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Abstract. For positive invertible operators on a Hilbert space, Fiedler and Pták
introduced the spectral geometric mean which is a modification of the geometric mean
A#B of operators. In this note, we show that it is characterized by Riccati equations,
which shows its basic properties easily.

In the field of operator theory, simple Riccati equation XBX = A has been discussed
by Pedersen-Takesaki [11] and Nakamoto [10]. For positive (invertible) operators A and B

on a Hilbert space, the geometric (operator) mean

A#B = A1/2(A−1/2BA−1/2)1/2A1/2 = B1/2(B−1/2AB−1/2)1/2B1/2

is introduced by Pusz-Woronowicz [12] and Ando [2]. According to these results, Anderson-
Trapp [1] gave the following view:

Theorem(Anderson-Trapp). There exists a unique positive solution A#B for a Riccati

equation XB−1X = A.

Remark 1. Carlin-Noble [4] introduced the geometric mean A#CB by

A(A−1B)1/2 = B(B−1A)1/2.

But their square root is not always positive and they did not determine it as an explicit
form. As pointed out in [8], this square root is rationalized as

(A−1B)1/2 = A−1/2(A−1/2BA−1/2)1/2A1/2,

since A−1B is weakly positive and hence the square root is uniquely determined. From this
viewpoint, the definition of geometric operator mean might be introduced by Calkin-Noble
[4].

Afterwards, Kubo-Ando [9] established a general theory of operator means: Only non-
negative operator monotone functions f on (0,∞) with f(1) = I can define operator means
mf by

AmfB = A1/2f(A−1/2BA−1/2)A1/2A1/2.

(Note that f(x) = 1 mfx.) One of the operations among operator means, the dual f⊥ is
defined by

f⊥(x) =
x

f(x)
.

The above geometric mean A#B is only a self-dual one.
In this context, we essentially generalized the Anderson-Trapp theorem in [6], which we

reformulate here:
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Theorem 1. An operator mean g is the geometric one # if and only if

(1) (AgB)(Am⊥B)−1(AgB) = AmB

for all operator means m and all positive invertible operators A and B.

Proof. Putting g = #, we have

(A#B)(Am⊥B)−1(A#B) = (A#B)(B−1mA−1)(A#B)

=
[

(A#B)B−1(A#B)
]

m
[

(A#B)A−1(A#B)
]

= B1/2

√

B−1/2AB−1/2

2

B1/2 m A1/2

√

A−1/2BA−1/2

2

A1/2

= AmB.

Conversely suppose (1). Then, putting m = g⊥ and f(x) = 1 g x = 1 m⊥x, we have

x

f(x)
= f(x)⊥ = f(x)(f(x)−1)f(x) = f(x),

which shows f(x) =
√

x, that is, g is the geometric mean.

The spectral geometric mean A#̃B by Fiedler-Pták [5] for positive invertible operators
A and B is defined as

A#̃B = (A−1# B)1/2A(A−1#B)1/2.

Then we give a characterization which is implicitly mentioned in [5]:

Theorem 2. The spectral geometric mean Y = A#̃B is characterized by the following

Riccati equations:

(2) Y = XAX = X−1BX−1

for some positive invertible operator X which should be (A−1#B)1/2.

Proof. Suppose (2) holds. Then X2AX2 = B and hence the Anderson-Trapp theorem
shows X2 = A−1#B, that is, X = (A−1#B)1/2. Thus Y = XAX = A#̃B. Conversely,
suppose Y = A#̃B. Putting X = (A−1#B)1/2, we have

X2AX2 = (A−1#B)A(A−1#B) = A−1/2(1#A1/2BA1/2)2A−1/2

= A−1/2(A1/2BA1/2)A−1/2 = B

which shows (2).

This theorem shows that the spectral geometric mean is symmetric; A#̃B = B#̃A.
Moreover, we obtain easily its various properties:

Corollary 3. (A#̃B)−1 = A−1#̃B−1.

Proof. Taking inverse for (2) and putting Z = X−1, we have

Y −1 = ZA−1Z = Z−1B−1Z−1,

which implies Y −1 = A−1#̃B−1.

The following result is the reason why it is called a spectral geometric mean:
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Corollary 4. (A#̃B)2 is positively similar to AB and σ((A#̃B)2) = σ(AB).

Proof. The required results follows from

(A#̃B)2 = (XAX)(X−1BX−1) = XABX−1

for some positive X .

Corollary 5. The following equivalences are hold:

(i) A ≥ B if and only if (A−1#̃B) ≤ I.

(ii) A#̃B ≤ A if and only if B ≤ A#̃B.

Proof. The condition (A−1#̃B) ≤ I means

XA−1X = X−1BX−1 ≤ I,

that is,

A ≥ X2 and B ≤ X2.

Thus A ≥ B. Conversely suppose A ≥ B. Then A ≥ X2 = A#B ≥ B implies the above,
which shows (i). Next, A#̃B ≤ A is equivalent to

X−1BX−1 ≤ A, namely B ≤ XAX ≤ A#̃B,

which shows (ii).

Considering above properties, we easily have the following equivalence ([5]):

B−1 ≤ A ⇐⇒ A−1#̃B−1 ≥ I ⇐⇒ σ(AB) ≥ 1.

Finally we observe the characterization of chaotic order by Furuta-Seo [7] where the
chaotic order A ≫ B means log A ≥ log B:

Theorem(Furuta-Seo). For positive invertible operators A and B, the chaotic order B ≪
A holds if and only if there exists a positive invertible contraction Tp with

(3) Bp = TpA
pTp

for all p > 0.

In the above theorem, there is little information for Tp. But Riccati equation (3) implies
Tp is uniquely determined as a solution

Tp = A−p#Bp.

The contractivity corresponds with Ando’s characterization [3] of chaotic order (though it
is not expressed in this context):

Theorem(Ando). For positive invertible operators A and B, the chaotic order B ≪ A

holds if and only if A−p#Bp is decreasing for [0,∞).
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