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WEAK-OPEN MAPS AND SEQUENCE-COVERING MAPS
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Abstract. Recently some results on spaces with a special weak-base were obtained in
terms of weak-open maps and sequence-covering maps of metric spaces. In this paper,
we give further results on weak-open maps and sequence-covering maps. Moreover, a
question of Lin and Yan is answered.

1. Introduction

We assume that all spaces are regular T1, all maps are continuous and onto. For A ⊂ X ,
IntXA is the interior of A in X . The letter N is the set of natural numbers.

Definition 1.1. Let X be a space. For x ∈ X , let Bx be a family of subsets of X . Then
B =

⋃{Bx : x ∈ X} is called a weak-base for X [2] if it satisfies the following conditions:
(1) every element of Bx contains x, (2) for B0, B1 ∈ Bx, there exists B ∈ Bx such that
B ⊂ B0 ∩ B1 and (3) G ⊂ X is open iff for each x ∈ G there exists B ∈ Bx with B ⊂ G.
A space X is called g-first countable [12] if it has a weak-base B =

⋃{Bx : x ∈ X} such
that each Bx is countable. A space X is called g-second countable [12] if it has a countable
weak-base.

Every g-first countable space is sequential, and a space is first countable iff it is g-first
countable and Fréchet [2].

Definition 1.2. Let f : X → Y be a map.
(1) f is weak-open [15] if there exist a weak-base B =

⋃{By : y ∈ Y } for Y and a point
xy ∈ f−1(y) for each y ∈ Y such that for each open neighborhood U of xy, f(U)
contains some element of By.

(2) f is sequence-covering [11] if whenever {yn}n∈ω is a sequence in Y converging to
y ∈ Y , there exists a sequence {xn}n∈ω in X converging to a point x ∈ f−1(y) such
that xn ∈ f−1(yn).

(3) f is 1-sequence-covering [6] if for each y ∈ Y , there exists a point xy ∈ f−1(y) such
that whenever {yn}n∈ω is a sequence in Y converging to a point y ∈ Y , there exists
a sequence {xn}n∈ω in X converging to the point xy with xn ∈ f−1(yn).

A sequence-covering map was introduced by F. Siwiec to characterize sequential spaces,
Fréchet spaces and strongly Fréchet spaces in terms of maps. Note that a weak-open map
is quotient. A weak-open map was introduced by S. Xia to characterize certain g-first
countable spaces.

Theorem 1.3. (1) a space is g-first countable iff it is a weak-open image of a metric
space [16];

(2) a space is g-second countable iff it is a weak-open image of a separable metric space
[15, Theorem 2.4];
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(3) every weak-open map of a first-countable space is 1-sequence-covering [15, Proposition
3.3];

(4) every 1-sequence-covering map onto a sequential space is weak-open [15, Proposition
3.4].

The following proposition will be used in the second section.

Proposition 1.4. For a map f : X → Y , the following are equivalent.
(1) f is weak-open;
(2) for each y ∈ Y , there exists xy ∈ f−1(y) such that for G ⊂ Y , IntXf−1(G) ⊃

{xy; y ∈ G} implies that G is open in Y .

Proof. (1) → (2): Take a weak-base B =
⋃{By : y ∈ Y } for Y and a point xy ∈ f−1(y) for

each y ∈ Y such that for each open neighborhood U of xy, f(U) contains some element of By.
Let G be a subset of Y satisfying IntXf−1(G) ⊃ {xy; y ∈ G}. For each y ∈ G, IntXf−1(G)
is an open neighborhood of xy . Hence there exists B ∈ By with y ∈ B ⊂ f(IntXf−1(G)).
Then y ∈ B ⊂ G. Thus G is open in Y .

(2) → (1): For each y ∈ Y , take a point xy ∈ f−1(y) such that for G ⊂ Y , IntXf−1(G) ⊃
{xy; y ∈ G} implies that G is open in Y . For each y ∈ Y , let By = {f (U) : xy ∈ U, U is
open in X} and B =

⋃{By : y ∈ Y }. We have only to see that B is a weak-base for Y . Let
G ⊂ Y , and assume G =

⋃
y∈G By, where By ∈ By. Let By = f(Uy), where Uy is an open

neighborhood of xy . Then IntXf−1(G) ⊃ ⋃
y∈G Uy ⊃ {xy; y ∈ G}. Hence G is open in Y .

Other conditions on a weak-base are easy to show.

2. characterizations of spaces in terms of maps

Siwiec proved in [11, Theorem 4.1] that a space Y is sequential iff every sequence-covering
map onto Y is quotient. As described in Theorem 1.3 (4), if a space Y is sequential, then
every 1-sequence-covering map onto Y is weak-open. We note that the converse is true.

Proposition 2.1. For a space Y , the following are equivalent.
(1) Y is sequential;
(2) every 1-sequence-covering map onto Y is weak-open;
(3) every 1-sequence-covering map onto Y is quotient.

Proof. (1) → (2): This is due to Xia, see Theorem 1.3 (4).
(2) → (3): This is trivial, because every weak-open map is quotient.
(3) → (1): For each y ∈ Y , let By be the family of all sequential neighborhood of y in Y .

Let X(y) = Y , and we give a topology on X(y) as follows: all points but y are isolated in
X(y), and take By as a neighborhood base of y. Obviously each X(y) is regular T1. Note
that every sequence in Y converging to y is a convergent sequence in X(y). This means
that every sequentially open set of X(y) containing y is an element of By, hence open in
X(y). Thus each X(y) is sequential. Consider the natural map f of the topological sum⊕

y∈Y X(y) onto Y . The map is obviously continuous and 1-sequence-covering. Hence f is
quotient. Since

⊕
y∈Y X(y) is sequential, the quotient image Y is also sequential.

In view of this proposition, it is natural to investigate a space Y satisfying that every
sequence-covering map onto Y is weak-open.

Theorem 2.2. For a space Y , the following are equivalent.
(1) every sequence-covering map onto Y is weak-open;
(2) Y has a weak-base B = ∪{By : y ∈ Y } such that each By is a countable and decreasing

family, and each element of By is a convergent sequence with the limit y;
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(3) Y is a weak-open image of the topological sum of some convergent sequences;
(4) Y is sequential and for each y ∈ Y , there exists a sequence Ly converging to y such

that for any sequence L converging to y, L − Ly is finite.

Proof. (1) → (2): Let {Sα : α < κ} be the family of all convergent sequences in Y . Let f
be the natural map of the topological sum X =

⊕
α<κ Sα onto Y . The map is obviously

sequence-covering, hence it is weak-open by our assumption. By Proposition 1.4, for each
y ∈ Y , there exists xy ∈ f−1(y) satisfying that G ⊂ Y is open iff IntXf−1(G) ⊃ {xy; y ∈ G}.
Let xy ∈ Sαy , take a decreasing open neighborhood base {Un(xy) : n ∈ ω} of xy in Sαy . If
xy is isolated in Sαy , Un(xy) = {xy} for all n ∈ ω. Let

B =
⋃

y∈Y By, where By = {f (Un(xy)) : n ∈ ω}.

We observe that B is a weak-base for Y . Let G ⊂ Y and assume that for each y ∈ G, there
exists ny ∈ ω such that f(Uny(xy)) ⊂ G. Then

f−1(G) ⊃
⋃

y∈G

Uny(xy) ⊃ {xy; y ∈ G}.

Hence G is open in Y . Other conditions on a weak-base are obviously satisfied.
(2) → (3): Let B =

⋃
y∈Y By be a weak-base for Y satisfying the condition (2). Let

By = {Bn(y) : n ∈ ω}. Consider the natural map f of the topological sum X =
⊕

y∈Y B0(y)
onto Y . We see that f is weak-open. If y ∈ Y is isolated, then take any point xy ∈ f−1(y).
If y ∈ Y is not isolated, then take the point xy = y ∈ f−1(y) ∩ B0(y). Assume that G is
a subset of Y satisfying IntXf−1(G) ⊃ {xy : y ∈ G}. Then, for each y ∈ G, there exists
ny ∈ ω such that G =

⋃
y∈G Bny(y). Since B is a weak-base for Y , G is open in Y .

(3) → (4): Let f be a weak-open map of the topological sum X =
⊕

α<κ Sα of some
convergent sequences onto Y . Since a weak-open map is quotient, Y is sequential. By
Theorem 1.3 (3), f is 1-sequence-covering. For each y ∈ Y , take xy ∈ f−1(y) such that
whenever {yn}n∈ω is a sequence converging to y, there exists a sequence {xn}n∈ω converging
to xy with xn ∈ f−1(yn). If y ∈ Y is isolated, then let Ly = {y}. If y ∈ Y is not isolated,
since there exists a non-trivial sequence in Y converging to y, xy is the limit point of some
non-trivial convergent sequence Sαy . Let Ly = f(Sαy) − {y}. The family {Ly : y ∈ Y } is a
desired one.

(4) → (1): Let {Ly : y ∈ Y } be a family in the condition (4). Let f be a sequence-
covering map of X onto Y . For each convergent sequence {y}∪Ly, there exist xy ∈ f−1(y)
and a sequence Cy converging to xy with f(Cy) = Ly. We see that f is weak-open. Suppose
that G ⊂ Y satisfies IntXf−1(G) ⊃ {xy : y ∈ G}. Since Y is sequential, we have only to
see that G is sequentially open in Y . Let {yn}n∈ω be a sequence converging to y ∈ G.
Since {yn}n∈ω − Ly is finite, there exists k ∈ ω such that {yn : n ≥ k} is an image of a
subsequence of Cy. By xy ∈IntXf−1(G), {yn}n∈ω is eventually in G.

Remark 2.3. By the previous theorem, every sequence-covering map onto Arens’ space
S2 is always weak-open, but not every sequence-covering map onto the sequential fan Sω is
weak-open. While, every 1-sequence-covering map onto the sequential fan is always weak-
open by Proposition 2.1. Arens’ space S2 is the quotient space of the topological sum of
countably many non-trivial convergent sequences {Cn : n ∈ ω}, obtained by identifying, the
limit point of Cn with the nth term of C0 for all n > 0 [3, Example 1.6.19]. The sequen-
tial fan Sω is the space obtained by identifying the limits of countably many convergent
sequences.
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3. Questions of Lin and Yan

In [7, Question 3.11], Lin and Yan asked whether every separable space which is a
sequence-covering, quotient and s-image of a metric space is a local ℵ0-space. A map
is called an s-map if each fiber of the map is separable, and a space is called an ℵ0-space
[8] if it has a countable k-network. We give a counterexample of this question.

Example 3.1. Let M and Y be the spaces, and f : M → Y be the map constructed in [4,
Example 9.3]. By the construction, f is a sequence-covering, quotient and compact-map (in
fact, two-to-one map) of the metric space M , where a map is called compact if each fiber
of the map is compact. The space Y is separable and a local ℵ0-space which is not meta-
Lindelöf. A family F of subsets of a space X is called point-regular [1] if for each x ∈ X and
each open neighborhood U of x, the set {F ∈ F : x ∈ F,F ∩ (X − U) 	= ∅} is finite. Ikeda,
Liu and Tanaka proved in [5, Theorem 9] that a space X has a point-regular weak-base iff
it is a sequence-covering, quotient and compact-image of a metric space. Hence Y has a
point-regular weak-base. Now, let Yn = Y for n ∈ ω, let B(n) be a point-regular weak-base
for Yn. Consider the topological sum

⊕
n∈ω Yn, and let

Z = {p} ∪ (
⊕

n∈ω

Yn).

We give a topology on Z as follows:
⊕

n∈ω Yn is an open subspace of Z and take the family

Bp = {{p} ∪ (
⊕

{Yn : n ≥ k}) : k ∈ ω}
as a neighborhood base of p. Then it is not difficult to see that Z is separable and the
family

Bp ∪ (∪{B(n) : n ∈ ω})
is a point-regular weak-base for Z. Hence, by the above theorem due to Ikeda, Liu and
Tanaka, Z is a sequence-covering, quotient and compact-image of a metric space. Note
that a compact-image of a metric space is an s-image. But each neighborhood of p is not
meta-Lindelöf, hence Z is not a local ℵ0-space.

In [7, Question 4.10], the authors asked whether a Fréchet space with a countable cs-
network is a closed and sequence-covering image of a separable metric space. For the
question, Yan, Lin and Jiang proved [17, Theorem 1] that every closed and sequence-
covering image of a metric space is metrizable, and showed that the sequential fan Sω is a
counterexample.

A space X is said to be strongly Fréchet [11] if for each decreasing sequence {An : n ∈ ω}
of subsets of X , x ∈ ⋂

n∈ω An implies that there exists a sequence {xn}n∈ω converging to
x with xn ∈ An for each n ∈ ω. It is known that a strongly Fréchet space which is a closed
image of a metric space is metrizable [9, Corollary 9.10]. Therefore it is natural to ask
whether the strong Fréchet property is preserved by a closed and sequence-covering map.
We show that it is true under a weak condition.

A space is said to have property wD [14] if every infinite closed discrete subset has an
infinite subset A such that there exists a discrete open family {Ux : x ∈ A} with Ux∩A = {x}
for each x ∈ A. Normal spaces, countably paracompact spaces and realcompact spaces have
this property, see [14].

Theorem 3.2. Let X be a strongly Fréchet space with property wD. If f : X → Y is a
closed and sequence-covering map, then Y is strongly Fréchet.

Proof. Since a closed image of a Fréchet space is Fréchet, Y is Fréchet. Assume that Y is
not strongly Fréchet. Then Y contains a homeomorphic copy of the sequential fan Sω [13,
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(b) of (16), p. 31], and the copy can be closed in Y [10]. Hence let Sω ⊂ Y as a closed set.
We put

Sω = {∞} ∪ {ym,n : m, n ∈ ω},
where each Lm = {ym,n}n∈ω is a convergent sequence to ∞.

For each n ∈ N, since {∞} ∪ L0 ∪ Ln is a convergent sequence, there exist xn ∈ f−1(∞)
and a sequence Cn converging to xn such that f(Cn) = L0 ∪ Ln. For each k ∈ ω, let

Ak =
⋃

{f−1(Ln) : n ≥ k}.
Suppose that there exists z ∈ X such that for every open neighborhood U of z, {n ∈ N :
xn ∈ U} is infinite. Then z ∈ ⋂

k∈N
Ak. Take zk ∈ Ak such that {zk}k∈N converges to

z. But {f (zk)}k∈N does not converge to ∞, which is a contradiction. Therefore the set
{xn}n∈N is infinite, closed and discrete in X .

By property wD of X , there exist an infinite subset {xnj}j∈ω of {xn}n∈N and a discrete
open family {Uj}j∈ω such that Uj ∩ {xnj}j∈ω = {xnj}. Recall that Cnj converges to xnj

and f(Cnj ) = L0 ∪ Lnj . Therefore we can take uj ∈ Uj ∩ Cnj such that {f (uj)}j∈ω is
infinite and contained in L0. Since {uj}j∈ω is closed in X , {f (uj)}j∈ω is closed in Sω. This
is a contradiction. Thus Y is strongly Fréchet.

Corollary 3.3 ([17]). Every closed and sequence-covering image of a metric space is metriz-
able.
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