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Abstract. In this paper, we determine the structure of KO-cohomology of complex
projective space �P l and its product space �P l×�P m as algebras over the coefficient
ring KO∗. We also give a description of the map KO∗(�P l+m) → KO∗(�P l ×
�P m) induced by the map that classifies the tensor product of the canonical line
bundles and show that its image is not contained in the image of the cross product
KO∗(�P l)⊗KO∗ KO∗(�P m) → KO∗(�P l ×�P m) to see that non-existence of the
formal group structure on KO∗(�P∞).

Introduction A commutative ring spectrum E is said to be complex oriented if an element
x of the reduced E-cohomology of the infinite dimensional complex projective space CP∞

is given such that x maps to a generator of the reduced E-cohomology of 1-dimensional
complex projective space CP 1 ([2]). We call such an element x a complex orientation of
E. On the other hand, if E-homology E∗E of E is a flat over the coefficient ring E∗, E∗E
has a structure of a Hopf algebroid and E-homology theory takes values in the category of
E∗E-comodule, in other words, the category of representations of the groupoid represented
by the affine groupoid scheme represented by E∗E ([1]).

If E is a complex oriented ring spectrum, the E-cohomology of the complex projective
space is just a truncated polynomial algebra over E∗ and it is shown that E-homology E∗E of
E is a flat over E∗. Moreover the product structure of CP∞ gives a one dimensional formal
group law over E∗ ([5]) which closely relates with the structure of the Hopf algebroid ([2]).
The complex K-theory is one of the most basic examples of complex oriented cohomology
theories. However, KO-spectrum representing the real K-theory is one of a few well-known
examples of spectra E without any complex orientation such that E∗E is flat over E∗ ([2],
[7]). In fact, we see that KO-spectrum does not have any complex orientation by showing
that the Atiyah-Hirzebruch spectral sequence converging to KO∗(CP l) has a non-trivial
differential (2.2).

The purpose of this paper is to determine the structure of KO-cohomology of complex
projective space CP l and its product space CP l × CPm as algebras over the coefficient
ring KO∗ in order to understand the behavior of the following map γ∗. Let us denote by
γ : CP l×CPm → CP l+m the map induced by the classifying map CP∞×CP∞ → CP∞

of the tensor product of the canonical line bundles. We give an explicit description of the
map γ∗ : KO∗(CP l+m) → KO∗(CP l ×CPm) and show that image of γ∗ is not contained
in the image of the cross product KO∗(CP l) ⊗KO∗ KO∗(CPm) → KO∗(CP l × CPm)
(3.13). This implies a negative result that the classifying map CP∞ × CP∞ → CP∞

does not give a formal group structure on KO∗(CP∞). In [3], M. Fujii has described the
structure of KO∗(CP l) as a graded abelian group and the ring structure of the subring of
KO∗(CP l) consisting of even dimensional elements and our result on KO∗(CP l) is slightly
sharper than his result in the point that we give a complete description of KO∗(CP l) as
an algebra over KO∗.
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This paper grew out of a seminar with Hiroyuki Oyama and the author acknowledges
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1 Preliminaries We first recall the Bott periodicity

O � Ω(Z × BO), O/U � ΩO, U/Sp � Ω(O/U), Z × BSp � Ω(U/Sp)

Sp � Ω(Z × BSp), Sp/U � ΩSp, U/O � Ω(Sp/U ), Z × BO � Ω(U/O).

Thus the KO-spectrum KO = (εn : SKOn → KOn+1)n∈Z is given as follows.

KO8n = Z × BO, KO8n+1 = U/O, KO8n+2 = Sp/U, KO8n+3 = Sp,

KO8n+4 = Z × BSp, KO8n+5 = U/Sp, KO8n+6 = O/U, KO8n+7 = O.

We also recall that K∗ = Z[t, t−1], KO∗ = Z[α, x, y, y−1]/(2α, α3, αx, x2 − 4y), where
t, α, x and y are generators of K−2 = π2(K) ∼= Z, KO−1 = π1(KO) ∼= Z/2Z, KO−4 =
π4(KO) ∼= Z, KO−8 = π8(KO) ∼= Z, respectively. Note that t, α are the homotopy classes
of the inclusion maps S2 = CP 1 → BU = K0, S1 = RP 1 → BO = KO0 to the bottom
cells.

Let us denote by h2 : S3 → S2 the Hopf map, by j : S3 = Sp(1) → Sp, i : S2 =
Sp(1)/U (1) → Sp/U the inclusion maps of the bottom cells, and by p : Sp → Sp/U the
quotient map. Then

S3 h2−−−−→ S2⏐⏐�j

⏐⏐�i

Sp
p−−−−→ Sp/U

commutes.

Lemma 1.1 The homotopy class of ih2 = pj generates π3(Sp/U ) ∼= Z/2Z. Hence ih2

represents α ∈ π1(KO) ∼= π3(KO2).

Proof. By the commutativity of the above diagram, we have the following commutative
diagram.

π3(S3) h2∗−−−−→∼=
π3(S2)

∼=
⏐⏐�j∗

⏐⏐�i∗

π3(Sp)
p∗−−−−→ π3(Sp/U )

Since p∗ : π3(Sp) → π3(Sp/U ) is surjective, the assertion follows. Q.E.D.

Lemma 1.2 Let n and m be integers such that n ≥ 2. Then, the composition of

(Sn−2h2)∗ : K̃O
m

(Sn) → K̃O
m

(Sn+1)

and the inverse of the suspension

σ−1 : K̃O
m

(Sn+1) → K̃O
m−1

(Sn)

coincides with the multiplication map by α.
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Proof. Let f : Sn → KOm be a map which represents an element ξ of K̃O
m

(Sn). Then,

σ2(Sn−2h2)∗(ξ) is represented by Sn+3 Snh2−−−→ Sn+2 S2f−−→ S2KOm
εm+1Sεm−−−−−−→ KOm+2. Since

the diagram

S3 ∧ Sn h2∧1Sn−−−−−→ S2 ∧ Sn S2f−−−−→ S2 ∧ KOm
i∧1KOm−−−−−→ (Sp/U ) ∧ KOm⏐⏐�Sεm

⏐⏐�µ2,m

SKOm+1
εm+1−−−−→ KOm+2

commutes, σ3(αξ) is represented by S3 ∧ Sn h2∧1Sn−−−−−→ S2 ∧ Sn S2f−−→ S2 ∧ KOm
εm+1Sεm−−−−−−→

KOm+2. We have seen that Snh2 is homotopic to h2∧1Sn . It follows that σ2(Sn−2h2)∗(ξ) =
σ3(αξ) Q.E.D.

Lemma 1.3 Let ηs : S2s−1 → S2s−2 = CP s−1/CP s−2 be the attaching map of the 2s-cell
of CP s/CP s−2 (s ≥ 2). Then, ηs is null homotopic if s is odd and it is homotopic to
S2s−4h2 if s is even.

Proof. Let gj (j = 2s − 2, 2s) be the generators of Hj(CP s/CP s−2; F 2). Since

Sq2g2s−2 =

{
g2s s is even
0 s is odd

,

the assertion follows. Q.E.D.

Let us denote by vi ∈ K̃O
i
(Si) (i ≥ 0) the canonical generators, that is, vi’s are given

by v0 = 1, σ(vi) = vi+1. For s ≥ 2, consider the cofiber sequence

CP s−1/CP s−2 ι−→ CP s/CP s−2 κ−→ CP s/CP s−1.

We have the long exact sequences associated with this cofiber sequence.

· · · → K̃O
n
(CP s/CP s−1) κ∗−→ K̃O

n
(CP s/CP s−2) ι∗−→ K̃O

n
(CP s−1/CP s−2) δ−→

K̃O
n+1

(CP s/CP s−1) → · · ·
Lemma 1.4 The connecting homomorphism

δ : K̃O
n
(CP s−1/CP s−2) → K̃O

n+1
(CP s/CP s−1)

is given by

δ(v2s−2) =

{
αv2s s is even
0 s is odd

.

Proof. Since the composition

K̃O
n
(CP s−1/CP s−2) δ−→ K̃O

n+1
(CP s/CP s−1) = K̃O

n+1
(S2s) σ−1−−→ K̃O

n
(S2s−1)

coincides with the map induced by the attaching map ηs, the second formula follows from
(1.3) and (1.2). Q.E.D.

The following result is known.
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Proposition 1.5 The complexification map c : KO∗(X) → K∗(X), the realization map
r : K∗(X) → KO∗(X) and the conjugation map Ψ−1 : K∗(X) → K∗(X) are natural
transformation of cohomology theories having the following properties.

1) c is a homomorphism of graded rings which maps α ∈ KO−1 to 0, x ∈ KO−4 to 2t2

and y ∈ KO−8 to t4.
2) r is a homomorphism of graded abelian groups which maps t4i ∈ K−8i to 2yi, t4i+1 ∈

K−8i−2 to α2yi and t4i+2 ∈ K−8i−4 to xyi for i ∈ Z.
3) Ψ−1 is a ring homomorphism.
4) rc = 2idKO∗(X), cr = idK∗(X) + Ψ−1 and Ψ−1Ψ−1 = idK∗(X) hold.

By the above result, cr maps t ∈ K−2 to c(α)2 = 0. Thus we have t+Ψ−1(t) = cr(t) =
0, namely,

Corollary 1.6 Ψ−1(t) = −t.

We denote by B : K̃n(X) → K̃n−2(X) the Bott periodicity map B(a) = ta and by

α : K̃O
n
(X) → K̃O

n−1
(X) the multiplication map by α ∈ KO−1. A fiber sequence

U/O → BO → BU gives a cofiber sequence ΣKO → KO
c−→ K of spectra. The following

result is also known.

Proposition 1.7 ([4] Chap. III 5.18) There is a long exact sequence

· · · → �Kn−1(X)
�B−1−−−−→�KO

n+1
(X)

�−→ �KO
n
(X)

�−→ �Kn(X)
�B−1−−−−→�KO

n+2
(X)

�−→ �KO
n+1

(X)→· · · .

Corollary 1.8 Let X be a space such that K1(X) = {0} (X = CP l or CP l × CPm, for
example). There is an exact sequence

0 → K̃O
2n+1

(X) α−→ K̃O
2n

(X) c−→ K̃2n(X) rB−1−−−→ K̃O
2n+2

(X) α−→ K̃O
2n+1

(X) → 0.

2 Real K-cohomology of complex projective spaces Let us denote by ηl the canon-
ical complex line bundle over CP l. Put µ = ηl − 1 ∈ K̃0(CP l). Then, K∗(CP l) =
K∗[µ]/(µl+1) and Ψ−1(µ) = (1 + µ)−1 − 1. Hence it follows from (1.5) that cr(µ) =
µ2 − µ3 + · · · + (−1)lµl.

Remark 2.1 Put µ̃ = µ(1 + µ)−
1
2 ∈ K0(CP∞)⊗̂Q = Q[[µ]]. Then Ψ−1(µ̃) = −µ̃. Let us

denote by W1 (resp. W−1) the eigen space of Ψ−1 : Q[[µ]] → Q[[µ]] corresponding to eigen
value 1 (resp. −1). Then, {µ̃2i| i = 0, 1, 2, . . .} (resp. {µ̃2i+1| i = 0, 1, 2, . . .}) generates W1

(resp. W−1) topologically.

Consider the Atiyah-Hirzebruch spectral sequence Ep,q
2 (KO; CP l) ∼= Hp(CP l; KOq) ⇒

KOp+q(CP l). Let us denote by u the generator of E2,0
2 (KO; CP l) ∼= H2(CP l; KO0), then

E∗,∗
2 (KO; CP l) = KO∗[u]/(ul+1) = Z[α, x, y, y−1, u]/(2α, α3, αx, x2 − 4y, ul+1),

where α ∈ E0,−1
2 (KO; CP l), x ∈ E0,−4

2 (KO; CP l), y ∈ E0,−8
2 (KO; CP l).

Lemma 2.2 d2 : Ep,q
2 (KO; CP l) → Ep+2,q−1

2 (KO; CP l) is given by d2(uj) = jαuj+1.

Proof. We first note that the p-skeleton (CP l)p is CP [ p
2 ] if p � 2l. Hence Ep,q

1 (KO,CP l) =

0 if p is odd and Ep,q
2 (KO; CP l) = Ep,q

1 (KO; CP l) = K̃O
p+q

(CP
p
2 /CP

p
2−1) if p is positive
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and even. If p is even, d2 : Ep,q
2 (KO; CP l) → Ep+2,q−1

2 (KO; CP l) coincides with the
connecting homomorphism

δ : K̃O
p+q

(CP
p
2 /CP

p
2−1) → K̃O

p+q+1
(CP

p
2 +1/CP

p
2 )

of the long exact sequence associated with the cofibration

CP
p
2 /CP

p
2−1 → CP

p
2 +1/CP

p
2−1 → CP

p
2 +1/CP

p
2 .

Then, the result follows from (1.4). Q.E.D.

By the above result, α2u, 2u, u2 and xy−1u are cocycles of the E2-term. We de-
note by u0 ∈ E2,−2

3 (KO; CP l), u1 ∈ E2,0
3 (KO; CP l), u2 ∈ E4,0

3 (KO; CP l) and u3 ∈
E2,4

3 (KO; CP l) the elements of the E3-term corresponding to α2u, 2u, u2 and xy−1u, re-
spectively. Since ul is also a cocycle if l is odd, we denote by vl ∈ E2l,0

3 (KO; CP l) the
element corresponding to ul. The following fact is a direct consequence of the definition of
ui, vl and (2.2).

Proposition 2.3 The following relations hold; 2u0 = xu0 = αu0 = αu1 = αu2 = αu3 = 0,

xu3 = 2u1, xu1 = 2yu3, u2
0 = u0u1 = u0u3 = u

[ l
2 ]+1

2 = u0u
[ l+1

2 ]
2 = u1u

[ l+1
2 ]

2 = u
[ l+1

2 ]
2 u3 = 0,

u2
1 = 4u2, u1u3 = 2xy−1u2, u2

3 = 4y−1u2. If l is odd, u0vl = u1vl = u2ul = u3vl = v2
l = 0,

u0u
l−1
2

2 = α2vl, u1u
l−1
2

2 = 2vl, u
l−1
2

2 u3 = xy−1vl.

Proposition 2.4 E3-term is generated by the following set of elements over KO∗.
1) If l is even,

{
uj

2uk

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪ {1}.

2) If l is odd,
{

uj
2uk

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪ {1, vl}.

Proof. By (2.2), the kernel of d2 is generated over KO∗ by αuj (j = 1, 2, . . . , l), xuj

(j = 1, 2, . . . , l), 2u2j+1 (j = 0, 1, . . . ,
[

l−1
2

]
), u2j (j = 0, 1, . . . ,

[
l
2

]
, and l

2 if l is odd.). The
image of d2 is generated over KO∗ by α2u2j (j = 1, 2, . . . ,

[
l
2

]
). It follows that the E3-term

is generated over KO∗ by uj
2 (j = 0, 1, . . . ,

[
l
2

]
), uj

2uk (k = 0, 1, 3, j = 0, 1, . . . ,
[

l−1
2

]
) and,

if l is odd, vl. If l is odd, since u0u
l−1
2

2 = α2vl, u1u
l−1
2

2 = 2vl, u
l−1
2

2 u3 = xy−1vl by (2.3),

u0u
l−1
2

2 , u1u
l−1
2

2 , u
l−1
2

2 u3 are not needed to generate the E3-term. Q.E.D.

Corollary 2.5 E∗,∗
3 (KO; CP l) = E∗,∗

∞ (KO; CP l)

Proof. Since Ep,q
3 (KO; CP l) = {0} if p + q is odd and 0 < p < 2l, there is no possibility of

non-trivial differentials. Q.E.D.

We also consider the Atiyah-Hirzebruch spectral sequence

Ep,q
2 (K; CP l) ∼= Hp(CP l; Kq) ⇒ Kp+q(CP l).

The E2-term is given by

E∗,∗
2 (K; CP l) = K∗[u]/(ul+1) = Z[t, t−1, u]/(ul+1)

and tu ∈ E2,−2
2 (K; CP l) is the permanent cocycle corresponding to the generator µ ∈

K0(CP l).
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There are maps

rr : Ep,q
r (K; CP l) → Ep,q

r (KO; CP l), cr : Ep,q
r (KO; CP l) → Ep,q

r (K; CP l)

of spectral sequences induced by r : K∗(CP l) → KO∗(CP l) and c : KO∗(CP l) →
K∗(CP l). By 2) of (1.5), we have r2(t4iuj) = 2yiuj, r2(t4i+1uj) = α2yiuj , r2(t4i+2uj) =
xyiuj and r2(t4i+3uj) = 0.

If l � 2, we define elements ωi ∈ K̃O
2i

(CP l) for i = 0, 1, 2, 3 by ωi = r(t−iµ) as in [3].

Lemma 2.6 α2u ∈ E2,−2
2 (KO; CP l), 2u ∈ E2,0

2 (KO; CP l) and xy−1u ∈ E2,4
2 (KO; CP l)

are permanent cocycles corresponding to ω0, ω1 and ω3, respectively. Hence ω0 ∈ F 2,−2 −
F 3,−3, ω1 ∈ F 2,0 − F 3,−1 and ω3 ∈ F 2,4 − F 3,3.

Proof. The assertion follows from r2(tu) = α2u, r2(t−1tu) = r2(u) = 2u, r2(t−3tu) =
r2(t−2u) = xy−1u. Q.E.D.

Lemma 2.7 c : KO∗(CP l) → K∗(CP l) maps ωj as follows.

c(ω2i) = t−2iµ(1 − (1 + µ)−1), c(ω2i+1) = t−2i−1µ(1 + (1 + µ)−1) (i = 0, 1)

Proof. We note that Ψ−1 : K∗(CP l) → K∗(CP l) is a homomorphism of graded rings such
that Ψ−1(t) = −t (1.6). Hence, by (1.5), c(ω2i) = cr(t−2iµ) = t−2iµ+Ψ−1(t−2iµ) = t−2iµ+
t−2i((1 +µ)−1 − 1) = t−2iµ(1− (1 +µ)−1) for i = 0, 1. Similarly, c(ω2i+1) = cr(t−2i−1µ) =
t−2i−1µ + Ψ−1(t−2i−1µ) = t−2i−1µ − t−2i−1((1 + µ)−1 − 1) = t−2i−1µ(1 + (1 + µ)−1) for
i = 0, 1. Q.E.D.

Lemma 2.8 ω2 belongs to the kernel F 4,0 of the map KO4(CP l) → KO4(CP 1) induced
by the inclusion map. On the other hand, ω2 does not belong to the kernel F 5,−1 of the map
KO4(CP l) → KO4(CP 2).

Proof. We observe that r2 : E2,2
2 (K; CP 1) → E2,2

2 (KO; CP 1) maps t−1u to zero. Since
E2,2

2 (K; CP 1) = E2,2
∞ (K; CP 1), E2,2

2 (KO; CP 1) = E2,2
∞ (KO; CP 1) and t−1u is the perma-

nent cocycle corresponding to t−2µ ∈ K4(CP 1), we see

r(t−2µ) ∈ F 3,1 = Ker(KO4(CP 1) → KO4(CP 1)) = {0}.

By the commutativity of the following diagram, t−2µ ∈ K4(CP l) maps to the kernel F 4,0

of KO4(CP l) → KO4(CP 1).

K4(CP l) −−−−→ K4(CP 1)⏐⏐�r

⏐⏐�r

KO4(CP l) −−−−→ KO4(CP 1)

By (2.7), c : KO4(CP 2) → K4(CP 2) maps ω2 ∈ KO4(CP 2) to non-zero element t−2µ2 of
K4(CP 2). Hence ω2 is not zero in KO∗(CP 2). Q.E.D.

Lemma 2.9 u2 ∈ E4,0
2 (KO; CP l) is the permanent cocycle corresponding to ω2.

Proof. We first note that E4,0
2 (KO; CP l) is isomorphic to Z generated by u2. By (2.8),

there exists a unique kl ∈ Z such that klu
2 corresponds to ω2 ∈ KO4(CP l). c2 :
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E4,0
2 (KO; CP 2) → E4,0

2 (K; CP 2) maps k2u
2 to k2u

2 which is a permanent cocycle corre-
sponding to t−2µ2 by (2.7). On the other hand, the permanent cocycle in E4,0

2 (K; CP 2) cor-
responding to t−2µ2 is u2. Hence k2 = 1. For l ≥ 2, consider the map i∗,∗

l : E∗,∗
r (KO; CP l)

→ E∗,∗
r (KO; CP 2) of spectral sequences induced by the inclusion map il : CP 2 → CP l.

Since i∗l (ω2) = ω2, i∗,∗
l (klu

2) = klu
2 is the permanent cocycle corresponding to ω2 ∈

KO4(CP 2). Therefore we have kl = 1. Q.E.D.

If l is odd, we denote by χl ∈ KO2l(CP l) the element corresponding to

vl ∈ E2l,0
3 (KO; CP l).

We note that, since F 2l+1,−1 = {0}, χl ∈ F 2l,0 is the unique element corresponding to vl.
Since c2 : E2l,0

2 (KO; CP l) → E2l,0
2 (K; CP l) maps ul to ul which corresponds to t−lµl ∈

K2l(CP l), we have the following.

Lemma 2.10 c : KO∗(CP l) → K∗(CP l) maps χl to t−lµl.

It follows from (2.6) and (2.9), ωi is the element corresponding to ui for i = 0, 1, 2, 3.
Hence, by (2.4) and (2.5), we have the following result.

Theorem 2.11 KO∗(CP l) is generated by the following set of elements over KO∗.
1) If l is even,

{
ωkωj

2

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪ {1}.

2) If l is odd,
{

ωkωj
2

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪ {1, χl}.

Theorem 2.12 The following relations hold in KO∗(CP l).

xω2 = 2ω0, xω0 = 2yω2, xω3 = 2ω1, xω1 = 2yω3, αω0 = αω1 = αω2 = αω3 = 0,

ω2
0 = yω2

2, ω0ω1 = yω2ω3, ω0ω3 = ω1ω2, ω2
1 = 4ω2 + ω0ω2, ω1ω3 = 2xy−1ω2 + ω2

2 ,

ω2
3 = 4y−1ω2 + y−1ω0ω2, ω

[ l
2 ]+1

2 = ω0ω
[ l+1

2 ]
2 = ω1ω

[ l+1
2 ]

2 = ω
[ l+1

2 ]
2 ω3 = 0.

If l is odd, ω0χl = ω1χl = ω2χl = ω3χl = χ2
l = 0, ω0ω

l−1
2

2 = α2χl, ω1ω
l−1
2

2 = 2χl,

ω
l−1
2

2 ω3 = xy−1χl.

Proof. Assume that l is even. By (2.11), K̃O
n
(CP l) = {0} if n is odd. Hence αωi = 0

for i = 0, 1, 2, 3 hold for dimensional reason. It follows from (1.8) that c : K̃O
n
(CP l) →

K̃n(CP l) is injective if n is even. It is easy to verify that c(xω3 − 2ω1) = c(xω2 − 2ω0) =
c(xω1 − 2yω3) = c(xω0 − 2yω2) = c(ω2

0 − yω2
2) = c(ω0ω1 − yω2ω3) = c(ω0ω3 − ω1ω2) =

c(ω2
1 − 4ω2 − ω0ω2) = c(ω1ω3 − 2xy−1ω2 − ω2

2) = c(ω2
3 − 4y−1ω2 − y−1ω0ω2) = 0. Hence

we have xω3 = 2ω1, xω1 = 2yω3, xω0 = 2yω2, ω2
0 = yω2

2, ω0ω1 = yω2ω3, ω0ω3 = ω1ω2,

ω2
1 = 4ω2 + ω0ω2, ω1ω3 = 2xy−1ω2 + ω2

2 , ω2
3 = 4y−1ω2 + y−1ω0ω2. Since ω

[ l
2 ]+1

2 , ω0ω
[ l+1

2 ]
2 ,

ω1ω
[ l+1

2 ]
2 , ω

[ l+1
2 ]

2 ω3 are contained in F 2l+1,s for s = 0,−2, 4 which are trivial groups, we see

ω
[ l
2 ]+1

2 = ω0ω
[ l+1

2 ]
2 = ω1ω

[ l+1
2 ]

2 = ω
[ l+1

2 ]
2 ω3 = 0.

Assume that l is odd. Consider the map ι∗ : KO∗(CP l+1) → KO∗(CP l) induced by the
inclusion map ι : CP l → CP l+1. Since ι∗(ωi) = ωi (i = 0, 1, 2, 3) and l +1 is even, we have
xω3 = 2ω1, xω1 = 2yω3, xω0 = 2yω2, αω0 = αω1 = αω2 = αω3 = 0, ω2

0 = yω2
2 , ω0ω1 =

yω2ω3, ω0ω3 = ω1ω2, ω2
1 = 4ω2 + ω0ω2, ω1ω3 = 2xy−1ω2 + ω2

2 , ω2
3 = 4y−1ω2 + y−1ω0ω2

in KO∗(CP l). Since ω
[ l
2 ]+1

2 , ω0ω
[ l+1

2 ]
2 , ω1ω

[ l+1
2 ]

2 , ω
[ l+1

2 ]
2 ω3, ω0χl, ω1χl ω2χl, ω3χl, χ2

l ,
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ω0ω
[ l
2 ]

2 − α2χl, ω1ω
[ l
2 ]

2 − 2χl, ω
[ l
2 ]

2 ω3 − xy−1χl are contained in F 2l+1,s for s = 0,−2, 4

which are trivial groups, we see ω
[ l
2 ]+1

2 = ω0ω
[ l+1

2 ]
2 = ω1ω

[ l+1
2 ]

2 = ω
[ l+1

2 ]
2 ω3 = ω0χl = ω1χl =

ω2χl = ω3χl = χ2
l = ω0ω

l−1
2

2 − α2χl = ω1ω
l−1
2

2 − 2χl = ω
l−1
2

2 ω3 − xy−1χl = 0. Q.E.D.

Let us denote by ιl : CP l → CP l+1 the inclusion map. Clearly ι∗l : KO∗(CP l+1) →
KO∗(CP l) maps ωk to ωk. Hence the inverse system

{
KO∗(CP l+1)

ι∗l−→ KO∗(CP l)
}

l≥1

satisfies the condition of Mittag-Leffler, in fact ι∗2mι∗2m+1 : KO∗(CP 2m+2) → KO∗(CP 2m)
is surjective. Therefore, the above result immediately implies the following.

Corollary 2.13 KO∗(CP∞) is isomorphic to the quotient KO∗-algebra of the ring of
formal power series KO∗[ω0, ω1, ω3][[ω2]] over the polynomial algebra KO∗[ω0, ω1, ω3] over
KO∗ by the ideal generated by the following elements.

xω2 − 2ω0, xω0 − 2yω2, xω3 − 2ω1, xω1 − 2yω3, αω0, αω1, αω2, αω3, ω2
0 − yω2

2,

ω0ω1−yω2ω3, ω0ω3−ω1ω2, ω2
1−4ω2−ω0ω2, ω1ω3−2xy−1ω2−ω2

2, ω2
3−4y−1ω2−y−1ω0ω2

Let M∗
j (resp. N∗

j ) (0 ≤ j ≤ [
l−2
2

]
) be a submodule of KO∗(CP l) generated by

ω0ω
j
2 and ωj+1

2 (resp. ω1ω
j
2 and ω3ω

j
2). By the above result, M∗

j and N∗
j are regarded

as KO∗/(α)-modules. Since Z[y, y−1] is a subring of KO∗/(α), we also regard M∗
j and

N∗
j as Z[y, y−1]-modules. Then, M∗

j (resp. N∗
j ) is a free Z[y, y−1]-module with basis

{ω0ω
j
2, ωj+1

2 } (resp. {ω1ω
j
2, ω3ω

j
2}). Thus we have the following.

Proposition 2.14

KO∗(CP l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
KO∗ ⊕

l
2−1⊕
j=0

M∗
j ⊕

l
2−1⊕
j=0

N∗
j l is even

KO∗ ⊕
l−3
2⊕

j=0

M∗
j ⊕

l−3
2⊕

j=0

N∗
j ⊕ KO∗χl l is odd

The following is a direct consequence of (2.11) and (2.12).

Proposition 2.15 KO0(CP l) =

⎧⎪⎪⎨⎪⎪⎩
Z[ω0]

/(
ω
[ l
2 ]+1

0

)
l �≡ 1 modulo 4

Z[ω0]
/(

2ω
[ l
2 ]+1

0 , ω
[ l
2 ]+2

0

)
l ≡ 1 modulo 4

3 Real K-cohomology of product of complex projective spaces Let l and m be
positive integers such that l +m > 2. We consider the Atiyah-Hirzebruch spectral sequence
Ep,q

2 (KO; CP l ×CPm) ∼= Hp(CP l ×CPm; KOq) ⇒ KOp+q(CP l ×CPm). Let us denote
by p1 : CP l × CPm → CP l, p2 : CP l × CPm → CPm the projections. p1 and p2 induce
the maps of spectral sequences

p∗1 : Ep,q
r (KO; CP l) → Ep,q

r (KO; CP l × CPm),

p∗2 : Ep,q
r (KO; CPm) → Ep,q

r (KO; CP l × CPm).

Put p∗1(u) = w1 and p∗2(u) = w2, then the E2-term is given by

E∗,∗
2 (KO; CP l × CPm) = KO∗[w1, w2]/(wl+1

1 , wm+1
2 ).
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It follows from (2.2) that d2(w1) = αw2
1 , d2(w2) = αw2

2 . Hence α2wi, 2wi, w2
i , xy−1wi are

cocycles of E∗,∗
2 (KO; CP l × CPm) for i = 1, 2. It is easy to verify that α2w1w2, 2w1w2,

w2
1w2 + w1w

2
2 are also cocycles of E∗,∗

2 (KO; CP l × CPm).
For i = 1, 2, let us denote by wi0, wi1, wi2, wi3 the classes of α2wi, 2wi, w2

i , xy−1wi in
E∗,∗

3 (KO; CP l × CPm). We also denote by z0, z1, z2, z3 the classes of xw1w2, α2w1w2,
2w1w2, w2

1w2+w1w
2
2 in E∗,∗

3 (KO; CP l×CPm). Then, p∗i (uj) = wij for i = 1, 2, j = 0, 1, 2, 3
and

wij ∈ E2,2j−2
3 (KO; CP l × CPm) for j = 0, 1, 3, wi2 ∈ E4,0

3 (KO; CP l × CPm),

zj ∈ E4,2j−4
3 (KO; CP l × CPm) for j = 0, 1, 2, z3 ∈ E6,0

3 (KO; CP l × CPm).

Since wij ’s are the images of permanent cocycles, they are also permanent cocycles. If l is
odd, let us denote by v1l ∈ E2l,0

3 (KO; CP l × CPm) the class of wl
1. Similarly, if m is odd,

v2m ∈ E2m,0
3 (KO; CP l × CPm) denotes the class of wm

2 .

We identify the complex E∗,∗
2 (KO; CP l × CPm) with

E∗,∗
2 (KO; CP l) ⊗KO∗ E∗,∗

2 (KO; CPm)

and regard E∗,∗
2 (KO; CP l×CPm) as the total complex of a bicomplex whose first and sec-

ond differentials are given by d′(wi
1w

j
2) = iαwi+1

1 wj
2 and d′′(wi

1w
j
2) = jαwi

1w
j+1
2 . Consider

the spectral sequence

Ep,q
2 = H ′

pH
′′
q (E∗,∗

2 (KO; CP l × CPm)) ⇒ E∗,∗
3 (KO; CP l × CPm)

associated with this bicomplex. Since the first factor E∗,∗
2 (KO; CP l) is a free KO∗-module,

we see that H ′′
∗ (E∗,∗

2 (KO; CP l × CPm)) is isomorphic to

E∗,∗
2 (KO; CP l) ⊗KO∗ E∗,∗

3 (KO; CPm) = KO∗[u]/(ul+1) ⊗KO∗ E∗,∗
3 (KO; CPm).

Let us denote by A∗
m a submodule of E∗,∗

3 (KO; CPm) generated by{
uj

2uk

∣∣∣ 0 ≤ j ≤ [
m
2

] − 1, 0 ≤ k ≤ 3
}

.

If m is odd, B∗
m denotes a submodule of E∗,∗

3 (KO; CPm) generated by vl. We put B∗
m = {0}

if m is even. Then, E∗,∗
3 (KO; CPm) = KO∗ ⊕ A∗

m ⊕ B∗
m, αA∗

m = {0} and KO∗ ⊕ B∗
m is a

free KO∗-module.
We observe that the differential d̃ of H ′′

∗ (E∗,∗
2 (KO; CP l × CPm)) induced by the first

differential maps ui ⊗ uj+1
2 , ui ⊗ u0u

j
2, ui ⊗ u1u

j
2, ui ⊗ u3u

j
2 to zero for j ≥ 0. Hence

E∗,∗
2 = H ′∗H ′′∗ (E∗,∗

2 (KO; CP l × CPm)) is isomorphic to

E∗,∗
3 (KO; CP l) ⊗KO∗ (KO∗ ⊕ B∗

m) ⊕ KO∗[u]/(ul+1) ⊗KO∗ A∗
m.

This implies the following result.

Lemma 3.1 E∗,∗
2 = H ′

∗H
′′
∗ (E∗,∗

2 (KO; CP l × CPm)) is generated by the following set of
elements over KO∗.

1) If both l and m are even,
{

uj
2uk ⊗ 1

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪{

ui ⊗ uj
2uk

∣∣∣ 0 ≤ i ≤ l, 0 ≤ j ≤ m
2 − 1, 0 ≤ k ≤ 3

}
∪ {1 ⊗ 1}.

2) If l is odd and m is even,
{

uj
2uk ⊗ 1

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪{

ui ⊗ uj
2uk

∣∣∣ 0 ≤ i ≤ l, 0 ≤ j ≤ m
2 − 1, 0 ≤ k ≤ 3

}
∪ {1 ⊗ 1, vl ⊗ 1}.
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3) If l is even and m is odd,
{

uj
2uk ⊗ vs

m

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ui ⊗ uj
2uk

∣∣∣ 0 ≤ i ≤ l, 0 ≤ j ≤ m−3
2 , 0 ≤ k ≤ 3

}
∪ {1 ⊗ 1, 1 ⊗ vm}.

4) If both l and m are odd,
{

uj
2uk ⊗ vs

m

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ui ⊗ uj
2uk

∣∣∣ 0 ≤ i ≤ l, 0 ≤ j ≤ m−3
2 , 0 ≤ k ≤ 3

}
∪ {vt

l ⊗ vs
m| t, s = 0, 1}.

We remark that generators u2i ⊗ uj
2uk, uj

2uk ⊗ vs
m, vt

l ⊗ vs
m and u2i+1 ⊗ uj

2uk in the
above lemma correspond to wi

12w2kwj
22, w1kwj

12v
s
2m, vt

1lv
s
2m and wi

12w
j
22zk+1 (put z4 =

y−1z0), respectively. Thus the spectral sequence Ep,q
2 = H ′

pH
′′
q (E∗,∗

2 (KO; CP l ×CPm)) ⇒
E∗,∗

3 (KO; CP l × CPm) collapses and we have the following.

Proposition 3.2 E∗,∗
3 (KO; CP l×CPm) is generated by the following set of elements over

KO∗.
1) If both l and m are even,

{
w1kwj

12

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪{

wi
12w

j
22w2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

wi
12w

j
22zk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪ {1}.

2) If l is odd and m is even,
{

w1kwj
12

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪{

wi
12w

j
22w2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

wi
12w

j
22zk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪ {1, v1l}.

3) If l is even and m is odd,
{

w1kwj
12v

s
2m

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3, s = 0, 1

}
∪{

wi
12w

j
22w2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪{

wi
12w

j
22zk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪ {1, v2m}.

4) If both l and m are odd,
{

w1kwj
12v

s
2m

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3, s = 0, 1

}
∪{

wi
12w

j
22w2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2

}
∪{

wi
12w

j
22zk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3} ∪ {vt
1lv

s
2m| t, s = 0, 1

}
.

Lemma 3.3 The following relations hold in E∗,∗
3 (KO; CP l × CPm).

2z1 = xz1 = αz0 = αz1 = αz2 = αz3 = 0, xz2 = 2z0, xz0 = 2yz2, z0z1 = z2
1 = z1z2 = 0,

z2
0 = 4yw12w22, z2

2 = 4w12w22, z0z2 = 2xw12w22, z0z3 = xw12z3 − yw2
12w23 + yw12w22w23,

z1z3 = w2
12w20 + w12w22w20, z2z3 = 2w12ζ3 − w2

12w22 + w12w22w21,

z2
3 = w2

12w22 + w12w
2
22 + w12w22z2, w10w20 = w11w20 = w13w20 = w10w21 = 0,

w11w21 = 2z2, w13w21 = 2y−1z0, w10w22 = w12w20, w11w22 = 2z3 − w12w21,

w13w22 = xy−1z3 − w12w23, w10w23 = 0, w11w23 = 2y−1z0, w13w23 = 2y−1z2,

w10z0 = w10z1 = w10z2 = 0, w10z3 = w12z1, w20z0 = w20z1 = w20z2 = 0, w20z3 = w22z1,

w11z0 = xw12w21, w11z1 = 0, w11z2 = 2w12w21, w11z3 = 2w12w22 + w12z2,

w21z0 = 2xz3−xw12w21, w21z1 = 0, w21z2 = 4z3−2w12w21, w21z3 = 2w12w22+w22z2,

w13z0 = 2w12w21, w13z1 = 0, w13z2 = xy−1w12w21, w13z3 = xy−1w12w22+y−1w12z0,
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w23z0 = 4z3 − 2w12w21, w23z1 = 0, w23z2 = 2xy−1z3 − xy−1w12w21,

w23z3 = xy−1w12w22 + y−1w22z0,

If l is odd, z0v1l = z1v1l = z2v1l = z3v1l = 0, w20v1l = w
l−1
2

12 z1, w21v1l = w
l−1
2

12 z2, w22v1l =

w
l−1
2

12 z3, w23v1l = y−1w
l−1
2

12 z0. If l is even, w
l
2
12z0 = w

l
2
12z1 = w

l
2
12z2 = w

l
2
12z3 = 0.

If m is odd, z0v2m = z1v2m = z2v2m = z3v2m = 0, w10v2m = w
m−1

2
22 z1, w11v2m = w

m−1
2

22 z2,

w12v2m = w
m−1

2
22 z3, w13v2m = y−1w

m−1
2

22 z0. If m is even, w
m
2

22 z0 = w
m
2

22 z1 = w
m
2

22 z2 =
w

m
2

22z3 = 0.

Proof. By the definition of z3 and d2(w1w2) = α(w2
1w2 + w1w

2
2), we have αz3 = 0. Other

relations follows from the definitions of wij and zj . Q.E.D.

Proposition 3.4 E∗,∗
3 (KO; CP l × CPm) = E∗,∗

∞ (KO; CP l × CPm)

Proof. Since wij is the image of a permanent cocycle uj by p∗i , it is also permanent cocycle.
Similarly, if l (resp. m) is odd, v1l (resp. v2m) is a permanent cocycle. Suppose that both l
and m are even. It follows from (3.2) and (3.3) that Ep,q

3 (KO; CP l ×CPm) = {0} if p + q
is odd and p �= 0. Hence zj ’s are permanent cocycles for j = 0, 1, 2, 3. For general l and
m, since zj ’s in E∗,∗

3 (KO; CP l ×CPm) are the images of zj ’s in E∗,∗
3 (KO; CP 2l ×CP 2m)

by the map induced by the inclusion map CP l × CPm → CP 2l × CP 2m, they are also
permanent cocycles. Thus the assertion follows from (3.2). Q.E.D.

Put µi = p∗i (µ) ∈ K0(CP l × CPm) for i = 1, 2, then

K∗(CP l × CPm) = K∗[µ1, µ2]/(µl+1
1 , µm+1

2 ).

We also put ωij = p∗i (ωj) ∈ KO2j(CP l×CPm) and ζj = r(t−jµ1µ2) ∈ KO2j(CP l×CPm)
for i = 1, 2, j = 0, 1, 2, 3. If l (resp. m) is odd, we put χ1l = p∗1(χl) (resp. χ2m = p∗2(χm)).
It is clear that α2wi, 2wi, w2

i and xy−1wi are the permanent cocycles in E∗,∗
2 (KO; CP l ×

CPm) corresponding to ωi0, ωi1, ωi2 and ωi3, respectively. If l (resp. m) is odd, it is
also clear that wl

1 (resp. wm
2 ) is the permanent cocycle in E2l,0

2 (KO; CP l × CPm) (resp.
E2m,0

2 (KO; CP l × CPm)) corresponding to χ1l (resp. χ2m).

Lemma 3.5 c : KO∗(CP l × CPm) → K∗(CP l × CPm) maps ζ2i, ζ2i+1 (i = 0, 1) as
follows.

c(ζ2i) = t−2iµ1µ2(1+(1+µ1)−1(1+µ2)−1), c(ζ2i+1) = t−2i−1µ1µ2(1−(1+µ1)−1(1+µ2)−1)

Proof. The result follows from (1.5), (1.6), Ψ−1(µj) = (1+µj)−1 − 1 and the fact that Ψ−1

is a ring homomorphism. Q.E.D.

Lemma 3.6 Cocycles xw1w2 ∈ E4,−4
2 (KO; CP l × CPm), α2w1w2 ∈ E4,−2

2 (KO; CP l ×
CPm) and 2w1w2 ∈ E4,0

2 (KO; CP l × CPm) are permanent cocycles corresponding to ζ0,
ζ1, ζ2, respectively. Hence ζ0 ∈ F 4,−4 − F 5,−5, ζ1 ∈ F 4,−2 − F 5,−3, ζ2 ∈ F 4,0 − F 5,−1.

Proof. Consider the map rr : E∗,∗
r (K; CP l ×CPm) → E∗,∗

r (KO; CP l ×CPm) induced by
r : K → KO. Since twi ∈ E2,−2

2 (K; CP l × CPm) is the permanent cocycle corresponding
to µi, the assertion follows from r2(tw1tw2) = r2(t2w1w2) = xw1w2, r2(t−1tw1tw2) =
r2(tw1w2) = α2w1w2, r2(t−2tw1tw2) = r2(w1w2) = 2w1w2. Q.E.D.
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Lemma 3.7 Let us denote by (CP l × CPm)k the k-skeleton of CP l × CPm. ζ3 belongs
to the kernel F 6,0 of the map

KO6(CP l × CPm) → KO6((CP 1 × CPm)4)

induced by the inclusion map. On the other hand, ζ3 does not belong to the kernel F 7,−1 of
the map KO6(CP l × CPm) → KO6((CP l × CPm)6).

Proof. Put

A =

⎧⎪⎨⎪⎩
∗ × CP 2 l = 1, m = 2
CP 2 × ∗ l = 2, m = 1
CP 2 ∨ CP 2 l, m ≥ 2

then, A∩(CP 1×CP 1) =

⎧⎪⎨⎪⎩
∗ × CP 1 l = 1, m = 2
CP 1 × ∗ l = 2, m = 1
CP 1 ∨ CP 1 l, m ≥ 2

and (CP l × CPm)4 = A ∪ (CP 1 × CP 1). Since KO5(A ∩ (CP 1 × CP 1)) = {0}, the map
KO6((CP l × CPm)4) → KO6(A) ⊕ KO6(CP 1 × CP 1) induced by the inclusion maps is
injective. Let

ι4 : (CP l×CPm)4 → CP l×CPm, i : A → CP l×CPm, j : CP 1×CP 1 → CP l×CPm

be the inclusion maps. Then, the kernel of ι∗4 : KO6(CP l×CPm) → KO6((CP l×CPm)4)
coincides with the kernel of (i∗, j∗) : KO6(CP l ×CPm) → KO6(A)⊕KO6(CP 1 × CP 1).
By the commutativity of the following square, it suffices to show that ri∗(t−3µ1µ2) = 0 and
rj∗(t−3µ1µ2) = 0.

K6(CP l × CPm)
(i∗,j∗)−−−−→ K6(A) ⊕ K6(CP 1 × CP 1)⏐⏐�r

⏐⏐�r⊕r

KO6(CP l × CPm)
(i∗,j∗)−−−−→ KO6(A) ⊕ KO6(CP 1 × CP 1)

Let i1 : CP 2 = CP 2 × ∗ → A and i2 : CP 2 = ∗ × CP 2 → A be inclusion maps.
We note that p2ii1 : CP 2 → CPm and p1ii2 : CP 2 → CP l are constant maps. Hence
i∗si

∗(t−3µ1µ2) = i∗si
∗(t−3p∗1(µ1)p∗2(µ2)) = i∗si

∗p∗1(µ1)i∗si
∗p∗2(µ2) = 0 for s = 1, 2. This implies

i∗(t−3µ1µ2) = 0. Consider a map rr : Ep,q
r (K; CP 1×CP 1) → Ep,q

r (KO; CP 1×CP 1) of the
Atiyah-Hirzebruch spectral sequences. t−1w1w2 ∈ E4,2

2 (K; CP 1 × CP 1) is the permanent
cocycle corresponding to t−3µ1µ2 ∈ K6(CP 1 × CP 1). Since r2 maps t−1w1w2 to zero by
(1.5), r(t−3µ1µ2) is contained in F 5,1 = Ker(KO6(CP 1×CP 1) → KO6((CP 1×CP 1)4)) =
{0}. Therefore rj∗(t−3µ1µ2) = 0.

Suppose that l ≥ 2, then CP 2 × CP 1 ⊂ (CP l × CPm)6. It follows from (3.5) that c
maps ζ3 ∈ KO6(CP 2 ×CP 1) to a non-zero element t−3µ2

1µ2. Hence ζ3 does not belong to
the kernel of KO6(CP l × CPm) → KO6((CP l × CPm)6). Q.E.D.

Lemma 3.8 w2
1w2+w1w

2
2 ∈ E6,0

2 (KO; CP l×CPm) is the permanent cocycle corresponding
to ζ3.

Proof. We observe that the subgroup of E6,0
2 (KO; CP l × CPm) consisting of cocycles is

generated by w2
1w2 + w1w

2
2 if l, m ≤ 2 or l, m ≥ 4. By (3.7), there exists a unique integer

kl,m such that kl,m(w2
1w2 + w1w

2
2) is the permanent cocycle corresponding to ζ3 if l, m ≤ 2

or l, m ≥ 4.
Consider the Atiyah-Hirzebruch spectral sequence

Ep,q
2 (K; CP l × CPm) ⇒ Kp+q(CP l × CPm).
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We also put p∗1(u) = w1 and p∗2(u) = w2 in E∗,∗
2 (K; CP l × CPm). We note that w2

1w2 +
w1w

2
2 ∈ E6,0

2 (K; CP l×CPm) is the permanent cocycle corresponding to t−3(µ2
1µ2 +µ1µ

2
2).

Hence t−3(µ2
1µ2 + µ1µ

2
2) ∈ F 6,0 − F 7,−1. On the other hand, it follows from (3.5) that

c(ζ3) − t−3(µ2
1µ2 + µ1µ

2
2) ∈ F 8,−2 = Ker(K6(CP l × CPm) → K6((CP l × CPm)6).

Thus both c(ζ3) and t−3(µ2
1µ2 + µ1µ

2
2) are represented by the same permanent cocycle

w2
1w2 + w1w

2
2 of E6,0

2 (K; CP l × CPm). Consider the map

cr : Ep,q
r (KO; CP l × CPm) → Ep,q

r (K; CP l × CPm)

induced by c : KO → K. Since a permanent cocycle c2(kl,m(w2
1w2 +w1w

2
2)) = kl,m(w2

1w2 +
w1w

2
2) corresponds to both c(ζ3) and t−3(µ2

1µ2 + µ1µ
2
2), we have kl,m = 1 if l, m ≤ 2 or

l, m ≥ 4. If l or m is 3, consider the map KO6(CP l+1 × CPm+1) → KO6(CP l × CPm)
induced by the inclusion map. Since ζ3 ∈ KO6(CP l+1 × CPm+1) is mapped to ζ3 ∈
KO6(CP l × CPm) by this map, the assertion holds also in this case. Q.E.D.

By (3.2), (3.4), (3.6) and (3.8), we have the following result.

Theorem 3.9 KO∗(CP l ×CPm) is generated by the following set of elements over KO∗.
1) If both l and m are even,

{
ω1kωj

12

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪ {1}.

2) If l is odd and m is even,
{

ω1kωj
12

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪ {1, χ1l}.

3) If l is even and m is odd,
{

ω1kωj
12χ

s
2m

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪ {1, χ2m}.

4) If both l and m are odd,
{

ω1kωj
12χ

s
2m

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪ {χt

1lχ
s
2m| t, s = 0, 1}.

The following result is a direct consequence of (2.12).

Theorem 3.10 The following relations hold in KO∗(CP l × CPm). Here i = 1 or 2.

xωi2 = 2ωi0, xωi0 = 2yωi2, xωi3 = 2ωi1, xωi1 = 2yωi3, αωi0 = αωi1 = αωi2 = αωi3 = 0,

ω2
i0 = yω2

i2, ω2
i1 = 4ωi2 + ωi0ωi2, ω2

i3 = 4y−1ωi2 + y−1ωi0ωi2,

ωi0ωi1 = yωi2ωi3, ωi0ωi3 = ωi1ωi2, ωi1ωi3 = 2xy−1ωi2 + ω2
i2,

ω
[ l
2 ]+1

12 = ω10ω
[ l+1

2 ]
12 = ω11ω

[ l+1
2 ]

12 = ω
[ l+1

2 ]
12 ω13 = ω

[m
2 ]+1

22 = ω20ω
[m+1

2 ]
22 = ω21ω

[m+1
2 ]

22 =

ω
[m+1

2 ]
22 ω23 = 0
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If l is odd, ω10χ1l = ω11χ1l = ω12χ1l = ω13χ1l = χ2
1l = 0, ω10ω

l−1
2

12 = α2χ1l, ω11ω
l−1
2

12 =

2χ1l, ω
l−1
2

12 ω13 = xy−1χ1l.

If m is odd, ω20χ2m = ω21χ2m = ω22χ2m = ω23χ2m = χ2
2m = 0, ω20ω

m−1
2

22 = α2χ2m,

ω21ω
m−1

2
22 = 2χ2m, ω

m−1
2

22 ω23 = xy−1χ2m.

The relations containing ζk’s are given as follows.

Theorem 3.11 The following relations hold in KO∗(CP l × CPm).

αζ0 = αζ1 = αζ2 = αζ3 = 0, 2ζ1 = xζ3, xζ1 = 2yζ3, 2ζ0 = xζ2, xζ0 = 2yζ2,

ζ2
0 = 4yω12ω22 + yω2

12ω20 + yω12ω20ω22 + yω12ω22ζ0,

ζ0ζ1 = xω12ζ1 − yω2
12ω21 + yω12ω22ω21 + yω12ω22ζ1,

ζ0ζ2 = 2xω12ω22 + yω2
12ω22 + yω12ω

2
22 + yω12ω22ζ2,

ζ0ζ3 = xω12ζ3 − yω2
12ω23 + yω12ω22ω23 + yω12ω22ζ3,

ζ2
1 = yω2

12ω22 + yω12ω
2
22 + yω12ω22ζ2, ζ1ζ2 = xω12ζ3 − yω2

12ω23 + yω12ω22ω23 + yω12ω22ζ3,

ζ1ζ3 = ω2
12ω20 + ω12ω22ω20 + ω12ω22ζ0, ζ2

2 = 4ω12ω22 + ω2
12ω20 + ω12ω22ω20 + ω12ω22ζ0,

ζ2ζ3 = 2ω12ζ3 − ω2
12ω21 + ω12ω22ω21 + ω12ω22ζ1, ζ2

3 = ω2
12ω22 + ω12ω

2
22 + ω12ω22ζ2

ω10ω20 = yω11ω22, ω11ω20 = xζ3 − yω12ω23, ω13ω20 = 2ζ3 − ω12ω21, ω10ω21 = yω12ω23,

ω11ω21 = 2ζ2−ω12ω20, ω13ω21 = 2y−1ζ0−ω12ω22, ω10ω22 = ω12ω20, ω11ω22 = 2ζ3−ω12ω21,

ω13ω22 = xy−1ζ3 − ω12ω23, ω10ω23 = ω12ω21, ω11ω23 = 2y−1ζ0 − ω12ω22,

ω13ω23 = 2y−1ζ2−ω12ω20, ω10ζ0 = yω12ζ2, ω10ζ1 = yω12ζ3, ω10ζ2 = ω12ζ0, ω10ζ3 = ω12ζ1,

ω20ζ0 = yω22ζ2, ω20ζ1 = yω22ζ3, ω20ζ2 = ω22ζ0, ω20ζ3 = ω22ζ1, ω11ζ0 = xω12ω21 + yω12ζ3,

ω11ζ1 = xω12ω22 + ω12ζ0, ω11ζ2 = 2ω12ω21 + ω12ζ1, ω11ζ3 = 2ω12ω22 + ω22ζ2,

ω21ζ0 = 2xζ3−xω12ω21+yω22ζ3, ω21ζ1 = xω12ω22+ω22ζ0, ω21ζ2 = 4ζ3−2ω12ω21+ω22ζ1,

ω21ζ3 = 2ω12ω22 + ω22ζ2, ω13ζ0 = 2ω12ω21 + ω12ζ1, ω13ζ1 = 2ω12ω22 + ω12ζ2,

ω13ζ2 = xy−1ω12ω21+ω12ζ3, ω13ζ3 = xy−1ω12ω22+y−1ω12ζ0, ω23ζ0 = 4ζ3−2ω12ω21+ω22ζ1,

ω23ζ1 = 2ω12ω22 + ω22ζ2, ω23ζ2 = 2xy−1ζ3 − xy−1ω12ω21 + ω22ζ3,

ω23ζ3 = xy−1ω12ω22 + y−1ω22ζ0.

If l is odd, ζ0χ1l = ζ1χ1l = ζ2χ1l = ζ3χ1l = 0, ω20χ1l = ω
l−1
2

12 ζ1, ω21χ1l = ω
l−1
2

12 ζ2,

ω22χ1l = ω
l−1
2

12 ζ3, ω23χ1l = y−1ω
l−1
2

12 ζ0. If l is even, ω
l
2
12ζ0 = ω

l
2
12ζ1 = ω

l
2
12ζ2 = ω

l
2
12ζ3 = 0.

If m is odd, ζ0χ2m = ζ1χ2m = ζ2χ2m = ζ3χ2m = 0, ω10χ2m = ω
m−1

2
22 ζ1, ω11χ2m = ω

m−1
2

22 ζ2,

ω12χ2m = ω
m−1

2
22 ζ3, ω13χ2m = y−1ω

m−1
2

22 ζ0. If m is even, ω
m
2

22ζ0 = ω
m
2

22ζ1 = ω
m
2

22ζ2 = ω
m
2

22ζ3 =
0.
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Proof. Relations between ωij and ζk are verified by the same method as in the proof of (2.12).
For the proof of the relations involving χ1l and χ2m, we need some preparations. Q.E.D.

Let L∗ be the submodule of K̃O
∗
(CP l ×CPm) generated by {χ1l, χ2m, χ1lχ2m}, where

we put χ1l = 0 (resp. χ2m = 0) if l (resp. m) is even. Note that L∗ is a free KO∗-module.
We also consider the submodule T ∗ of K̃O

∗
(CP l × CPm) generated by the following set

of elements.

1) If both l and m are even,
{

ω1kωj
12

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
.

2) If l is odd and m is even,
{

ω1kωj
12

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m

2 − 1, 0 ≤ k ≤ 3
}
.

3) If l is even and m is odd,
{

ω1kωj
12χ

s
2m

∣∣∣ 0 ≤ j ≤ l
2 − 1, 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l
2 − 1, 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
.

4) If both l and m are odd,
{

ω1kωj
12χ

s
2m

∣∣∣ 0 ≤ j ≤ l−3
2 , 0 ≤ k ≤ 3, s = 0, 1

}
∪{

ωi
12ω

j
22ω2k

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
∪{

ωi
12ω

j
22ζk

∣∣∣ 0 ≤ i ≤ l−1
2 , 0 ≤ j ≤ m−3

2 , 0 ≤ k ≤ 3
}
.

Since L∗ is a free KO∗-module and αωij = αζj = 0, we have the following result by
(3.9).

Lemma 3.12 1) K̃O
∗
(CP l × CPm) = T ∗ ⊕ L∗.

2) Ker(α : K̃O
∗
(CP l × CPm) → K̃O

∗
(CP l × CPm)) = T ∗ ⊕ α2L∗ ⊕ xL∗.

3) �(α : K̃O
∗
(CP l × CPm) → K̃O

∗
(CP l × CPm)) = αL∗.

Note that αL∗ is generated by {αχ1l, α
2χ1l, αχ2m, α2χ2m, αχ1lχ2m, α2χ1lχ2m} over

Z[y, y−1].
Suppose that l is odd and m is even. Then, αL∗ is generated by {αiyjχ1l| i = 1, 2, y ∈

Z} over Z. Since c(ζkχ1l) = t−lµl
1c(ζk) = 0 by (2.10) and (3.5), it follows from (1.7) and

(3.12) that ζkχ1l ∈ αL∗. Then, “ζkχ1l = 0” or “k = 3 and ζ3χ1l = cα2y−1χ1l for some
c ∈ Z”. We observe that ζ3χ1l ∈ F 2l+6,0 and α2y−1χ1l ∈ F 2l,6 −F 2l+1,5. This implies that
c = 0, namely, ζ3χ1l = 0.

Similarly, since c(ω2kχ1l −ω
l−1
2

12 ζk+1) = 0, we have ω2kχ1l − ω
l−1
2

12 ζk+1 ∈ αL∗. It follows

“ω2kχ1l = ω
l−1
2

12 ζk+1” or “k = 3 and ω23χ1l − ω
l−1
2

12 ζ4 = cα2y−1χ1l for some c ∈ Z”.

Note that ω23χ1l − ω
l−1
2

12 ζ4 ∈ F 2l+2,4 and α2y−1χ1l ∈ F 2l,6 − F 2l+1,5. Thus we have

ω2kχ1l = ω
l−1
2

12 ζk+1.
If both l and m are odd, the map KO∗(CP l ×CPm+1) → KO∗(CP l ×CPm) induced

by the inclusion map maps the relations ζkχ1l = 0 and ω2kχ1l = ω
l−1
2

12 ζk+1 in KO∗(CP l ×
CPm+1) to those in KO∗(CP l × CPm).
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Proof of ζkχ2m = 0 and ω1kχ2m = ω
m−1

2
22 ζk+1 for odd m is similar. This completes the

proof of (3.11).

Let γ : CP l × CPm → CP l+m be the map induced by the classifying map CP∞ ×
CP∞ → CP∞ of the tensor product of the canonical line bundles.

Theorem 3.13 γ∗ : KO∗(CP l+m) → KO∗(CP l × CPm) maps ωj to ω1j + ω2j + ζj.
Hence the image of γ∗ is not contained in the image of the cross product KO∗(CP l) ⊗
KO∗(CPm) → KO∗(CP l × CPm).

Proof. Recall that γ∗ : K∗(CP l+m) → K∗(CP l × CPm) maps µ to µ1 + µ2 + µ1µ2 ([2]).
By the naturality of r : K∗(X) → KO∗(X), the assertion follows from the definition of ωj ,
ωij and ζj . Q.E.D.

The above result shows that the classifying map CP∞ × CP∞ → CP∞ does not give
a formal group structure on KO∗(CP∞).
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