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Abstract. When we consider maximum likelihood estimators for the drift coefficient
of the Ornstein-Uhlenbeck process from both the continuous observations and the
discrete ones, their asymptotic variances are related to each of Fisher informations.
However, it is important to see that discrete observations are more applicable than
continuous observations from the practical points of view. After delicate calculations,
we show that the Fisher information from discrete observations is, of course, less than
the one from continuous observations but almost equal to it, if the discretizing time-
interval is sufficiently small.

1 Introduction Statistical estimation of the parameters of diffusion processes has been
well studied. Küchler and Sørensen (1997) study asymptotic properties of the maximum
likelihood estimators of drift parameters obtained from continuous observations. For dis-
crete observations of diffusion processes, Dachnha-Castelle and Florens-Zmirou (1986) dis-
cuss asymptotic properties of the estimator due to a quasi-likelihood function and Kessler
(2000) treats with the estimator due to more general estimating functions. We could say
that discrete observations are more applicable than continuous observations from the prac-
tical points of view. We focus on Fisher informations for the continuous observations and
the discrete ones, because Fisher information relates to the efficiency of maximum likelihood
estimators.

In the present paper, we treat with the Ornstein-Uhlenbeck process which is the simplest
diffusion process and discuss the estimation of the drift parameter from its continuous and
discrete observations. Then, we call the Fisher informations of its drift parameter obtained
from the continuous observations and the discrete ones the continuous and discrete Fisher
informations, respectively. Our main aim is to compare the continuous and discrete Fisher
informations and to show that the discrete one is slightly less than the continuous one if
the time interval of observation is sufficiently small. Of course, we see the discrete Fisher
information is less than the continuous one.

In section 2, we see the likelihood function and the Fisher information from continuous
observations of the Ornstein-Uhlenbeck process. In section 3, we have them for the discrete
case. In section 4, we calculate the ratio and difference of the continuous and discrete Fisher
informations. Further we study the effect of discretization of observation.

2 Continuously observed case Let us consider the one dimensional Ornstein-Uhlenbeck
process represented by stochastic differential equations :

(1) dXt = θXt dt + σ dWt, X0 = x,
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where Wt is a standard Wiener process. We assume that the diffusion coefficient σ > 0
and the initial value x are given constants. By Ito’s formula, the solution of the stochastic
equation (1) is represented by the following Wiener integral :

Xt = xeθt + σeθt

∫ t

0

e−θs dWs.

The property of the Wiener integral implies that, if t is fixed, Xt is normally distributed
with mean xeθt and variance vt(θ) :

E(Xt) = xeθt,(2)

V (Xt) =
σ2

2θ

(
e2θt − 1

)
= vt(θ) (say).(3)

That is,

(4) Xt ∼ N

[
xeθt,

σ2

2θ

(
e2θt − 1

) ]
.

We note that vt(θ) is the Cω-class function of θ because

vt(θ) =
σ2

2θ

(
e2θt − 1

)
= σ2t

∞∑
k=0

(2θt)k

(k + 1)!
,

and vt(0) = lim
θ→0

vt(θ) = σ2t also gives the variance of the process Xt = x + σWt, which is

the solution of the equation (1) for θ = 0.
We obtain from Theorem 7.19 of Liptser and Shiryaev (2001) that the likelihood function

of this process for continuous observations in time interval [0, T ] is given by

LT (θ) = exp

(
θ

σ2

∫ T

0

Xt dXt −
θ2

2σ2

∫ T

0

X2
t dt

)
.

Therefore, we have the log-likelihood function and its derivatives as follows :

`T (θ) =
θ

σ2

∫ T

0

Xt dXt −
θ2

2σ2

∫ T

0

X2
t dt

˙̀
T (θ) =

1
σ2

∫ T

0

Xt dXt −
θ

σ2

∫ T

0

X2
t dt(5)

῭
T (θ) = − 1

σ2

∫ T

0

X2
t dt,(6)

where the dot notation ” ˙ ” denotes the differentiation with respect to the drift parameter
θ .

The likelihood equation (5) leads to the maximum likelihood estimator :

θ̂T =

∫ T

0
Xt dXt∫ T

0
X2

t dt
.

¿From the equation (6), we calculate the Fisher information, immediately.
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Lemma 1 We have the Fisher information for the continuous observations of the drift
parameter θ 6= 0 of the Ornstein-Uhlenbeck process :

IT (θ) =
x2

2θσ2

(
e2θT − 1

)
+

1
(2θ)2

(
e2θT − 1

)
− T

2θ
(7)

= JT (θ) + KT (θ) (say),

where JT (θ) is related to the initial value x and KT (θ) is the remainder :

JT (θ) =
x2

2θσ2

(
e2θT − 1

)
,(8)

KT (θ) =
1

(2θ)2
(
e2θT − 1

)
− T

2θ
.(9)

Proof
It is easy to see from (2) and (3) that

E(X2
t ) = {E(Xt)}2 + V (Xt) = x2e2θt +

σ2

2θ

(
e2θt − 1

)
,

and thus, we have from (6) the Fisher information :

IT (θ) = E
[
−῭

T (θ)
]

=
1
σ2

∫ T

0

E(X2
t ) dt

=
1
σ2

{
x2

∫ T

0

e2θtdt +
σ2

2θ

∫ T

0

(
e2θt − 1

)
dt

}

=
x2

σ2

1
2θ

(
e2θT − 1

)
+

1
2θ

{
1
2θ

(
e2θT − 1

)
− T

}
=

x2

2θσ2

(
e2θT − 1

)
+

1
(2θ)2

(
e2θT − 1 − 2θT

)
.

2

Remark Consider the case θ = 0. The same result

IT (0) =
x2

σ2
T +

T 2

2
= JT (0) + KT (0)

follows by setting

JT (0) = lim
θ→0

JT (θ) =
x2

σ2
T and KT (0) = lim

θ→0
KT (θ) =

T 2

2
.

3 Discretely observed case Let us divide equally the total time interval [0, T ] by n
and denote :

∆ =
T

n
, tk = k∆, for k = 0, 1, . . . , n.

That is,

0 = t0 < t1 < · · · < tn−1 < tn = T, tk − tk−1 = ∆, for k = 1, . . . , n.
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We observe the Ornstein-Uhlenbeck process at discrete times {tk : k = 0, 1, . . . , n} as
observations :

Xk = Xtk
, k = 0, 1, . . . , n, X0 = x.

Setting t = ∆ and x = Xk−1 in (4), we have from the Markov property that the transition
density is the normal density with mean eθ∆Xk−1 and variance v∆(θ) :

(10) p(Xk | Xk−1) =
1√

2πv∆(θ)
exp

{
− (Xk − eθ∆Xk−1)2

2v∆(θ)

}
,

where

(11) v∆(θ) =
σ2

2θ

(
e2θ∆ − 1

)
= v(θ) (say).

Therefore, we obtain that the likelihood function for discrete observations is

Ln(θ) =
n∏

k=1

p(Xk | Xk−1)

=
n∏

k=1

1√
2πv(θ)

exp
{
− (Xk − eθ∆Xk−1)2

2v(θ)

}
.

Hence, we have the log-likelihood function and its derivatives with respect to θ as follows :

`n(θ) = −n

2
log 2πv(θ) − 1

2v(θ)

n∑
k=1

(Xk − eθ∆Xk−1)2,

˙̀
n(θ) = −n

2
v̇(θ)
v(θ)

+
v̇(θ)

2v(θ)2

n∑
k=1

(Xk − eθ∆Xk−1)2

+
∆eθ∆

v(θ)

n∑
k=1

(Xk − eθ∆Xk−1)Xk−1,(12)

῭
n(θ) = −n

2
v̈(θ)v(θ) − v̇(θ)2

v(θ)2

+
v̈(θ)v(θ) − 2v̇(θ)2

2v(θ)3

n∑
k=1

(Xk − eθ∆Xk−1)2

−2
v̇(θ)
v(θ)2

∆eθ∆
n∑

k=1

(Xk − eθ∆Xk−1)Xk−1

+
∆2eθ∆

v(θ)

n∑
k=1

{(Xk − eθ∆Xk−1)Xk−1 − eθ∆X2
k−1}.(13)

In order to represent the discrete Fisher information clearly, we set the functions φ(y)
and ψ(y) as follows :

φ(y) =
y

sinh y
=

2y

ey − e−y
,(14)

ψ(y) = eyφ(y) − {eyφ(y) − 1}2

y

=
2yey

ey − e−y
− 1

y

{
2yey

ey − e−y
− 1

}2

(15)

for y 6= 0 and φ(0) = ψ(0) = 1.
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Lemma 2

(i) The function φ(y) is continuous in y, and we have

0 < φ(y) < 1, for y 6= 0.

(ii) The function ψ(y) is also continuous in y, and further, we have

0 < ψ(y) < 1, for y < 0, and ψ(y) < 1, for y > 0.

Proof
(i) By the L’Hospital’s theorem for the indeterminate form, we have

lim
y→0

φ(y) = lim
y→0

2y

ey − e−y
= lim

y→0

2
ey + e−y

= 1.

Thus, φ is continuous in y. It is easy to see that

0 < φ(y) < 1, for any y 6= 0.

(ii) We see

1 − ψ(y) = {1 − eyφ(y)}
{

1 +
1 − eyφ(y)

y

}
,

and set

ψ1(y) = 1 − eyφ(y) =
ey − e−y − 2yey

ey − e−y
,

ψ2(y) = 1 +
1 − eyφ(y)

y
= 1 +

ey − e−y − 2yey

y(ey − e−y)
.

It follows from (i) of Lemma 2 that

lim
y→0

ψ1(y) = 1 − lim
y→0

eyφ(y) = 1 − 1 = 0.

Similarly, by the L’Hospital’s theorem, we have

lim
y→0

ψ2(y) = 1 + lim
y→0

1 − e−2y − 2y

y − ye−2y

= 1 + lim
y→0

2e−2y − 2
1 − e−2y + 2ye−2y

= 1 + lim
y→0

−4e−2y

4e−2y − 4ye−2y
= 1 − 1 = 0.

These lead to
lim
y→0

ψ(y) = 1 − lim
y→0

ψ1(y)ψ2(y) = 1.

Thus, ψ is continuous in y.
It is easy to see that

lim
y→∞

ψ1(y) = −∞, and lim
y→−∞

ψ1(y) = 1,

lim
y→∞

ψ2(y) = −1, and lim
y→−∞

ψ2(y) = 1.
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Therefore, these lead to

lim
y→∞

ψ(y) = 1 − lim
y→∞

ψ1(y)ψ2(y) = −∞,

lim
y→−∞

ψ(y) = 1 − lim
y→−∞

ψ1(y)ψ2(y) = 0.

Since

ψ′
1(y) = −2

(ey + yey)(ey − e−y) − yey(ey + e−y)
(ey − e−y)2

= −2
e2y − 1 − 2y

(ey − e−y)2
= −2

{
e2y − 1 − 2y

(2y)2

}
φ(y)2 < 0,

it follows from ψ1(0) = 0 that

ψ1(y) > 0 if y < 0, and ψ1(y) < 0 if y > 0.

Furthermore, since

ψ′
2(y) =

(2e−2y − 2)(y − ye−2y) − (1 − e−2y − 2y)(1 − e−2y + 2ye−2y)
(y − ye−2y)2

=
1
y2

{φ(y)2 − 1} < 0,

it follows from ψ2(0) = 0 that

ψ2(y) > 0 if y < 0, and ψ2(y) < 0 if y > 0.

Therefore, we have

1 − ψ(y) = ψ1(y)ψ2(y) > 0, that is, ψ(y) < 1, for y 6= 0.

These facts and ψ′(y) = −ψ′
1(y)ψ2(y) − ψ1(y)ψ′

2(y) imply that

ψ′(y) > 0 if y < 0, and ψ′(y) < 0 if y > 0,

and thus, that ψ(y) is monotone increasing for y < 0 and decreasing for y > 0, and have
the maximum value ψ(0) = 1 at y = 0. 2

OO

y

ψ1(y)

ψ2(y)

ψ(y)

1

Figure 1 ψ1(y), ψ2(y)
and ψ(y)
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Lemma 3 We have the Fisher information for the discrete observations of the drift
parameter θ 6= 0 of the Ornstein-Uhlenbeck process :

In(θ) =
x2

2θσ2

(
e2θT − 1

)
φ(θ∆)2

+
1

(2θ)2
(
e2θT − 1

)
φ(θ∆)2 − T

2θ
ψ(θ∆)(16)

= Jn(θ) + Kn(θ) (say),

where Jn(θ) is related to the initial value x and Kn(θ) is the remainder :

Jn(θ) =
x2

2θσ2

(
e2θT − 1

)
φ(θ∆)2,(17)

Kn(θ) =
1

(2θ)2
(
e2θT − 1

)
φ(θ∆)2 − T

2θ
ψ(θ∆).(18)

Proof
We see from (10), (11) and (13)

E{῭
n(θ)} = −n

2
v̈(θ)v(θ) − v̇(θ)2

v(θ)2
+

v̈(θ)v(θ) − 2v̇(θ)2

2v(θ)3
nv(θ)

−∆2e2θ∆

v(θ)

n∑
k=1

E(X2
k−1)

= −n

2
v̇(θ)2

v(θ)2

−∆2e2θ∆

v(θ)

n∑
k=1

{
x2e2θ(k−1)∆ +

σ2

2θ

(
e2θ(k−1)∆ − 1

)}
= −x2

σ2

2θ∆2e2θ∆

e2θ∆ − 1
e2θ∆n − 1
e2θ∆ − 1

− ∆2e2θ∆

e2θ∆ − 1

(
e2θ∆n − 1
e2θ∆ − 1

− n

)
− n

2

(
2∆e2θ∆

e2θ∆ − 1
− 1

θ

)2

.

By using T = n∆ and the notations (14) and (15), we obtain the discrete Fisher information
In(θ) :

In(θ) = E
{
−῭

n(θ)
}

=
x2

2θσ2

(
e2θT − 1

) (
θ∆

sinh(θ∆)

)2

+
1

(2θ)2
(
e2θT − 1

)(
θ∆

sinh(θ∆)

)2

− T

2θ

{
eθ∆θ∆

sinh(θ∆)
− 1

θ∆

(
eθ∆θ∆

sinh(θ∆)
− 1

)2
}

= Jn(θ) + Kn(θ).

2
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Remark When θ = 0, we can represent In(0) equivalently. Let

Jn(0) = lim
θ→0

Jn(θ) =
x2

σ2
T and Kn(0) = lim

θ→0
Kn(θ) =

T 2

2
,

then

In(0) =
x2

σ2
T +

T 2

2
= Jn(0) + Kn(0).

Hence, for all n and T = n∆, IT (0) = x2

σ2 T + T 2

2 = In(0).

4 Comparison between the continuous and discrete Fisher informations First,
we consider the asymptotic relations between the continuous and discrete Fisher informa-
tions.

Theorem 4 If the time T is fixed and the size of discrete observations n tends to infinity,
in the situation where the discretizing time interval ∆ = T

n becomes to tend to zero, then
the discrete Fisher information converges to the continuous one :

lim
n→∞

In(θ) = IT (θ).

Proof
Since, by Lemma 2,

lim
y→0

φ(y) = 1, and lim
y→0

ψ(y) = 1,

we have

Jn(θ) = JT (θ)φ(θ∆)2 → JT (θ),

Kn(θ) =
1

(2θ)2
(
e2θT − 1

)
φ(θ∆)2 − T

2θ
ψ(θ∆)

→ 1
(2θ)2

(
e2θT − 1

)
− T

2θ
= KT (θ),

as ∆ → 0. These complete the proof of the theorem. 2

Theorem 5 If the discretizing time interval ∆ is fixed and the size of discrete observa-
tions n be tended to infinity, where T = n∆ becomes to tend to infinity, then we have the
following limit of the ratio of the discrete Fisher information to the continuous one :

(i) If θ > 0,

lim
n→∞

In(θ)
IT (θ)

= φ(θ∆)2 < 1.

(ii) If θ < 0,

lim
n→∞

In(θ)
IT (θ)

= ψ(θ∆) < 1.
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Proof
We rearrange the terms of two Fisher informations (7) and (16) as follows :

IT (θ) =
(
e2θT − 1

) {
x2

2θσ2
+

1
(2θ)2

}
− T

2θ
,

In(θ) =
(
e2θT − 1

) {
x2

2θσ2
+

1
(2θ)2

}
φ(θ∆)2 − T

2θ
ψ(θ∆).

As T → ∞ , the leading term of the limitation is e2θT − 1 if θ > 0 , and T
2θ if θ < 0.

This implies the convergences of the theorem. Furthermore, it follows from Lemma 2 that
φ(θ∆)2 < 1 for any θ 6= 0 and ψ(θ∆) < 1 for θ < 0. Hence, the proof of the theorem is
completed. 2

Now, we show that the continuous Fisher information IT (θ) is exactly larger than the
discrete Fisher information In(θ) under the fixed time-interval ∆ and the total time-interval
[0, T ].

Theorem 6 Suppose that the time-interval ∆ and the total time-interval [0, T ] of obser-
vation are fixed. Then, it holds that the difference of the continuous and discrete Fisher
informations is exactly positive :

IT (θ) − In(θ) > 0, for θ 6= 0.

Proof
By Lemma 1 and 3, the difference is

IT (θ) − In(θ) = {JT (θ) − Jn(θ)} + {KT (θ) − Kn(θ)} .

We denote three differences in the last equation by (8), (9), (17) and (18) as follows :

In(θ) = IT (θ) − In(θ),
Jn(θ) = JT (θ) − Jn(θ)

=
x2

2θσ2

(
e2θT − 1

)
{1 − φ(θ∆)2},

Kn(θ) = KT (θ) − Kn(θ)

=
1

(2θ)2
(
e2θT − 1

)
{1 − φ(θ∆)2} − T

2θ
{1 − ψ(θ∆)}.

By Lemma 2, we immediately obtain Jn(θ), the part related to the initial value x, is
nonnegative.

Now, we are going to prove that Kn(θ), the remainder part, is positive. Recalling
y = θ∆ 6= 0 and T = n∆, we rewrite it as follows :

Kn(θ) =
T

2θ

[
e2θT − 1

2θT

{
1 − φ(y)2

}
+ {ψ(y) − 1}

]
=

n∆
2θ

[
e2ny − 1

2ny

{
1 − φ(y)2

}
+ {eyφ(y) − 1} − 1

y
{eyφ(y) − 1}2

]
=

n

2θ2

[
e2ny − 1

2n

{
1 − φ(y)2

}
+ y {eyφ(y) − 1} − {eyφ(y) − 1}2

]
.
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Set the part of [ ] in the last equation by Dn(y) :

Dn(y) =
e2ny − 1

2n

{
1 − φ(y)2

}
+ y {eyφ(y) − 1} − {eyφ(y) − 1}2

.

Since e2ny−1
2n is increasing in n for any y 6= 0 and 1 − φ(y)2 > 0, we see Dn(y) ≥ D1(y).

Therefore, it is sufficient to show D1(y) > 0 in order to prove Dn(y) > 0. In fact, we see

D1(y) =
e2y − 1

2
{
1 − φ(y)2

}
+ y (eyφ(y) − 1) − (eyφ(y) − 1)2

= ey sinh y

(
1 − y2

sinh2 y

)
+

(
y2ey

sinh y
− y

)
−

(
yey

sinh y
− 1

)2

=
1

sinh2 y

(
ey sinh3 y − y sinh2 y − y2e2y + 2yey sinh y − sinh2 y

)
.

Here, we put the part of ( ) in the last equation by ξ(y) :

ξ(y) = ey sinh3 y − y sinh2 y − y2e2y + 2yey sinh y − sinh2 y

=
1
8

(
e4y − 5e2y + 7 − 3e−2y

)
+

y

4
(
3e2y − 2 − e−2y

)
− y2e2y.

Its derivatives with respect to y are

ξ′(y) =
1
2

{
(e4y − e2y − 1 + e−2y) − y(e2y − e−2y) − 4y2e2y

}
,

ξ′′(y) =
1
2

{
(4e4y − 3e2y − e−2y) − y(10e2y + 2e−2y) − 8y2e2y

}
=

1
2
e2y

(
4e2y − 10y − 8y2 − 3 − 2ye−4y − e−4y

)
.

Moreover, denoting the part of ( ) in the last equation by η(y) :

η(y) = 4e2y − e−4y − 2ye−4y − 10y − 8y2 − 3,

we have its derivatives :

η′(y) = 8e2y + 2e−4y + 8ye−4y − 10 − 16y,

η′′(y) = 16e2y − 32ye−4y − 16 ≥ 16(e2y − 1 − 2y) > 0.

This means that η′(y) is monotone increasing and η′(0) = 0 and thus, that η′(y) < 0, if
y < 0 and η′(y) > 0, if y > 0. Consequently, it follows that η(y) takes the minimum η(0) = 0
and thus, that ξ′′(y) > 0 and ξ′(y) is monotone-increasing. Both this and ξ′(0) = 0 mean
that ξ(x) takes the minimum ξ(0) = 0. Hence, we conclude that D1(y) > 0 and at the same
time, that Kn(θ) > 0. We therefore showed

In(θ) = Jn(θ) + Kn(θ) > 0.

The proof of the theorem is completed. 2
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y

D1(y)

O
1−1 2−2

5

10

Figure 2 D1(y)

5 Discussion Figure 2 shows that D1(y) is almost equal to zero around y = 0. But, in
the case y > 0, D1(y) is increasing more rapidly than in the case y < 0. We conclude that
the loss of information which arises from discrete observations depends on the product of
θ and ∆ rather than only on the discrete observation time-interval ∆, and then it becomes
very small, if y = θ∆ is sufficiently small.
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