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THEORIES OF ORDERED COMMUTATIVE MONOIDS

HIROSHI TANAKA

Received December 27, 2006

Abstract. In this paper, we study some theories of lexicographic products of ordered
commutative monoids. In particular we show that the lexicographic product of the or-
dered commutative monoid of nonnegative integers and the ordered commutative monoid
of nonnegative rational numbers admits elimination of quantifiers in some expansive lan-
guage of the language of ordered monoids.

1. Introduction

Let Log := {0,+, <}, L0 := Log∪{n | x : n > 0, n ∈ N}∪{1} and Q≥0 := {a ∈ Q : a ≥ 0}.
It is well-known that the ordered commutative monoid N and the ordered abelian group

Z admit elimination of quantifiers in the language L0, where n | x means ‘n divides x’; see
for example [4] or [10]. In [3] and [11], Komori and Weispfenning independently showed that
the lexicographically ordered abelian group M := Z × Q admits elimination of quantifiers
in the same language L0; here 0M := 〈0, 0〉 and 1M := 〈1, 0〉. In [8], the author showed the
converse of them.

Let L be an expansion of Log. Suppose that H is an L-structure whose reduct to the
language Log is an ordered abelian group and K is an ordered divisible abelian group. Then,
extending the result of Komori and Weispfenning, Suzuki [7] showed that if H admits elim-
ination of quantifiers in L and the set {0}×K is defined by some quantifier-free L-formula
in the lexicographic product G := H × K, then G admits elimination of quantifiers in L.
In [9], the author and Yokoyama showed the converse of it. However, the lexicographically
ordered commutative monoid N := N × Q≥0 dose not admit elimination of quantifiers in
L0, where 0N := 〈0, 0〉 and 1N := 〈1, 0〉 (Lemma 3.1).

In section 2, we give some axioms for ordered commutative monoids.
In section 3, we show that the lexicographically ordered commutative monoid N × Q≥0

admits elimination of quantifiers in the language L, where the language L is the union
of L0, a unary relation symbol R(x) and binary relation symbols E1(x, y), E2(x, y). By
Definition 2.1 we notice that the language L is a definable expansion of L0. We also show
the converse of it.

In [3] and [11], Komori and Weispfenning studied model completions of theories of ordered
abelian groups. In section 4, we study model completions of theories of ordered commutative
monoids.

In [2], Belegradek, Verbovskiy and Wagner showed that the algebraic closure in ThL0(Z×
Q) satisfies the Exchange Principle. However, in section 5, we show that the algebraic
closure in ThL(N × Q≥0) does not satisfy the Exchange Principle.

In [1], Belegradek, Peterzil and Wagner showed that the L0-structure Z × Q is quasi-o-
minimal, that is, in any structure elementarily equivalent to Z × Q the definable subsets
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are exactly the Boolean combinations of ∅-definable subsets and intervals. However, in
section 6, we show that the L-structure N × Q≥0 is not quasi-o-minimal.

The reader is assumed to be familiar with model theory; see for example [5] or [6].
I would like to thank my research supervisor, Associate Professor Katsumi Tanaka for

useful discussions and comments.

2. Some axioms for ordered commutative monoids

Let N be the ordered commutative monoid of nonnegative integers. Let Z be the ordered
abelian group of integers. Let Q be the ordered abelian group of rational numbers and Q≥0

the ordered commutative monoid of nonnegative rational numbers.
We denote L0 := {0,+, <} ∪ {n | x : n > 0, n ∈ N} ∪ {1}, where n | x is a unary

relation symbol for each positive integer n. We denote L := L0 ∪{R(x), E1(x, y), E2(x, y)},
where R(x) is a unary relation symbol and E1(x, y), E2(x, y) are binary relation symbols.
The terms t + · · · + t and 1 + · · · + 1 (t and 1 repeated n times) are written as nt and n,
respectively. The formulas s < t ∧ t < u and s < t ∨ s = t are written as s < t < u and
s ≤ t, respectively.

We now give some axioms for ordered commutative monoids.

Definition 2.1.

1. The axioms for commutative monoids:
∀x∀y∀z((x+ y) + z = x+ (y + z));
∀x(x+ 0 = x);
∀x∀y(x+ y = y + x).

2. The axioms for a linear ordering compatible with monoid structures:
∀x∀y(x < y ∨ x = y ∨ y < x);
∀x(¬(x < x));
∀x∀y∀z(x < y → x+ z < y + z);
0 < 1;
∀x(0 ≤ x).

3. The axioms for n | x:
∀x(n | x↔ ∃y∃z(z < 1 ∧ x = ny + z)) for each integer n > 0;
∀x

(∨
0≤r<n n | x+ r

)
for each integer n > 1.

4. The axioms for infinitesimals:
∀x(x < 1 → nx < 1) for each integer n > 1.

5. The axiom for R(x):
∀x(R(x) ↔ ∀y∀z(y < x ∧ z < 1 → y + z < x)).

6. The axioms for E1(x, y) and E2(x, y):
∀x∀y(E1(x, y) ↔ ∃z(x+ z = y ∧R(z)));
∀x∀y(E2(x, y) ↔ ∃z(x+ z = y ∧ ¬R(z))).

7. ∀x∃y∃z(x = y + z ∧R(y) ∧ z < 1).
8. The axioms for difference:

∀x∀y(x < y ∧ y < 1 → ∃z(x+ z = y));
∀x∀y(x < y ∧R(x) ∧R(y) → ∃z(x+ z = y)).

9. The axioms for divisible infinitesimals:
∀x(x < 1 → ∃y(x = ny)) for each integer n > 1.

10. The axiom for discrete ordering:
∀x(¬(0 < x < 1)).

11. The axiom for existence of infinitesimals:
∃x(0 < x < 1).
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Note that the language L is a definable expansion of the language L0.

Definition 2.2. We denote NSS := (1) ∪ (2) ∪ (3) ∪ (4) ∪ (5) ∪ (6) ∪ (7) ∪ (8). We denote
NDC := NSS∪(10) and NSC := NSS∪(9) ∪ (11).

We consider the lexicographic order from left to right on the ordered commutative monoid
N×Q≥0. Then N×Q≥0 is a model of the theory NSC, where 0 and 1 are interpreted as 〈0, 0〉
and 〈1, 0〉, respectively. It is well-known that ThL0(N) admits elimination of quantifiers and
ThL0(N) = (1) ∪ (2) ∪ (3) ∪ (10) ∪ {∀x∀y(x < y → ∃z(x+ z = y))}. Thus, it follows that
the theory NDC admits elimination of quantifiers in the language L and NDC = ThL(N).

3. Quantifier eliminable ordered commutative monoids

In this section, we show that the theory NSC admits elimination of quantifiers in the
language L and NSC = ThL(N × Q≥0). We also show that if M is a model of the theory
NSS and ThL(M) admits elimination of quantifiers, then M is a model of either the theory
NDC or the theory NSC.

Lemma 3.1. The theory ThL0(N × Q≥0) dose not admit elimination of quantifiers.

Proof. Let ϕ(x) :≡ ∀y∀z(y < x∧z < 1 → y+z < x). Then we have N×{0} = ϕ(N×Q≥0).
Thus, any quantifier-free L0-formula is not equivalent to the formula ϕ(x) in the theory
ThL0(N × Q≥0).

To show that the theory NSC admits elimination of quantifiers in the language L, we
first prove some lemmas needed later.

Lemma 3.2. We have that NSS |= ∀x∀y(x < 1 ∧ y < 1 → x+ y < 1).

Proof. Suppose for a contradiction that there exists a model M of NSS and x, y ∈M such
that x < 1, y < 1 and x + y ≥ 1. By Axiom (4), we have 2x < 1 and 2y < 1. Thus, we
obtain 2(x+ y) < 2, a contradiction.

Lemma 3.3. We have that NSS |= ∀x∀y(R(x) ∧R(y) ↔ R(x+ y)).

Proof. Let M be a model of NSS. Let x, y ∈M .
Suppose that R(x) and R(y). By Axiom (7), there exist z1, z2 ∈ M with R(z1) and

z2 < 1 such that x+ y = z1 + z2. Since R(x) and R(y), we obtain x ≤ z1 and y ≤ z1. By
Axiom (8), there exists u ∈M with y + u = z1. Since x+ y = z1 + z2, we have x = u+ z2.
Because R(x) and z2 < 1, we get x = u. Thus, we have z2 = 0. It follows x + y = z1, as
desired.

Suppose that R(x + y). By Axiom (7), there exist x1, x2 ∈ M with R(x1) and x2 < 1
such that x = x1 + x2. Since x+ y = (x1 + y) + x2 and R(x+ y), we have x+ y = x1 + y.
Hence x = x1, and therefore R(x). Similarly, we get R(y).

By Axiom (6), the following lemma holds.

Lemma 3.4. Let i ∈ {1, 2}. Then, we have NSS |= ∀x∀y∀z(Ei(x, y) ↔ Ei(x+ z, y + z)).

Lemma 3.5. Let p be a positive integer and i ∈ {1, 2}. Then, we have that NSS |=
∀x∀y(Ei(x, y) ↔ Ei(px, py)).

Proof. We only show that NSS |= ∀x∀y(E1(x, y) ↔ E1(px, py)). The other case is similar.
Let M be a model of NSS and x, y ∈M .

Suppose that E1(x, y). There exists z ∈ M with R(z) such that x + z = y. Then
px+ pz = py. By Lemma 3.3, we get R(pz). Thus, it follows E1(px, py).

Suppose that E1(px, py). There exists u ∈ M with R(u) such that px + u = py. By
Axiom (7), there exist x1, x2, y1, y2 ∈ M with R(x1), x2 < 1, R(y1), y2 < 1 such that
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x = x1 + x2 and y = y1 + y2. By Lemma 3.3, we obtain R(px1 + u) and R(py1). Since
(px1 + u) + px2 = py1 + py2, we have px1 + u = py1 and px2 = py2. Thus, we get x1 ≤ y1
and x2 = y2. By Axiom (8), there exists w ∈ M with R(w) such that x1 + w = y1. It
follows E1(x, y).

Using the lemmas above, we show the following.

Theorem 3.6. The theory NSC admits elimination of quantifiers in the language L.

Proof. Let ∃xϕ be a formula, where ϕ is a quantifier-free formula in L. We may assume
that ϕ is of the form ψ1∧· · ·∧ψm, where each ψi is an atomic formula or the negation of an
atomic formula. In addition, each ψi is of one of the forms t = s, ¬(t = s), t < s, ¬(t < s),
n | t, ¬(n | t), R(t), ¬R(t), E1(t, s), ¬E1(t, s), E2(t, s) or ¬E2(t, s), where t and s are terms
and n is a positive integer. Moreover ¬(t = s), ¬(t < s) and ¬(n | t) are equivalent to
t < s ∨ s < t, t = s ∨ s < t and n | t+ 1 ∨ · · · ∨ n | t+ n− 1, respectively.

Now, each term t can be written in the form px+ s with p ∈ N and s a term which does
not contain x. Therefore ∃xϕ can be written as

∃x
( ∧

i∈A

pix+ ti = si ∧
∧
i∈B

u′i < qix+ ui ∧
∧

i∈B′
rix+ vi < v′i

∧
∧
i∈C

ni | mix+ wi ∧ ψ
)
,

where each pi, qi, ri,mi, ni are positive integer, each si, ti, ui, u
′
i, vi, v

′
i, wi are terms which do

not contain x, the sets A,B,B′, C may be empty, and the formula ψ is a finite conjunction
of formulas of the forms R,E1, E2 or the negation of these. By Axiom (9), for each positive
integer p the formula p | x is equivalent to ∃y(x = py). Thus, by Lemmas 3.3 and 3.5, we
may assume that the formula ∃xϕ is equivalent to

∃x
( ∧

i∈A

x+ ti = si ∧
∧
i∈B

u′i < x+ ui ∧
∧

i∈B′
x+ vi < v′i

∧
∧
i∈C

ni | x+ wi ∧ ψ
)
.

Let θ(x) be the formula
∧
i∈I1

E1(x,αi) ∧
∧
i∈I2

¬E1(x,α′
i) ∧

∧
i∈I3

E1(βi, x) ∧
∧
i∈I4

¬E1(β′
i, x)

∧
∧

i∈J1

E2(x, γi) ∧
∧

i∈J2

¬E2(x, γ′i) ∧
∧

i∈J3

E2(δi, x) ∧
∧

i∈J4

¬E2(δ′i, x),

where each αi, α
′
i, βi, β

′
i, γi, γ

′
i, δi, δ

′
i are terms which do not contain x and each Ii, Ji may

be empty. By Lemmas 3.3 and 3.4, we may assume that the formula ∃xϕ is equivalent to

∃x
( ∧

i∈A

x+ t = si ∧
∧
i∈B

ui < x+ t ∧
∧

i∈B′
x+ t < vi ∧

∧
i∈C

ni | x+ t+ wi

∧
∧
i∈D

R(x) ∧
∧

i∈D′
¬R(x) ∧ θ(x+ t)

)
,

where t is term which does not contain x and the sets D,D′ may be empty. If D is not
empty and D′ is empty, then we may assume that the formula ∃xϕ is equivalent to

∃y
( ∧

i∈A

y = si ∧
∧
i∈B

ui < y ∧
∧

i∈B′
y < vi ∧

∧
i∈C

ni | y + wi ∧ θ(y) ∧ E1(t, y)
)
.
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If D′ is not empty and D is empty, then we may assume that the formula ∃xϕ is equivalent
to

∃y
( ∧

i∈A

y = si ∧
∧
i∈B

ui < y ∧
∧

i∈B′
y < vi ∧

∧
i∈C

ni | y + wi ∧ θ(y) ∧ E2(t, y)
)
.

Hence, without loss of generality we may assume that the formula ∃xϕ is equivalent to
∃y (

u < y < v ∧ ∧
i∈C ni | y + wi ∧ θ(y)

)
, where u, v are terms which do not contain x. By

Axiom (3), this formula is equivalent to
∨

0≤r<n(
∧

i∈C ni | r + wi ∧ ∃z(u < nz + r < v

∧θ(nz + r))), where n is the least common multiple of ni (i ∈ C). By Lemma 3.4, the
formula ∃z(u < nz + r < v ∧ θ(nz + r)) is equivalent to ∃z(u + (n − r) < n(z + 1) <
v + (n − r) ∧ θ(n(z + 1))) for each integer r with 0 ≤ r < n. Hence, we may assume that
the formula ∃xϕ is equivalent to ∃z(u < nz < v ∧ θ(nz)). Moreover, we may assume that
the formula ∃xϕ is equivalent to

∃z(u < nz < v ∧ E1(nz, α) ∧ ¬E1(nz, α′) ∧ E1(β, nz) ∧ ¬E1(β′, nz)

∧E2(nz, γ) ∧ ¬E2(nz, γ′) ∧ E2(δ, nz) ∧ ¬E2(δ′, nz)),

where α, α′, β, β′, γ, γ′, δ, δ′ are terms which do not contain x. Then, this formula is equiv-
alent to some quantifier-free formula. For example, the formula ∃z(u < nz ∧ E1(nz, α)) is
equivalent to

u < α ∧ (n | α∨[n | u→ E2(u, α) ∨ u+ n < α]

∨[
∨

1≤r<n

(n | u+ r → u+ r < α)]).

Hence, the formula ∃xϕ is equivalent to some quantifier-free formula. Therefore, the
theory NSC admits elimination of quantifiers in the language L.

Fact 3.7 ([5, Proposition 1.1.8]). Let M be an L-structure and N a substructure of M .
Suppose that ϕ is a quantifier-free L-sentence. Then, M |= ϕ if and only if N |= ϕ.

Theorem 3.8. The theory NSC is complete. Namely, we have NSC = ThL(N × Q≥0).

Proof. Let M be a model of NSC. Suppose that f : N → M by f(n) = nM . Then f is an
embedding. Thus, by Theorem 3.6 and Fact 3.7, the theory NSC is complete.

Lemma 3.9. Let ψ(x) be a quantifier-free L-formula with one free variable x. Suppose that
M |= NSS. Then, either M |= ψ(a) for each a with 0 < a < 1, or M |= ¬ψ(a) for each a
with 0 < a < 1.

Proof. Let ψ(x) be a quantifier-free L-formula with one free variable x. The formula ψ(x)
is equivalent to a Boolean combination of formulas which is of the forms px+ q = 0, px = q,
px + q < 0, px < q, 0 < px + q, q < px, n | px + q, R(px + q), E1(px + q, 0), E1(px, q),
E1(0, px+q), E1(q, px) E2(px+q, 0), E2(px, q), E2(0, px+q), E2(q, px), where n, p ∈ N\{0}
and q ∈ N.

Let M |= pa = q for some a ∈ M with 0 < a < 1. Then, by Axiom (4), we have
0 < pa < 1, a contradiction.

Let M |= pa < q for some a ∈ M with 0 < a < 1. Then, by 0 < pa, we have 1 ≤ q.
Thus, M |= px < q for each x ∈M with 0 < x < 1.

Let M |= q < pa for some a ∈ M with 0 < a < 1. Then, by pa < 1, we have q = 0.
Thus, M |= q < px for each x ∈M with 0 < x < 1.

Let M |= n | pa+ q for some a ∈ M with 0 < a < 1. Then, by 0 < pa < 1, there exists
m ∈ N such that q = mn. Thus, we have M |= n | px+ q for each x ∈M with 0 < x < 1.

Let M |= E1(0, pa + q) for some a ∈ M with 0 < a < 1. Then, by 0 < pa < 1, we get
M |= ¬R(pa+ q), a contradiction.
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The other cases are similar. This completes the proof of the lemma.

We show the converse of Theorem 3.6.

Theorem 3.10. Let M be a model of NSS. Suppose that ThL(M) admits elimination of
quantifiers. Then M is a model of either NDC or NSC. Namely, we have either M ≡L N
or M ≡L N × Q≥0.

Proof. First, suppose that Axiom (10) holds in M . Then, the structure M is a model of
NDC.

Secondly, suppose that Axiom (11) holds in M . Let n be a positive integer with n > 1.
Because Th(M) admits elimination of quantifiers, there exists a quantifier-free L-formula
ψn(x) such that

Th(M) |= ∀x[(x < 1 → ∃y(x = ny)) ↔ ψn(x)].

Let a ∈M . Now M |= ψn(a) if a = 0 or 1 ≤ a. Assume that 0 < a < 1. Then M |= ψn(na).
By Lemma 3.9, we obtain M |= ψ(a). It follows that M |= ψ(a) for each a ∈ M . Thus,
Axiom (9) holds in M . Therefore, the structure M is a model of NSC.

Remark 3.11. By Theorem 3.10, the lexicographically ordered commutative monoid N×N
dose not admit elimination of quantifiers in the language L, where 0 and 1 are interpreted
as 〈0, 0〉 and 〈1, 0〉, respectively. However, in a similar way to Theorem 3.6 we show that
the lexicographically ordered commutative monoid N × N admits elimination of quantifiers
in the language L ∪ {1′}, where 1′ is interpreted as 〈0, 1〉.

4. Model completion

In this section, we show that the theory NSC is a model completion of the theory NSS.
Recall the notion of the model companion and the model completion from [5].

Definition 4.1. Let L be a language and M an L-structure. Suppose that Diag(M) :=
{ϕ(m1, . . . ,mn) : ϕ(x1, . . . , xn) is either an atomic L-formula or the negation of an atomic
L-formula, m1, . . . ,mn ∈ M and M |= ϕ(m1, . . . ,mn)}. Suppose that T and T ′ are L-
theories. We say that T ′ is a model companion of T if

(i) T ′ is model-complete;
(ii) every model of T has an extension that is a model of T ′;
(iii) every model of T ′ has an extension that is a model of T .

Moreover, if T ′ is a model companion of T and T ′ ∪ Diag(M) is a complete L(M)-theory
for any M |= T , then T ′ is called a model completion of T .

Fact 4.2 ([3]). ThL0(Z×Q) is a model completion of the L0-theory SS, where the L0-theory
SS is defined by [3].

Lemma 4.3. Any model of NSS can be embedded in a model of NSC.

Proof. Let M be a model of NSS.
Suppose that Axiom (10) holds in M . We now consider the lexicographic order on

M × Q≥0. Then, the lexicographically ordered commutative monoid M × Q≥0 is a model
of NSC, where 0 and 1 are interpreted as 〈0, 0〉 and 〈1, 0〉, respectively. Moreover, f : M →
M × Q≥0 by f(a) = 〈a, 0〉 is an embedding.

On the other hand, suppose that Axiom (11) holds in M . Let N := {〈a, n〉 : a ∈M,n >
0, n ∈ N, n | a}. We define an equivalence relation ∼ on N by 〈a,m〉 ∼ 〈b, n〉 if na = mb.
Let [〈a,m〉] denote the ∼-class of 〈a,m〉 ∈ N and N ′ := {[〈a,m〉] : 〈a,m〉 ∈ N}. We
define + on N ′ by [〈a,m〉] + [〈b, n〉] := [〈na+mb,mn〉]. We also define an order on N ′ by
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[〈a,m〉] < [〈b, n〉] if na < mb. Then, the ordered commutative monoid N ′ is a model of
NSC. Moreover, g : M → N ′ by g(a) = [〈a, 1〉] is an embedding.

Fact 4.4 ([6, Theorem 9.2.2]). Let L be a language and T an L-theory. Then, the following
conditions are equivalent:

(i) T admits elimination of quantifiers in the L;
(ii) For every model M of T and every substructure A of M, we have that T ∪Diag(A) is

a complete L(A)-theory.

By Theorem 3.6, Fact 4.4 and Lemma 4.3, we have the following.

Theorem 4.5. The theory NSC is a model completion of the theory NSS.

Recall that the L0-theory SC is the set of the following axioms ([3]).
• The axioms for ordered abelian groups.
• The axioms for a semi-discrete ordering:

0 < 1, ∀x(2x < 1 ∨ 1 < 2x).
• The axioms for infinitesimals:
∀x(2x < 1 → nx < 1) for each integer n > 2.

• The axioms for n | x:
∀x(n | x↔ ∃y∃z(0 < 2z + 1 ∧ 2z < 1 ∧ x = ny + z)) for each integer n > 0,
∀x

(∨
0≤r<n n | x+ r

)
for each integer n > 0.

• The axioms for divisible infinitesimals:
∀x(0 < 2x+ 1 ∧ 2x < 1 → ∃y(x = ny)) for each integer n > 1.

• The axioms for existence of infinitesimals:
∃x(0 < x < 1).

Fact 4.6 ([3, Theorem 1.1]). The L0-theory SC admits elimination of quantifiers and is
complete. In particular, we have SC = ThL0(Z × Q), where we interpret 0 and 1 as 〈0, 0〉
and 〈1, 0〉, respectively.

Theorem 4.7. Any model of NSC can be embedded in a model of SC.

Proof. Let M be a model of NSC. We define an equivalence relation ∼ on M × M by
〈a, b〉 ∼ 〈a′, b′〉 if a + b′ = a′ + b. Let [〈a, b〉] denote the ∼-class of 〈a, b〉 ∈ M ×M and
N := {[〈a, b〉] : 〈a, b〉 ∈M ×M}. We define + on N by [〈a, b〉] + [〈a′, b′〉] := [〈a+ a′, b+ b′〉].
We also define an order on N by [〈a, b〉] < [〈a′, b′〉] if a+ b′ < a′ + b.

Then, the structure N is a model of SC. Moreover, f : M → N by f(a) = [〈a, 0〉] is an
embedding. This completes the proof of the theorem.

5. Exchange principle

In this section, we show that the algebraic closure in the theory NSS does not satisfy the
Exchange Principle.

Let L be a language and M an L-structure. Let A be a subset of M . We say that a ∈M
is algebraic over A if there exists an L-formula ϕ(x, y1, . . . , yn) and b1, . . . , bn ∈ A such that
M |= ϕ(a, b1, . . . , bn) and {c ∈M : M |= ϕ(c, b1, . . . , bn)} is finite. The algebraic closure of
A in M , denoted acl(A), is given by {a ∈M : a is algebraic over A}.
Definition 5.1. Let L be a language and M an L-structure. We say that the algebraic
closure in M satisfies the Exchange Principle if A ⊆ M , a, b ∈ M and a ∈ acl(A ∪ {b}) \
acl(A), then b ∈ acl(A ∪ {a}). The algebraic closure in an L-theory T is said to satisfy
the Exchange Principle if the algebraic closure in any model M of T satisfies the Exchange
Principle.
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Fact 5.2 ([2, Corollary 50]). The algebraic closure in the theory ThL0(Z × Q) satisfies the
Exchange Principle.

Theorem 5.3. The algebraic closure in the theory NSC does not satisfy the Exchange Prin-
ciple.

Proof. Let Q>0 := {a ∈ Q : a > 0} and R≥0 := {a ∈ R : a ≥ 0}. Let M1 be the
lexicographically ordered structure {0} × N × R≥0 and M2 the lexicographically ordered
structure Q>0 × Z × R≥0. In M := M1 �M2 we define

• + is defined coordinatewise;
• a < b whenever a ∈M1 and b ∈M2;
• 0 and 1 are interpreted as 〈0, 0, 0〉 and 〈0, 1, 0〉, respectively.

Then M is a model of the theory NSC.
Let a = 〈1, 3, 2〉, b = 〈2, 6, 4√2〉 and c = 〈0, 0, 4√2〉. Let ϕ(x) :≡ 2a < x < 2a + 1 ∧

E1(c, x). Then {x ∈ M : M |= ϕ(x)} = {b}. Thus, we get b ∈ acl({a, c}). There exists
no n ∈ N with 〈2, 6, 0〉 = n〈0, 1, 0〉. Hence, by Theorem 3.6, we have b /∈ acl({c}). Now,
there exists no p ∈ Q with 2 = 4p

√
2. Thus, by Theorem 3.6, we obtain a /∈ acl({b, c}).

Therefore, the algebraic closure in M does not satisfy the Exchange Principle. This finishes
the proof.

Remark 5.4. The algebraic closure in the L-structure N × Q≥0 satisfies the Exchange
Principle.

6. Non-quasi-o-minimality

In this section, we show that the L-structure N × Q≥0 is not quasi-o-minimal.
Recall the notion of quasi-o-minimal structures from [1].

Definition 6.1. A structure (M,<, . . . ), where < is a linear ordering of M , is said to be
quasi-o-minimal if in any structure elementarily equivalent to it the definable subsets are
exactly the Boolean combinations of ∅-definable subsets and intervals.

The following fact is known.

Fact 6.2 ([1]). The L0-structures N, Z and Z × Q are quasi-o-minimal.

Theorem 6.3. The L-structure N × Q≥0 is not quasi-o-minimal.

Proof. Suppose for a contradiction that the L-structure N × Q≥0 is quasi-o-minimal. Let
ϕ(x) :≡ E1(〈2, 1〉, x) and A := ϕ(N × Q≥0). Then A = {〈n, 1〉 : n ≥ 2, n ∈ N}, that is,
A is infinite. By quasi-o-minimality of N × Q≥0, there exist a, b ∈ N × Q≥0 and infinite
∅-definable set B such that a < b and A contains (a, b) ∩ B. By Theorem 3.6, there exists
some quantifier-free formula ψ(x) without parameters such that B = ψ(N×Q≥0). Since B
is infinite, there exists n ∈ N and d ∈ Q≥0 such that d �= 1 and 〈n, d〉 ∈ (a, b)∩B. It follows
(a, b) ∩B � A, a contradiction.
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