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NOTE : A REPEATED ONE-PLAYER GAME OF DECEPTION
WITH DISCOUNTING

MINORU SAKAGUCHI*
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ABSTRACT. A repeated one-player game of deception with discounting is given and
the solution is derived explicitly. It clearly shows a commonly conceivable fact that a
player who deceives his (or her) opponent can get advantage.

1 No-Deception Case. Player I observes the r.v.s X;,t = 1,2, .-, sequentially one by
one which are 4.i.d. with distribution Upg ;). Facing the first r.v. X1 = z, player I shows x
to player II, and then IT makes his choice whether to accept (= A) or reject (= R) it. If IT
chooses A, he receives the amount x from I. If IT chooses R, the x is rejected and the next
X5 is observed by I and shown to II and the above choice process continues. The discount
rate 0 € [0, 1] is introduced. The process ends as soon as II chooses A. Player II aims to
maxmize his expected payoff.
Let v be the expected payoff for II obtained by employing his optimal strategy. Then

(1.1) v = E[X V (]

which gives the equation v = % (1 + ﬁ2v2), i.e.,

(1.2) v:%(l—m_m),

since another root is evidently inappropriate. The optimal strategy for II is to choose A(R),
it X =z > (<)pv.
Some values of v for 8 € [0, 1] are given in Table 1.

Table 1. Game values for No-Deception case.

g=1 0.8 3/4 1/2 1/4 0
v=1 5/8(=0.625) 0.6019 2(2-+/3)=~0.5359 0.5081 1/2
pv=1 1/2 0.4514 2 — /3 ~ 0.2680 0.1270 0

The case § =1 means that II always rejects every z seeking for the largest amount 1.
The case 8 =0 means that II accepts the first r.v. ending the process.
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2 The Case where Player I Deceives his Opponent. Let player I choose a number
€ [%, 1]. Facing the first r.v. X; = z, player I opens (cover) the x he privately observed,
if @ < x < a (if otherwise). He covers large x since he doesn’t want this z to be accepted by
player II. He covers small x since he wants this = to be accepted by II by IT’s mistake. When 1
covers the x, which IT cannot know its value, IT employs the mixed strategy (A, R;p,p),0 <
p < 1. When I opens the z, then value becomes known to II, and II chooses A(R), if
z > (<)% (see Remark 1). When I opens z and II rejects it, or when x is covered and II
rejects it, then the process continues and the next r.v. X5 is observed by I. This process
ends as soon as II chooses A. Player I aims to minimize the expected payoff to IT when the
process ends. Figure 1 shows the choice-pairs for the players when X; = x.
— ~

0 :open, c: cover
A : accept, R : reject

| /\/\I/_\ m max : employ the mixed strategy
(A, R; p,D)

Figure 1. Players’ behavior in the deception game

Let v be the value of the game where I is the minimizer. Also let § € [0,1] be the
discount rate. The case 8 = 1 means that the process continues until II accepts a r.v.
without discounting. The case # = 0 means that I accepts the first r.v., thus ending the
process, since if IT chooses R he gets zero payoff. The expected payoff to II, when players
behave as is shown in Figure 1, is

/ ﬁv+//2
1

= S ln- <2p—1)ﬁv}a+(§—2p)m+p .

dx + (px +pPv)d

(2.1) M (alp)

a convex function of a. Therefore the optimal choice for I is a* = p—(2p—1)8v = Bup+ [up,
which is in [%,61}], only if % <p < 1. Since

1 1 1
(2.2) M(a*|p) = —5(2p = 1)*6%0* + <2p —3p+ ) Bu—sp’+p—3
we obtain, by equating M (a*|p) with v, the following quadratic equation
1 242 2 2 3 L 1
(2.3) —=2p—-1)*B*v + (20" —-3p+ < |B—-1;v—zp"+p— <5 =0.
2 2 2 8
Eq.(2.3) gives
2,2 11 2,2 3
41-p6/2)v=1, [v°+ (8- 35)1}—1:0, Bv +(2—ﬁ)v—120

for p =1/2,3/4,1, respectively.

Moreover, (2.3), in the case § = 1, gives v = % and hence a* = vp + vp = %, for
Vp € (0,1]. Numerical values of a* and v for some parameter-pairs of (3, p) are computed
from (2.3), and are given in Table 2.
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Table 2. Solution of the deception game.

p=1/2 p=06 p=3/4 p=1 (*)
=1 |a =1/2 172 172 172
v=1/2 1/2 1/2 1/2 1
0.8 1/2 0.5295  0.5635 0.6044
2 (~0.4167) 0.4405  0.4662 0.4946 5/8(= 0.625)
1/2 1/2 0.56275 0.6459 0.7680
1/3 0.3725 0.4164 0.4641 0.5359
0 12 0.6 3/1 1
1/4 0.295 (= 0.34375)  3/8(=0.375) | 1/2

The column (x) in the table was moved from Table 1 for No-deception Case in Section 1,
in order to make clear the advantage of deception for player I.

Remark 1 The decision threshold 1/2 for player II is conventionaly chosen by the reason
that EX = 1/2. The other choice, for example, Sv, will need more annoying computations.

Remark 2 The games discussed in this article are a one-player game for II in Section
1, and for I in Section 2. In Section 2, IT has no decision variable, since p € [%, 1} is a
predetermined parameter known for both of I and II.

Remark 3 Some two-player deception games with the similar nature as treated in the
present note are discussed in Ref.[1~5]. Among these the most related one to the problem
in this note is Ref.[3].
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