlet type I distribution as follows:

The m x m random Hermitian positive definite matrices X1,..., X, are said to have
a complex matrix variate Dirichlet type I distribution with parameters (a1, ... ,an; Gnt1),
denoted by (X1,...,X,) ~CD. (a1,... ,an;ant1), if their joint p.d.f. is given by

n n Ant1—M
(3) {Bm(a1,... ,an,ani1)} "t H det(X;)* ™™ det <Im - Z Xi>
i=1 i=1

where I,,, — Z?:l X; is Hermitian positive definite, a; >m — 1, fori=1,... ,n+ 1 and
n+1 =
- o Ton(ag
Bm(ala st 7an7 a/TL"rl) = 1~_L’=17n_7:1(1)
L (3200 @)

The complex matrix variate Dirichlet distributions have been defined and studied by
several authors (see, for example, Troskie [5], Tan [4], Gupta and Nagar [2], and Cui,
Gupta and Nagar [1]). An extensive review on the matrix variate Dirichlet distributions is
available in Gupta and Nagar [3].

In this article, we derive certain properties including the asymptotic expansion of the
complex matrix variate Dirichlet type I distribution.
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2 Properties. In this section we give various properties of the complex matrix vari-
ate Dirichlet type I distribution. First, we state the following notations and results that
will be used in this and subsequent sections. Let A = (a;;) be an m X m matrix of
complex numbers. Then, A’ denotes the transpose of A; A denotes conjugate of A;
AH denotes conjugate transpose of A; tr(A) = a1 + -+ + Gmm; etr(A) = exp(tr(4));
det(A) = determinant of A; A = AH > 0 means that A is Hermitian positive definite and
A2 denotes the unique Hermitian positive definite square root of A = A¥ > 0. Further,
for the partition A = (ﬁ; ﬁ;;) ,det(A11) # 0, the Schur complement of A;; is defined as
Aggq = Agy — A21A1_11A12-

Now, we derive several results on the complex matrix variate Dirichlet type I distribution.

Theorem 2.1 Let (Xi,...,X,) ~ CD! (a1,... ,an;an11) and A be an m x m constant
nonsingular complex matriz. Define Z; = AX;A®, i = 1,...,n. Then, the p.d.f. of
(Z1,...,Zy) is given by

[1, det(Z)" ™ det(AA" — S0 7)o
I~ nt1 )

Br(a1,... G, Gpiq) det(AAH) 2= aimm

(4)

where Z; = Z7 >0,i=1,... ,n, and 3| Z; < AAH.
Proof: Making the transformation Z; = AX; A", i =1,... n with the Jacobian
J(X1,..., Xn — Z1,y... , Zy) = det(AAT)—mn

in (3), we get the desired result. m
The above distribution will be denoted by

(AX AR .. AX, AT ~ CD! (ay,... ,an;any1; AAT).

Note that CD! (ai,... ,an;an1;In) = CDE (ay,... ,an;ans1). Also, it is straightfor-
ward to show that if (Wy,... ,W,,) ~CD! (a1,...,an;ans1; B), then

(B~*WyB~%,... B *W,B %) ~CD! (a1,... ,an;ans1).

In the next theorem, it is shown that the complex matrix variate Dirichlet type I distribution
is unitary invariant.

Theorem 2.2 Let (Xi,...,X,) ~ CD! (ay,...,an;0,41) and U be an m x m unitary
matriz, whose elements are either constants or random variables distributed independently
of (X1,...,Xy). Then, the distribution of (X1,...,X,) is unitary invariant under the
transformation X; — UX;UH i =1,... . n and is independent of U in the latter case.

Proof: First, let U be a constant unitary matrix. Then, using Theorem 2.1, we have
UXx U, ... UX,U"%) ~ CDL (ay,...,an;an41) since UUH = I,,,. If, however, U is a
random unitary matrix, then (UX U ...  UX,U®)|U ~ CD! (ay,... ,an;an41). Since
this distribution does not depend on U it is also the unconditional distribution, and the
proof is complete. ®

Theorem 2.3 If (X1,...,X,) ~CD! (ay,... ,an;an11), then, for 1 <i<mn,

n
I .
(Xl,... 7Xi—1;Im _ZXT7Xi+1)"' 7Xn) ~ (CDm(al,... s Ai—1,An41, Ag41,5 - - - ,an,ai).
r=1
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Proof: The transformation Y, = Xy, k=1,...,i—1,i+1,... ,nand Y; = I,,, — Zle X,
with the Jacobian J(X1,...,X, — Y1,...,Y,) = 1 in the density (3) yields the desired
result. m

Theorem 2.4 Let (Xi,...,X,) ~CDL (ay,... an;an41) and define

n 7% n ,%
Wj:(fm— in) Xj<1m— ZX1> j=1,...,s.

1=s+1

Then, (Wy,...,Ws) and (Xsi1,..., Xn) are independent, (W1, ... ,W,) ~CDL (ay,... ,as;
an+1), and (Xs+17 . ,Xn) ~ (CDin(as—&-la B P Zle a; + an+1).

1

Proof: Transforming W; = (I, — D iet1 X;) %Xi (Im — D1 Xi ) 2,io=1,.
with the Jacobian J(X1,...,Xs — Wh,... ,Wy) = det(I,, — Z?:s-{—l X;)™*, in the den51ty

of (X1,...,X,), we get the desired result. m

Corollary 2.4.1 Let (X1,...,X,) ~CD! (a1,... ,an;0n41) and define

1 1
2

n —3 n
Zp = <Im— > Xi) XT(Im— > Xi) cr=1,...,n—1.
i=r+1 i=r+1

Then, Z1, ..., Zn_1 and X,, are mutually independent, Z; ~ CBE (a;,any1),i=1,... ,n—1
and X, ~ CBI (a0, Y07 ai 4+ anta).
Using (3), the (A1, ..., h,)" mixed “moment” is derived as
- n+1
L (32 +1 az"’Zz hi) iz T )

ifa;+h; >m—1,i=1,... ,n, and does not exist otherwise. The means, variances and
the covariances are obtained as

Eldet(X;)" - - - det(X,,)"] =

m
T ]- .
det H n(il s ) aZ:]_,...,n,
r=1 1, 1a1_r+1)

MY p s Gk m - 1)2
Varldet(X,)] = it @ —r ) 1w
(M a+ D(ai—m+1) 5 (X ay —r 4+ 1)2

i a; —r+1)(a; —r+1)
Cov[det(X;),det(X ;)] = j ,
[det(X;), det(X;)] Zﬁlz 15 ﬁlaz_rﬂ)
i # jyi, 5 =1,.

In the next theorem, we derive the joint p.d.f. of partial sums of random matrices
distributed jointly as complex matrix variate Dirichlet type I.

Theorem 2.5 Let (Xi,...,X,) ~CDL (ay,... an;a041) and define

*
2

n; %
Xo= D, Xjpan= )Y ani=0ni=) n,
j=1

j=ni_,+1 j=n;_,+1
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_1
2

XjX(i) yj=ni,+1....n —1,i=1,... ¢

[N

W, =X

(%)
Then, (Wys_ 415+ s Whro1), @ = 1,... .0 and (Xq),...,X(p) are independently dis-
tributed. Further, fori=1,... .0, (Wpr_  11,..., Wyr_1) ~ (CDfn(anLlH, e Apr 15002 ),
and

(X(l), cen ,X([)) ~ (CD#((I(D, s Q)3 an+1).

Proof: Make the transformation

5) Xp= Y X, W= X XX j=nii+ 1. nf =1 i=1,... L
J=ni_ +1

The Jacobian of this transformation is given by

(6) J(Xl, ,Xn — Wl,... ,Wnlfl,X(l),... ,Wn*_l+1,... ,anl,X(g))

£

|
EN

J(an_l-l-h" . 7an — Wn;‘_l_l’_l,. .. 7an—1;X(i))

-
Il
_

|
EN

det( X p))™(m D),

-
Il
_

Now, substituting from (5) and (6) in the joint density of (Xi,...,X,) given by (3), we
get the joint density of Wys 41, , Wye1, Xy, i=1,... L as

14

¢ Ap4+1—M
(7) {Bm(ar, .. an, ans1)} " [ det(Xs)) @™ det <Im - ZX@)>
i=1

i=1

¢ ni—1 n;—1 Apx—m
<IT| 11 det(Wj)“deet<Im— > Wj> 1

i=1 L j=nr_,+1 j=ni_,+1

where X, = Xt > 0, S Xy < I, Wy = WH >0, j = nf  +1,...,nf — 1,

E?Z;{H_l W, <Ipm,i=1,...,L From (7),it is straightforward to see that (X(y),... , X(¢))
and (Wpr 41,...,Wpr1), @ = 1,...,f, are independently distributed.  Further,
(Xay, - X)) ~ (CD#(a(l), ooy A anyr) and for i =1,... ¢, (W"Zlﬁl’ . ,an,l) ~
CD%@(anz,ﬁla ceeypr1;0py). W

When ¢ =1, 3" | X; ~CBL (3", aiyant1).

Next, we state results on marginal and conditional distributions of Dirichlet type I
random matrices that will be used to obtain several distributional results.

Theorem 2.6 Let (Xi,...,X,) ~ CD}

mytmy (@15 -+ Qnyany1) and X; be partitioned as

Xll(i) X12(i) .
X, = Xiq1/: =1,... .
i (Xg(l) X22(i) » A11(4) (ml X ml),Z ) v

Then, (i) (X11(1),--- >, X11(n)) and (Xa2.101y,--- s Xog.1(ny) are distributed independently.
Further,
(Xll(l)v NN 7X11(n)) ~ (CD{nl ((11, cee y,Qpy an+1),
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and
(Xo2.1(1)s -+ - » X22:1(m)) ~ (CD{,L2 (a1 —ma,...,an —Mi;an+1 + (n — 1)mq).
(ii) (Xaa(1), - - s Xoaen)) and (X11.21), - - - » X11.2(n)) are distributed independently. Further,
(Xaa(1)s -+ s Xaa(n)) ~ CD,IH,2 (a1, ..., Qn;ant+1),
and
(X11201)5 -+ s X11.2(m)) ~ ~CD}, (a1 —ma, ..., an — m2;ani1 + (n — 1)ma).

Proof: See Tan [4] m
The distributions of (AX;A" ... AX,AH) and ((AX;'A")=1 ...  (AX 1AH)~1)
where A (¢ x m) is a constant matrix of rank ¢ (< m), are now derived.

Theorem 2.7 Let (Xy1,...,X,) ~CD! (a1,... ,an;an:1). Then, for a complex constant
matriz A (q x m) of rank g (< m), (AX; A7 ... AX, AH) ~ (CDé(al, ey Qp;anyr; AAT).

Proof: Write A = M (Iq 0) G, where M (¢ x q) and G (m x m) are complex nonsingular
and unitary matrices, respectively. Now, for i =1,... ,n,

AX AT = M (1, 0) GX,GH (1, 0)" MH = MZy, 5 M¥,

where Z; = GX;GH and Zy13iy (g x q) is the first principal diagonal block of Z;. From
Theorem 2.2 and Theorem 2.6, we know that (Z1,...,2,) ~ CDL (ay,... ;an;an41) and
(Zi1(1ys -+ > Z1a(n)) ~ (CDé(al, .++ ,Gp; ant). Hence, using Theorem 2.1,

(MZyyyM", ... MZy(yM™) ~ CD}(ax,... ,an; ani1; MM™)

and the result follows by noting that AX;AH = MZu(i)MH, i=1,...,nand MM =
AAT m

Corollary 2.7.1 Let (X1,...,X,) ~CD! (a1,...,an;an+1) and c € C™, c # 0, then

geeey

clc

cHX e cHX,c
clce

) ~D'(a1,...,an; ans).

Proof: Take ¢ =1 in Theorem 2.7. m

The Dirichlet type I distribution designated by D(a1,... ,an;an+1) used in the above
corollary is defined by the p.d.f.

1
T n+1 n n An+1
Moo P (1o37a) ™
i=1

=1 1 i=1
where z; >0,i=1,... ,n,> ¢ ;2;<landa; >0,i=1,... ,n+1.
In Corollary 2.7.1 the distribution of (Ccﬁ(clc, cee Ccffgc) does not depend on c¢. Thus
if z(m x 1) is a complex random vector, independent of (X1,...,X,), and P(z # 0) = 1,

then it follows that

(ZHX1Z zH X, 7

iy ) ~D'(a1,. .., an; ans1).

zHg
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Theorem 2.8 Let A (gxm) be a complex constant matriz of rank q (< m). If (X1,...,X,)
~ (CDrln(alﬂ cee 5 Gn; an+1), then

(AX{TTATYT L (AXTAT) ™) ~ CDMar —m+q, . Jan —m+ g
ant1 + (n = 1)(m = q); (AAT)71).

Proof: Write A = M (I, 0) G, where M (g x q) is complex nonsingular and G (m x m) is
unitary. Now, for ¢ =1,...,n,

(AX; 1AM =L = [M (1, 0) GX;'GH (1, 0)7 MH)
= o0z ()] e

= (M) (Z M

Za1(i) Zaz(i) 11-2(2)° .
that (Z1,...,2Z,) ~CD! (a1,... ,an;ant1). Hence, from Theorem 2.6,

where Z; = GX;GH = (Z““) Z1200) ), Zn (g% q), and Z} = Z} i =1,...,n. Note

(Zi1.201)s -+ 5 Z11.2(n)) ~ (CDé(al —m4+q,...,an =M+ g anp1+ (n—1)(m —q))
and from Theorem 2.1,

(MY ZyayM ™ (MY 2y oy M)
N(CDé(al —MmA G, .. Gy — M G an + (0 —1)(m —q); (MMT)™1),

The proof of is now completed by observing that (AXi_lAH)’1 = (MH)*IZH,Q(@M*,
i=1,...,nand MM7 = AA". =

From the above theorem, when ¢ € C™, ¢ # 0, it follows that

( cte cte

e ~Dlai—m+1,...,ap —m+1;a +(n—1)(m-—1)).
CHXfIC CHXnIC) ( 1 n n+1 ( )( ))

Further, if z(m x 1) is a complex random vector independent of (Xi,...,X,), and
P(z #0) =1, then

zz zz I
X T Xy ~D' (a1 —m+1,...,ap —m+1;ap41 + (n—1)(m —1)).
Finally, substituting n = 1 in the results derived for the complex matrix variate Dirichlet
type I distribution, we obtain following interesting properties of the complex matrix variate
beta type I distribution. We assume that X ~ CBY (a1, az).

1. Let A be an m X m constant nonsingular complex matrix. Then, the distribution of
Z = AXAH  denoted by Z ~ CB. (a1, as; AAT), is given by the following p.d.f.

ar—m H az—m
det(Z2) det(AAH — 7) s aan
Bm (alv 0,2) det(AAH)a1+azfm

2. If W ~ CB. (a1, a2; B), then B-2WB~2 ~ CB. (a1, as).
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3. Let U (m x m) be an unitary matrix, whose elements are either constants or random
variables distributed independently of X. Then, the distribution of X is unitary
invariant under the transformation X — UXU¥ and is independent of U in the
latter case.

4. For a complex constant matrix A (¢xm) of rank q (< m), AX AT ~ (CB; (a1, as; AAT)
and (AX1AH)=1 ~ (CB;(al —m+ q,ag; (AAT)7L).

5. If c € C™, ¢ # 0, then CCHH—XCC ~ Bl(ay,az) and ch;flc ~ Bl(a; —m+1,az). Further,

if z(m x 1) is a complex random vector independent of X and P(z # 0) = 1, then
H H
X2 ~ Bl(a1,az) and 2 ~ Bl (a1 — m + 1, a2).

The univariate beta type I distribution denoted by B (a1, az) is defined by the p.d.f.

F(al + a’2) malfl

W (1—$)a27,0<$<1.

The expectations of X and X ! can easily be obtained using above results. For any
H H
ﬁxe(}:llc € C™*! ¢ # 0, we know that CCH{C ~ Bl(a1,as) and Aot ™ Bl(ay —m+1,a2)
so that

E(cXc) = E(uy)cfcand E(c’ X 1c)=E <i) cfe
U2

where u; ~ Bl (ay,az),uz ~ BY(ay —m + 1,az). Hence, for all c € C™*1,

cHE(X)c—< dl >ch,a1>m—1,a2>m—1,

a1 + ag

and

cHE(X_l)c: (M) cfe ar >m,as >m—1,

ap —m

which imply that
ai

8 E(X)= Ly,a1 >m—1,a2 >m—1,

© 00 = (7% ) v > m = Laa >

ai +ax—m
7) Lp,a1 > myas >m — 1.

) B =

ap —m
Since, for a complex constant matrix A (¢ x m) of rank ¢ (< m),
(AAT) "2 AX AT (AAT)% ~ CBl(ay, a2)

and
(AAT) 3 (AXTAH) Y (AAM)E ~ CBl(ay — m + g, a2)

we obtain from (8) and (9),

E(AXAH)—< 4 >AAH,a1 >m—1,a >m —1,
a1 + ag
a;+az2—q

E(AXAH)~! = ( ) (AATY= gy > max{m — 1,¢}, a2 > m — 1,

a; —q
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E(AX—lAH)—lz( ap—m-+q

_ (AAH)_l,al >m—1,ae >m—1,
a; t+axy—m-+gq

and

ar +ax —m

E(AXlAH)—< )AAH,a1>m,a2>m—1.
m

ay —

3 Asymptotic Expansion. In this section we derive the asymptotic expansion of the
probability density function of the complex Dirichlet type I random matrices. We first give
three lemmas needed to derive the final result.

Lemma 3.1 For |arg(z)| <7 —¢,e > 0, the logarithm of I'(z 4 ¢) can be expanded as

InT(z+4¢) = (z+c— S)lnz—z+Inv2r

g+1BS+1() —s —r—1
+ZT +OGE),

where By (x) is the Bernoulli polynomial of degree k and order unity.
Lemma 3.2 For ¢y, co scalars, we have

In liim(z +a)
I

= (1 —co)mlInz
m(z + 62)

T s+1
1 S+1(Cl—i+1)—BS+1 (CQ_Z.+].)]27

+§:Z s+

i=1 s=1
+O0(z7"7h), arg(2)| < ™ —€,e >0

where By (x) is the Bernoulli polynomial of degree k and order unity.

Proof: Writing complex multivariate gamma functions in terms of ordinary gamma func-
tions using (2), one obtains

(10)

Now, taking logarithm of the above expression and using Lemma 3.1, one gets the desired
result. m

Lemma 3.3 For maxi<i<n |A\i| < 1, where A1,..., A, are eigenvalues of the matriz Z/n,
Z " ns tr(Z°)
—Indet (I, — — | = — = 24 0m Y.
et (1= 7 ) = 3 o)

Theorem 3.1 Let (X1,...,X,) ~ CD! (ay,... ,an;an41) and define W = ani1 X, i =
1,...,n. Then, the p.d.f. of (Wh,... ,W,) can be expressed as

m det(W)®i—m - dy  3d}+4dy 5
11 [[———— S wi| ,
" [ Fon(a) ]t< i=1W> [ TS T 24az,, Ol

2a
i—1 ntl

where Wy = WH > 0,i=1,...,n, dy = —te(X 1, Wi)? + 2mtr(3X1, W;) + am(a — m),
dy = —2tr (=Y, I/Vi)‘3 +3mtr (>, VVi)2 — (1/2)am(2a® — 3am + 2m? — 1) and a =
Z?:l Q; .
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Proof: Substituting W; = ap41X;, i = 1,2,... ,n, with J(X1,... , X, —» Wq,... | W,) =
a;"™ in (3), we obtain the p.d.f. of (Wq,... ,W,) as

n+1
“ det W;)®i—m )
(12) Hegi) I1IQ,Wi:WiH>0,Z:1,...,n,
=1 Dm(ai)
where )
2 +
7= mlim @) -m
Fm(an—i-l) nr

W An41—M n
T, = det (Im - ) with W =3 W,
n+1 i—1

Now, using Lemma 3.2 with r = 2,z = ay,41,¢1 = a and co = 0, we obtain

1 m
In7Z; = B —i+1)— By (1—1
n7y 2an+1;[ s(a—i+1) 2 (1 —1)]
1 & , _ _
S Bila—i+1) - By(1- i) + Olazy)
ntl =g

where By(z) = 22 — 2 + 1/6 and Bs(x) = 2% — 322/2 + 2/2. Now, substituting for Ba(-)
and Bs(-) in the above expression and simplifying, the above expression is re-written as

am(a —m)  am(2a® — 3am + 2m? — 1) 3
13 InZ; = — (0] .
(13) T 1242, +Oln)

Further, application of Lemma 3.3 yields

An+1
g Bm V) — 2wV + Ofa;2,).
an+1

Therefore, using (13) and (14) we obtain

c21+c22

InZy +InZs = tr (=W
nly +1Inis r( )+20n+1 6a%+1

+ O(a;—?-l)

where d; and d are given in the Theorem 3.1. Hence we get

ds 3d3 + 4d,

15 Iy =etr(-W) |1
(15) 12 = etr (=W) +2an+1 24a2

+ O(a;—?-l)

Finally, substituting from (15) in (12) we get the desired result. m

The expression (11) may be used to yield a corresponding asymptotic formula for the
c.df. of (Xq,...,Xn), te,

Pn(Al,... ,An;al,... ,an;an+1) :Pn(0<X1 <A1,... ,0 < X, <An)
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where Aj,...,A, are Hermitian positive definite matrices. Writing B; = an414;, i =
1,2,...,n we have
(16) P, (A1, ..., Ap;a1,... ,Gn;Qnyt)

=P, (0<W; <By,...,0< W, <By,)

_ LA P
_/0<W1<51 /0<W,L<Bn [1:[ fm(ai) ] p( ZW)

i=1

Jl 362% + 4622
x |1 O dWy - -dW,
- 2ap41 244}, 0 a
where By, ..., B, are Hermitian positive definite matrices. It is seen that each term in (16)

is a combination of the functions

(17) Go.icy i, (B1,. .., Bn)

N /0<W1<31 - /0<W,L<B,,L Llﬁ[l detg[n/z i) m] o <_ zzn; Wi)
X [tr (— zn:WZ)a] "

n Ko
[tr ( - Wl)‘| dW1 cee de
i=1

The integral on the right-hand side of (17) does not seem to be easy to evaluate. Further
work on this will be reported elsewhere.
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