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EXPLICIT FORMULAS FOR THE REPRODUCING KERNELS
OF THE SPACE OF HARMONIC POLYNOMIALS

IN THE CASE OF CLASSICAL REAL RANK 1
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Abstract. We give the explicit formulas of the reproducing kernels of the space of
harmonic polynomials of � ⊂ � in the case of classical real rank 1, which are gener-
alizations of the well-known reproducing formulas of classical harmonic polynomials
on the unit sphere or any other SO(p)-orbits in Cp. These formulas are expressed as
integrals on a single orbit, simplifying our previous results that are expressed as double
integrals on some family of nilpotent orbits.

Introduction.

For harmonic functions on Rp there are many studies. Especially, the following repro-
ducing formula on the unit sphere Sp−1 is well-known:

δn,mf(s) = dim Hn,p

∫
Sp−1

f(s1)Pn,p(s · s1)ds1 (s ∈ Sp−1, f ∈ Hm,p),

where Hn,p is the space of spherical harmonics of degree n in dimension p, and Pn,p(t) =
(p−3)!n!
(n+p−3)!C

p−2
2

n (t) is the Legendre polynomial of degree n in dimension p and Cν
n(t) is the

Gegenbauer function (cf. [1], [7], [8], [11], etc). We denote by Hn(Cp) the space of poly-
nomials f on Cp of degree n which satisfy

∑p
j=1

∂2

∂zj
2 f = 0. Then homogeneous harmonic

polynomials on Rp of degree n are uniquely extended to the element of Hn(Cp). The repro-
ducing formulas of Hn(Cp) on any non-trivial SO(p)-orbit in Cp are also known in addition
to the above case Sp−1 (cf. [2], [9], [10], [17], [21]). For details on harmonic polynomials
and harmonic functions on Rp, see also [15], [16].

In this paper, we further generalize these formulas from the Lie algebraic standpoint
in a unified way. According to the formulation of [5], harmonic polynomials on Rp can
be canonically identified with harmonic polynomials on the vector space p, where p is the
complexification of pR appeared in a Cartan decomposition of the Lie algebra gR = so(p, 1).

In this situation, any SO(p)-orbit in Cp corresponds to a KR-orbit in p, where KR is
a Lie subgroup of GL(p) generated by exp ad X (X ∈ kR). Thus, the integral formulas of
harmonic polynomials on Rp can be rewritten explicitly as integral representation formulas
on each KR-orbits (cf. Appendix of [18]).

In [20] we generalize these formulas to the case where the Lie algebra gR is real rank
1: i.e. gR = so(p, 1) (p ≥ 2), su(p, 1), sp(p, 1) (p ≥ 1) or f4(−20) by constructing the
reproducing kernels for each case (cf. Theorems 1.2 and 1.3). We denote by gR = kR + pR

a Cartan decomposition of gR and put KR = exp ad kR. In [20] we express these formulas
as integrals of the reproducing kernels on a single KR-orbit in a unified way, simplifying the
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formulas previously obtained in [18], [19], where the integral formulas for two cases su(p, 1)
and sp(p, 1) are expressed in the form of double integrals on some family of nilpotent KR-
orbits. In particular the reproducing kernels are expressed in simple forms for nilpotent
orbits . In this paper we give a complete proof of these results for the case sp(p, 1) which is
omitted in [20], together with that of the case su(p, 1) for the sake of completeness.

Concerning reproducing formulas, the results of Nagel-Rudin [12] and Rudin [13] are also
known. Their results correspond to our formula for the case gR = su(p, 1). Let H̃n(Cp)
be the space of homogeneous polynomials f on Cp ∼= R2p of degree n in the variables
z1, z2, · · · , zp, z1, z2, · · · , zp which satisfy

∑p
j=1

∂2

∂zj∂zj
f = 0. For nonnegative integers k

and l we denote by Sk,l the space of polynomials on Cp which have total degree k in
the variables z1, z2, · · · , zp and total degree l in the variables z1, z2, · · · , zp. Set Hk,l =
Sk,l∩ H̃k+l(Cp). Then the Lie group U(p) naturally acts on the space H̃n(Cp), and Hk,n−k

is a U(p)-invariant subspace of H̃n(Cp). The sum H̃n(Cp) =
⊕n

k=0 Hk,n−k gives the U(p)-
irreducible decomposition (cf. [16]). And the reproducing formulas of Hk,l on the unit
sphere {z ∈ Cp; tzz = 1} of Cp are explained in detail in [12], [13]. In this setting the
element of H̃n(Cp) corresponds to a harmonic polynomial on p and the unit sphere of Cp

corresponds to one KR-orbit for the case gR = su(p, 1).
The plan of this paper is roughly stated as follows: In § 1 we recall the definitions and

some fundamental properties of harmonic polynomials on p which we use in this paper,
mainly following the results stated in [20]. In § 2 we review the principal results for the
case su(p, 1), which is previously stated in [20]. In § 3 – § 5 we consider the case sp(p, 1).
In § 3 we review some known results on harmonic polynomials on p when gR = sp(p, 1).
In § 4 we give the KR-irreducible decomposition of harmonic polynomials on p, which is
the principal part of this paper and state the main theorem (Theorem 4.5) by using the
properties of KR-irreducible components. Finally in Appendix, we determine the dimension
of the KR-irreducible component.

Thus, we obtain the reproducing kernels on each KR-orbit for all cases of classical real
rank 1. To obtain integral formulas of harmonic polynomials in cases of classical real rank
2 is our next theme.

The author would like to thank Professor Y. Agaoka sincerely for his helpful suggestions
and ceaseless encouragement.

1. Harmonic polynomials on p.

In this section we fix several notations which we use in this paper, and recall the defini-
tions and the known results on harmonic polynomials.

Let g be a complex semisimple Lie algebra, gR be a noncompact real form of g, gR

= kR + pR be a Cartan decomposition of gR and g = k + p be its complexification. We put
G = exp ad g and Kθ = {g ∈ G ; θg = gθ}, where the involution θ : g −→ g is defined by
θ = 1 on k and θ = −1 on p. Let K be the identity component of Kθ. Then we have K
= expad k.

Now we define harmonic polynomials on p as follows. We denote by S and Sn the spaces
of polynomials on p and homogeneous polynomials on p of degree n, respectively. For f ∈ S
and g ∈ Kθ, we define gf ∈ S by (gf)(X) = f(g−1X) (X ∈ p). We denote by J the ring
of K-invariant polynomials on p and put J+ = {f ∈ J ; f(0) = 0}. It is known that J is
also Kθ-invariant. According to the definition in [5], a polynomial f ∈ S is called harmonic
if and only if (∂P )f = 0 for any P ∈ J+. We denote by Hn the space of homogeneous
harmonic polynomials on p of degree n. In the following we put Z+ = {0, 1, 2, · · · }. The
following results are well known:
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Theorem 1.1 (cf. [1], [5]). (i) For any n ∈ Z+ we have

Sn = (J+S)n ⊕ Hn,

where we put (J+S)n = Sn ∩ J+S.
(ii) We put N = {X ∈ p ; P (X) = 0 for any P ∈ J+} and let h(X, Y ) be a nondegenerate

symmetric bilinear form on p. Then Hn is generated by {h( , Z)n ; Z ∈ N}.
(iii) Let O be a Kθ-orbit in p of maximal dimension. Then the restriction mapping

f −→ f |O is a bijection from Hn onto Hn|O.

For further properties on harmonic polynomials on p, see [1], [5].
From now we consider the case where gR is a classical simple Lie algebra with real rank

1, i.e. gR = so(p, 1) (p ≥ 2), su(p, 1) (p ≥ 1) or sp(p, 1) (p ≥ 1). Let KR be the adjoint
group of kR: KR = exp ad kR. Then it is known that KR acts on the space Hn, and we
denote by

Hn =
N(n)⊕
k=0

Hn,k

the KR-irreducible decomposition of Hn, where N(n) + 1 is the number of KR-irreducible
components. Now we assume that Hn,k �� Hm,l if (n, k) �= (m, l). Then under this condi-
tion, the following results are proved in the previous paper [20].

Theorem 1.2 ([20] Theorem 1.3). Up to a non-zero constant there exists a unique
function H̃n,k(X, Y ) �≡ 0 (0 ≤ k ≤ N(n)) defined on p × p such that

H̃n,k( , Y ) ∈ Hn,k for any Y ∈ p,(1.1)

H̃n,k(gX, gY ) = H̃n,k(X, Y ) for any g ∈ KR and any X, Y ∈ p,(1.2)

H̃n,k(X, Y ) = H̃n,k(Y, X) for any X, Y ∈ p.(1.3)

Theorem 1.3 ([20] Theorem 1.3). Let H̃n,k(X, Y ) �≡ 0 (0 ≤ k ≤ N(n)) be a function
which satisfies the conditions (1.1)–(1.3). Suppose X0 ∈ p and H̃n,k(X0, X0) �= 0. Then for
any f ∈ Hm,l and X ∈ p the following reproducing formula of harmonic polynomials holds
on each KR-orbit KRX0:

δn,mδk,lf(X) =
dim Hn,k

H̃n,k(X0, X0)

∫
KR

f(gX0)H̃n,k(X, gX0)dg.(1.4)

Here dg means the normalized Haar measure on KR.

Remark 1.4. To prove Theorem 1.2 and Theorem 1.3 we need the assumption Hn,k ��
Hm,l ((n, k) �= (m, l)). In the case gR = su(p, 1) this fact is proved in Corollary of [16;
p.241]. The proof for the case gR = sp(p, 1) will be given in Proposition 4.2 (ii) of this
paper.

Remark 1.5. In the case gR = so(p, 1) the above equality (1.4) is already known as a
formula of classical harmonic polynomials on Cp (� p) and the above function H̃n,k(X, Y )
can be expressed explicitly in terms of the Legendre polynomial of degree n in dimension p
(see, for example, [1], [2], [11], [17], [21]). When gR = su(p, 1), the equality (1.4) is known as
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a formula of polynomials on the space Hk,l if X0 ∈ pR and Tr (X0
2) = 2 (cf. [12], [13]). But

for the remaining cases of su(p, 1), including sp(p, 1) and f4(−20), the function H̃n,k(X, Y )
defined in [20] is expressed as a double integral of some inexplicit functions and is not so
clear. In this paper we express H̃n,k(X, Y ) as an integral of explicitly given polynomials on
a single KR-orbit of p for two cases gR = su(p, 1) and sp(p, 1).

2. Integral formulas of harmonic polynomials: The case of su(p, 1).

In this section we give the reproducing kernel of each irreducible subspace of Hn on
KR-orbits in p for the case gR = su(p, 1) (p ≥ 1) (Theorem 2.1). The principal results for
this case are already stated in [20]. The reproducing kernel H̃n,k(X, Y ) takes a somewhat
simpler form in case X or Y is contained in nilpotent orbits. Here we also give a proof of
this fact.

In the case gR = su(p, 1), we have

kR =
{(

A 0
0 α

)
; A ∈ u(p), α ∈ u(1), TrA + α = 0

}
,

pR =
{(

0 x
tx 0

)
; x ∈ Cp

}
,

k =
{(

A 0
0 α

)
; A ∈ M(p,C), TrA + α = 0

}
,

p =
{(

0 x
ty 0

)
; x, y ∈ Cp

}
,

and KR = Ad S(U(p)×U(1)) = {Ad
�

A 0
0 1

�
; A ∈ U(p)}. Let B( , ) be the Killing form

on p. For X =
�

0 x
ty 0

�
∈ p, the polynomial

P (X) = (4p + 4)−1B(X, X) =
1
2
Tr (X2) = tyx,

gives a generator of J . We put

N = {X ∈ p ; P (X) = 0},
Σ = {X ∈ p ; P (X) = 1},

and
ΣR = Σ ∩ pR.

We denote by Hn = {f ∈ Sn ;
∑p

j=1
∂2

∂xj∂yj
f = 0} the space of homogeneous harmonic

polynomials on p of degree n. For X =
�

0 x
ty 0

�
∈ p, we define the bijection Ψ : p −→ C2p

by Ψ(X) = 1
2

�
x + y

i(y − x)

�
, and let Hn(C2p) be the space of homogeneous polynomials on C2p

of degree n which satisfy
∑p

j=1
∂2

∂zj
2 f = 0. Then f ∈ Hn if and only if f ◦Ψ−1 ∈ Hn(C2p),

and we have

dimHn = dim Hn(C2p) =
2(n + p − 1)(n + 2p − 3)!

n!(2p − 2)!
.

Remark that the restriction mapping Ψ : ΣR −→ S2p−1 is also bijective. This implies

that Pn,2p

(
Tr tXY

2
√

P (X)

)
(P (X))n/2 (X ∈ p, Y ∈ ΣR) is the reproducing kernel of Hn on ΣR ,

where Pn,q(t) is the Legendre polynomial of degree n in dimension q (cf. [8], [11], etc). Note
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that the Legendre polynomial is related to the Gegenbuar function Cν
n(t) by the equality

Pn,q(t) = (q−3)!n!
(n+q−3)!C

q−2
2

n (t).
In the rest of this section we assume p ≥ 2. For the case p = 1, see Remark 2.3 at the

end of this section. For X =
�

0 x
ty 0

�
∈ p and g = Ad

�
A 0
0 1

�
∈ KR (A ∈ U(p)) we

have gX =
�

0 Ax
t(Ay) 0

�
. We put

E1 =
(

0 e1
te1 0

)
∈ ΣR,

Ẽr,q =
(

0 re1
t(1

r e1 + qe2) 0

)
∈ Σ (r > 0, q ≥ 0),

Ẽr =
(

0 re1√
1 − r2 te2 0

)
∈ N (0 ≤ r ≤ 1),

where e1 = t(1 0 · · · 0), and e2 = t(0 1 · · · 0). Remark that

KRE1 = ΣR, p = N ∪
⋃

λ∈C\{0}
λΣ,

and the KR-orbit decompositions of Σ and N are given by

Σ =
⋃

q≥0, r>0

KRẼr,q and N =
⋃

ρ≥0, 0≤r≤1

KR(ρẼr).

We put Λ = {(n, k) ; n ∈ Z+, 0 ≤ k ≤ n}. For X =
�

0 x
ty 0

�
and Y =

�
0 a
tb 0

�
∈ p

we put
K̃n,k(X, Y ) = (x · a)k(y · b)n−k ((n, k) ∈ Λ),

where z · w = tzw for z, w ∈ Cp. It is clear that

K̃n,k(X, Y ) = K̃n,k(Y, X) (X, Y ∈ p),

K̃n,k(gX, gY ) = K̃n,k(X, Y ) (g ∈ KR),

K̃n,k( , Y ) ∈ Hn (Y ∈ N).

Let Hn,k be the subspace of Hn which is spanned by the elements K̃n,k( , Y ) (Y ∈ N).
From Theorem 14.4 in [16] we can easily see that Hn = ⊕n

k=0Hn,k gives the KR-irreducible
decomposition of Hn and

dimHn,k =
(p + n − 1)(k + p − 2)!(n − k + p − 2)!

(p − 1)!(p − 2)!k!(n − k)!
.

Now we put E0 =
�

0 e1
te2 0

�
, and by using K̃n,k, we define a function H̃n,k(X, Z) (X, Z ∈

p) by

H̃n,k(X, Z) =
∫

KR

K̃n,k(X, gE0)K̃n,k(gE0, Z)dg,

where dg is the normalized Haar measure on KR. For f, h ∈ Hn, we define the KR-invariant
inner product ( , ) by

(f, h) =
∫

KR

f(gE0)h(gE0)dg.
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Then we see that Hn,k ⊥ Hn,l (k �= l). Therefore it is easy to show that H̃n,k ∈ Hn,k .
The following theorem asserts that the function H̃n,k explicitly defined above gives the
reproducing kernel of Hn.

Theorem 2.1. Let X0 ∈ p and assume H̃n,k(X0, X0) �= 0 (∀(n, k) ∈ Λ). Let f ∈ Hm,l

and X ∈ p. Then the following integral formula holds:

δn,mδk,lf(X) =
dim Hn,k

H̃n,k(X0, X0)

∫
KR

f(gX0)H̃n,k(X, gX0)dg.(2.1)

Especially if X ∈ N or Y ∈ N, we have

H̃n,k(X, Y ) = K̃n,k(X, Y ).(2.2)

And therefore the polynomial K̃n,k(X, Y ) itself gives a reproducing kernel on nilpotent orbits
KRX0 (X0 ∈ N ):

δn,mδk,lf(X) =
dim Hn,k

K̃n,k(X0, X0)

∫
KR

f(gX0)K̃n,k(X, gX0)dg.(2.3)

Proof. We can easily show that the function H̃n,k(X, Y ) satisfies the conditions (1.1)–
(1.3) in Theorem 1.2, and hence we obtain the formula (2.1).

Now we show (2.2) and (2.3). For X, Y ∈ p we put

Fn,k(X, Y ) = dim Hn,k

∫
KR

H̃n,k(X, gE0)K̃n,k(gE0, Y )dg.

Then the function Fn,k(X, Y ) also satisfies the conditions (1.1)–(1.3). Hence from Theorem
1.2 (i) there exists some cn,k ∈ C such that

(2.4) Fn,k(X, Y ) = cn,kH̃n,k(X, Y ) (X, Y ∈ p).

On the other hand for Y ∈ N we have from (2.1)

(2.5) Fn,k(X, Y ) = H̃n,k(E0, E0)K̃n,k(X, Y )

because K̃n,k( , Y ) belongs to Hn,k. The equalities (2.4) and (2.5) imply

(2.6) cn,kH̃n,k(X, Y ) = H̃n,k(E0, E0)K̃n,k(X, Y ).

Since
K̃n,k(E0, E0) = 1 �= 0,

we have

H̃n,k(E0, E0) =
∫

KR

| K̃n,k(gE0, E0) |2 dg �= 0.
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Therefore from (2.6) we have cn,k = 1 and hence by the property (1.3) the equality

H̃n,k(X, Y ) = H̃n,k(E0, E0)K̃n,k(X, Y )

holds if X ∈ N or Y ∈ N. From this and (2.1) we have easily (2.2) and (2.3). Q.E.D.

Remark 2.2. We have

H̃n,k(X0, X0) = C

∫
KR

| H̃n,k(gX0, E1) |2 dg (X0 ∈ p),

where C = (
∫

KR
|K̃n,k(gX0, E1)|2dg)−1. Since K̃n,k( , E0) �≡ 0 on ΣR, we have C > 0.

Therefore the following two conditions (2.7) and (2.8) are equivalent.

(2.7) H̃n,k(X0, X0) = 0,

(2.8) Hn,k|KRX0 = {0}.
This implies that the assumption H̃n,k(X0, X0) �= 0 in Theorem 2.1 holds for any (n, k) ∈ Λ
if and only if X0 /∈ λKRẼ1 and X0 /∈ λKRẼ0 for any λ ∈ C.

Remark 2.3. We consider the case p = 1. For X =
�

0 x
ty 0

�
and Y =

�
0 x′

ty′ 0

�
∈ p

we put H̃n,1(X, Y ) = (x ·x′)n and H̃n,2(X, Y ) = (y · y′)n. We denote by Hn,k the subspace
of Hn which is generated by {H̃n,k( , E1)} (k = 1, 2). Then we have the KR-irreducible
decomposition Hn = Hn,1 ⊕ Hn,2. It is easy to show that H̃n,k(X, Y ) satisfies (1.1)–(1.3)
in Theorem 1.2, and therefore Theorem 2.1 also holds in case p = 1.

3. Harmonic polynomials on p in the case sp(p, 1).

In the rest of this paper we consider the Lie algebra sp(p, 1) and give the explicit formula
of the reproducing kernel of harmonic polynomials on each KR-orbit (Theorem 4.5). In this
case the expressions of matrices becomes much more complicated than the case of su(p, 1),
because the complexification sp(p+1,C) of the real Lie algebra sp(p, 1) can not be realized
as a subalgebra of the quaternion general linear Lie algebra gl(p + 1,H). (Note that in the
case su(p, 1), its complexification can be naturally identified with sl(p + 1,C)).

The construction of the reproducing kernel is also complicated for the case sp(p, 1), and
in this section we first settle the notations and state basic formulas on harmonic polynomials
on p for the Lie algebra sp(p, 1). Since the Lie algebra sp(1, 1) is isomorphic to so(4, 1), we
always assume p ≥ 2 in the following argument. From now we put g = sp(p + 1,C), gR

= sp(p, 1),

kR =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

A 0 B 0
0 a 0 b

−B 0 A 0
0 −b 0 a

⎞⎟⎟⎠ ;
A ∈ u(p), a ∈ u(1), b ∈ C
B is p × p symmetric

⎫⎪⎪⎬⎪⎪⎭ ,

pR =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0 x 0 y
tx 0 ty 0
0 y 0 −x
ty 0 −tx 0

⎞⎟⎟⎠ ; x, y ∈ Cp

⎫⎪⎪⎬⎪⎪⎭ .
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Then we have

k =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

A 0 B 0
0 α 0 β
C 0 −tA 0
0 γ 0 −α

⎞⎟⎟⎠ ;
A,B, C ∈ M(p,C)
tB = B, tC = C
α, β, γ ∈ C

⎫⎪⎪⎬⎪⎪⎭ ,

p =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0 x 0 w
ty 0 tw 0
0 z 0 −y
tz 0 −tx 0

⎞⎟⎟⎠ ; x, y, z, w ∈ Cp

⎫⎪⎪⎬⎪⎪⎭ ,

and

KR =

⎧⎪⎪⎨⎪⎪⎩Ad

⎛⎜⎜⎝
A 0 B 0
0 α 0 β

−B 0 A 0
0 −β 0 α

⎞⎟⎟⎠ ∈ AdU(2p + 2) ;

tAA + tBB = Ip,
tAB = tBA,

αα + ββ = 1

⎫⎪⎪⎬⎪⎪⎭ .

For X =

�
���

0 x 0 w
ty 0 tw 0
0 z 0 −y

tz 0 −tx 0

�
��� ∈ p, the polynomial defined by

P (X) =
1

8(p + 2)
B(X, X) =

1
4
Tr (X2) = txy + tzw

gives a generator of J and Hn is given by Hn = {f ∈ Sn ;
∑p

j=1

(
∂2

∂xj∂yj
+ ∂2

∂zj∂wj

)
f = 0}.

For X ∈ p we define the bijective mapping Ψ : p −→ C4p by Ψ(X) = 1
2

�
��

x + y
z + w

i(y − x)
i(w − z)

�
��.

We can see that f ∈ Hn if and only if f ◦ Ψ−1 ∈ Hn(C4p) and from this fact, we have

dimHn = dimHn(C4p) =
2(n + 2p − 1)(n + 4p − 3)!

n!(4p − 2)!
.

We put
N = {X ∈ p ; P (X) = 0},
Σ = {X ∈ p ; P (X) = 1},

and
ΣR = Σ ∩ pR.

Remark that Ψ : ΣR � S4p−1 and H̃n(X, Y ) = Pn,4p

(
Tr tXY

4
√

P (X)

)
(P (X))n/2 (X ∈ p, Y ∈

ΣR) gives the reproducing kernel on ΣR. Furthermore it is known that the restriction
mapping f �−→ f |N is also a bijection from Hn onto Hn|N.

Let g = Ad

�
���

A 0 B 0
0 α 0 β

−B 0 A 0

0 −β 0 α

�
��� ∈ KR and X =

�
���

0 x 0 w
ty 0 tw 0
0 z 0 −y

tz 0 −tx 0

�
��� ∈ p. If we put

Φ(X) =

�
��

x
y
z
w

�
�� ∈ C4p, we have

(3.1) Φ(gX) =

⎛⎜⎜⎝
A(αx + βw) + B(αz − βy)
B(−βx + αw) + A(αy + βz)
−B(αx + βw) + A(αz − βy)
A(−βx + αw) − B(αy + βz)

⎞⎟⎟⎠ .
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In the following, we often simply write α(g) = α and β(g) = β, though α and β depend on
g ∈ KR. We put

Ẽr = Φ−1

⎛⎜⎜⎝
re1

0
0√

1 − r2 e2

⎞⎟⎟⎠ ∈ N (0 ≤ r ≤ 1),

Ẽr,q = Φ−1

⎛⎜⎜⎝
re1

1
r e1 + qe2

0
0

⎞⎟⎟⎠ ∈ Σ (r > 0, q ≥ 0).

In addition we put E1 = Ẽ1,0.
It is clear that p = N ∪ ⋃

λ∈C\{0} λΣ. Remark that

(3.2) N =
⋃

q≥0, 1√
2
≤r≤1

KR(qẼr), Σ =
⋃

q≥0, r>0

KRẼr,q

give the KR-orbit decompositions of N and Σ, respectively. For X = Φ−1

�
��

x
y
z
w

�
��, Y =

Φ−1

�
���

x′

y′

z′

w′

�
��� ∈ p, we put 〈X, Y 〉 = 1

2 Tr (tXY ) = x · x′ + y · y′ + z · z′ + w ·w′. Then we can

easily see that 〈 , 〉 is KR-invariant.

Next we put

H1 =

⎧⎪⎪⎨⎪⎪⎩Ad

⎛⎜⎜⎝
A 0 B 0
0 1 0 0

−B 0 A 0
0 0 0 1

⎞⎟⎟⎠ ∈ KR

⎫⎪⎪⎬⎪⎪⎭
and

H2 =

⎧⎪⎪⎨⎪⎪⎩Ad

⎛⎜⎜⎝
Ip 0 0 0
0 α 0 β
0 0 Ip 0
0 −β 0 α

⎞⎟⎟⎠ ∈ KR

⎫⎪⎪⎬⎪⎪⎭ .

Then H1 and H2 are subgroups of KR, and for any g ∈ KR there exist unique hj ∈ Hj

(j = 1, 2) such that g = h1h2. Furthermore, if gj ∈ Hj (j = 1, 2), we have g1g2 = g2g1. We
denote by dhj the normalized Haar measure on Hj and by C(Hj) the space of continuous

functions on Hj (j = 1, 2). Remark that if we put h2 = Ad

�
���

Ip 0 0 0
0 α 0 β
0 0 Ip 0

0 −β 0 α

�
���, α = ρeiθ,

β =
√

1 − ρ2 eiϕ, then for any f ∈ C(H2) we have

(3.3)
∫

H2

f(h2)dh2 =
1

2π2

∫ 2π

0

∫ 2π

0

∫ 1

0

f̃(ρ, θ, ϕ)ρ dρ dϕ dθ,

where f̃(ρ, θ, ϕ) = f(h2).
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For h1 = Ad

�
���

A 0 B 0
0 1 0 0

−B 0 A 0
0 0 0 1

�
��� ∈ H1 we define the mapping φ : H1Ẽ1 −→ S4p−1 by

φ(h1Ẽ1) =

⎛⎜⎜⎝
Re a1

Im a1

Re (−b1)
Im (−b1)

⎞⎟⎟⎠ ,

where h1Ẽ1 = Φ−1

�
���

a1
0

−b1
0

�
��� and a1 = Ae1, b1 = Be1. (If h1, h

′
1 ∈ H1 satisfy h1Ẽ1 = h′

1Ẽ1,

then we can easily prove φ(h1Ẽ1) = φ(h′
1Ẽ1). And this fact implies that the mapping φ is

well defined.) From the definition of H1 we see that φ is bijective and the equality

(3.4)
∫

H1

f(h1Ẽ1)dh1 =
∫

S4p−1
f ◦ φ−1(s)ds

holds for any f ∈ C(H1), where ds is the normalized O(4p)-invariant measure on S4p−1.

For X = Φ−1

�
��

x
y
z
w

�
��, Y = Φ−1

�
���

x′

y′

z′

w′

�
��� ∈ p we put

K2(X, Y ) = (x · x′ + z · z′)(y · y′ + w · w′) + (x · w′ − z · y′)(y · z′ − w · x′),

K̃m(X, Y ) =
(m + 2p − 1)!
m!(2p − 1)!

∫
KR

〈gẼ1, Y 〉m〈X, gẼ1〉mdg,

K̃n,k(X, Y ) = K̃n−2k(X, Y ){K2(X, Y )}k

(m,n ∈ Z+, k = 0, 1, · · · , [n/2]). These functions play an important role in constructing
the function H̃n,k(X, Y ). Remark that the equalities

(3.5) K̃n,k(X, Y ) = K̃n,k(Y, X),

(3.6) K̃n,k(X, Y ) = K̃n,k(gX, gY )

hold for any X, Y ∈ p, g ∈ KR.

4. Decomposition of the space Hn and the integral formula for the case
sp(p, 1).

In this section we first show that K̃n,k( , Y ) ∈ Hn if Y ∈ N, and next by using this
property, we define KR-irreducible subspaces Hn,k of Hn (k = 0, 1, · · · , [n/2]). And finally
we state our main theorem for the case sp(p, 1) (Theorem 4.5). As before we always assume
p ≥ 2.

First, for k = 0, 1, · · · , [n/2], we introduce the polynomial Kn,k to simplify the following
calculations:

Kn,k(X, Y ) =
1

n − 2k + 1
〈X, Y 〉n−2k{K2(X, Y )}k (X, Y ∈ p).
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We can see that Kn,k( , Y ) ∈ Hn if Y ∈ N.
Now we prove that K̃n,k( , Y ) ∈ Hn (Y ∈ N). For this purpose we need the following

Proposition 4.1. (i) For X = Φ−1

�
��

x
y
z
w

�
��, Y = Φ−1

�
���

x′

y′

z′

w′

�
��� ∈ p the following formula

holds:

K̃m(X, Y ) =
1

m + 1

∑
m1+m2+2m3=m

(m1 + m3)!(m2 + m3)!
m1!m2!(m3!)2

(x · x′ + z · z′)m1(4.1)

× (y · y′ + w · w′)m2(z · y′ − x · w′)m3(y · z′ − w · x′)m3 .

(ii) There exist am,q ∈ R (q = 1, 2, · · · , [m/2]) such that

(4.2) 〈X, Y 〉m = (m + 1)K̃m(X, Y ) +
[m/2]∑
q=1

am,qKm,q(X, Y ) (X, Y ∈ p).

(iii) There exist bm,q ∈ R (q = 1, 2, · · · , [m/2]) such that

(4.3) 〈X, Y 〉m = (m + 1)K̃m(X, Y ) +
[m/2]∑
q=1

bm,qK̃m,q(X, Y ) (X, Y ∈ p).

Proof. (i) Assume a, b ∈ C4p and a ·a = b · b = 0. Then the following equality holds (see
[11]): ∫

S4p−1
(s · a)m(s · b)mds =

m!(2p − 1)!
2m(m + 2p − 1)!

(a · b)m.

From this formula and from (3.1), (3.4) we have

K̃m(X, Y ) =
(m + 2p − 1)!
m!(2p − 1)!

∫
KR

〈gẼ1, Y 〉m〈X, gẼ1〉mdg(4.4)

=
(m + 2p − 1)!
m!(2p − 1)!

∫
H2

(∫
H1

{a1 · (αx′ − βw′) − b1 · (αz′ + βy′)}m

× {a1 · (αx − βw) − b1 · (αz + βy)}mdh1

)
dh2

=
(m + 2p − 1)!
m!(2p − 1)!

∫
H2

⎛⎜⎝∫
S4p−1

⎧⎪⎨⎪⎩s ·
�
���

αx′ − βw′
i(αx′ − βw′)

βy′ + αz′
i(βy′ + αz′)

�
���

⎫⎪⎬⎪⎭
m ⎧⎪⎨⎪⎩s ·

�
���

αx − βw

−i(αx − βw)

βy + αz

−i(βy + αz)

�
���

⎫⎪⎬⎪⎭
m

ds

⎞⎟⎠ dh2

=
∫

H2

{(αx′ − βw′) · (αx − βw) + (αz′ + βy′) · (αz + βy)}mdh2.

The last expression of (4.4) equals∫
H2

{|α|2(x · x′ + z · z′) + |β|2(w · w′ + y · y′)

+ αβ(z · y′ − x · w′) + αβ(y · z′ − w · x′)}mdh2

=
∑

m1+m2+m3+m4=m

m!
m1!m2!m3!m4!

(∫
H2

|α|2m1 |β|2m2(αβ)m3 (αβ)m4dh2

)
× (x · x′ + z · z′)m1(y · y′ + w · w′)m2(z · y′ − x · w′)m3(y · z′ − w · x′)m4 .
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Putting α = teiθ and β =
√

1 − t2eiϕ, we have from (3.3)∫
H2

|α|2m1 |β|2m2(αβ)m3 (αβ)m4dh2

=
1

2π2

∫ 2π

0

∫ 2π

0

∫ 1

0

t2m1+m3+m4(1 − t2)(2m2+m3+m4)/2(eiθeiϕ)m3−m4t dt dθ dϕ

= δm3,m4

(m1 + m3)!(m2 + m3)!
(m + 1)!

.

Therefore we obtain (4.1).
(ii) We prove the following formulas by induction on n:{

〈X, Y 〉2n−1 = (2n)K̃2n−1(X, Y ) +
∑n−1

q=1 a2n−1,qK2n−1,q(X, Y ),
〈X, Y 〉2n = (2n + 1)K̃2n(X, Y ) +

∑n
q=1 a2n,qK2n,q(X, Y ),

(4.5)

(a2n−1,q, a2n,q ∈ R, n = 1, 2, · · · ).
When n = 1, we have (4.5) because (4.1) gives

2K̃1(X, Y ) = 〈X, Y 〉,
3K̃2(X, Y ) = 〈X, Y 〉2 − K2(X, Y ).

Assume that (4.5) is valid for n = 1, 2, · · · , k. By this assumption and by (4.1), we obtain
the following equality after some calculations:

〈X, Y 〉2k+1 = {(2k + 1)K̃2k(X, Y ) +
k∑

q=1

a2k,qK2k,q(X, Y )}〈X, Y 〉

=
k∑

q=1

a′
2k,qK2k+1,q(X, Y ) + {

∑
m1+m2+2m3=2k

(m1 + m3)!(m2 + m3)!
m1!m2!(m3!)2

× (x · x′ + z · z′)m1(y · y′ + w · w′)m2(z · y′ − x · w′)m3(y · z′ − w · x′)m3}〈X, Y 〉

=
k∑

q=1

a′
2k,qK2k+1,q(X, Y ) + (2k + 2)K̃2k+1(X, Y ) + 2kK̃2k−1(X, Y )K2(X, Y ),

where a′
2k,q = a2k,q(2k − 2q + 2)(2k − 2q + 1)−1. By the assumption of induction we have

2kK̃2k−1(X, Y )K2(X, Y ) = K2(X, Y ){〈X, Y 〉2k−1 −
k−1∑
q=1

a2k−1,qK2k−1,q(X, Y )}

= 2kK2k+1,1(X, Y ) −
k−1∑
q=1

a2k−1,qK2k+1,q+1(X, Y ).

Hence there exist some a2k+1,q ∈ R (q = 1, 2, · · · , k) such that

〈X, Y 〉2k+1 = (2k + 2)K̃2k+1(X, Y ) +
k∑

q=1

a2k+1,qK2k+1,q(X, Y ).

In the same way we can show the second equality of (4.5) for n = k + 1.
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(iii) Using (4.2), we can prove (4.3) easily. Q.E.D.

From (4.2) there exist an−2k,q ∈ R (q = 1, 2, · · · , [n/2] − k) such that

(n − 2k + 1)K̃n−2k(X, Y ) = 〈X, Y 〉n−2k −
[n/2]−k∑

q=1

an−2k,qKn−2k,q(X, Y ) (X, Y ∈ p).

From the definitions of K̃n,k(X, Y ) and Kn,k(X, Y ) and from this formula, there exist
cn,q ∈ R (q = k, k + 1, · · · , [n/2]) such that

K̃n,k(X, Y ) =
[n/2]∑
q=k

cn,qKn,q(X, Y ).

Hence we see that K̃n,k( , Y ) ∈ Hn because Kn,k( , Y ) ∈ Hn (Y ∈ N) .
We denote by Hn,k the subspace of Hn which is generated by {K̃n,k( , Z) ; Z ∈ N}.

Then from (3.6) it is clear that the space Hn,k is KR-invariant. From now we put E0

= Φ−1

�
��

e1
0
0
e2

�
�� ∈ N. To show our main theorem, we must prepare the following proposition.

Proposition 4.2. (i) For any X, Y ∈ p we have

(4.6)
∫

KR

K̃n,l(gE0, Y )K̃n,k(X, gE0)dg = 0 (l �= k).

(ii) Hn = ⊕[n/2]
k=0 Hn,k gives the KR-irreducible decomposition of Hn. Furthermore, Hn,k

and Hm,l are not equivalent as KR-representation spaces if (n, k) �= (m, l).

To prove this proposition, we need the following

Lemma 4.3. (i) For any h2 ∈ H2 and X, Y ∈ p it is valid that K2(h2X, Y ) = K2(X, Y ).
(ii) If n, m ∈ Z+ and n > m, we have for any X, Y ∈ p

(4.7)
∫

H2

〈h2X, E0〉m〈Y, h2Ẽ1〉ndh2 = 0,

and

(4.8)
∫

H2

K̃n(h2E0, X)K̃m(Y, h2E0)dh2 = 0.

Proof. If we put Φ(X) =

�
��

x
y
z
w

�
�� ∈ C4p and h2 = Ad

�
���

Ip 0 0 0
0 α 0 β
0 0 Ip 0

0 −β 0 α

�
��� (α, β ∈ C, αα+

ββ = 1), from (3.1) we have

(4.9) Φ(h2X) =

⎛⎜⎜⎝
αx + βw
αy + βz

αz − βy
−βx + αw

⎞⎟⎟⎠ .
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By using (4.9), it is easy to show (i). We will prove (ii). From (4.9) there exist some
t, s, r, q, µ, ν ∈ C such that

〈h2X, E0〉m = (αr + βq + αµ + βν)m,

and
〈Y, h2Ẽ1〉n = (αt + βs)n.

These formulas give that∫
H2

〈h2X, E0〉m〈Y, h2Ẽ1〉ndh2

=
n∑

k=0

∑
m1+m2+m3+m4=m

Cm1,m2,m3,m4,n,k(t, s, r, q, µ, ν)
∫

H2

αm1+kβm2 α m3 β
n−k+m4

dh2,

where Cm1,m2,m3,m4,n,k(t, s, r, q, µ, ν) is a polynomial of t, s, r, q, µ, ν. Putting α = ρeiθ and
β =

√
1 − ρ2 eiϕ, we have∫

H2

αm1+kβm2 α m3 β
n−k+m4

dh2(4.10)

=
1

2π2

∫ 2π

0

∫ 2π

0

∫ 1

0

{ρm1+k+m3(1 − ρ2)(m2+m4+n−k)/2(eiθ)m1+k−m3

× (eiϕ)m2−m4−n+k ρ} dρ dθ dϕ.

If n > m, we have m1 + k − m3 �= 0 or m2 − m4 − n + k �= 0 because

(m1 + k − m3) − (m2 − m4 − n + k) = n + m1 − m3 + m4 − m2 ≥ n − m > 0.

Therefore we obtain (4.7) from (4.10). From the definition of K̃n( , ) we have for some
Cn,m ∈ R∫

H2

K̃n(h2E0, X)K̃m(Y, h2E0)dh2(4.11)

= Cn,m

∫
H2

∫
KR

∫
KR

〈gẼ1, X〉n〈h2E0, gẼ1〉n〈g0Ẽ1, h2E0〉m〈Y, g0Ẽ1〉mdg dg0 dh2.

We put g = g2g1 (gi ∈ Hi, i = 1, 2). By changing variables and by using the property
k1k2 = k2k1(ki ∈ Hi, i = 1, 2) we have from (4.7)∫

H2

〈h2E0, gẼ1〉n〈g0Ẽ1, h2E0〉mdh2

=
∫

H2

〈E0, h
−1
2 g2g1Ẽ1〉n〈h−1

2 g0Ẽ1, E0〉mdh2

=
∫

H2

〈g−1
1 E0, h2Ẽ1〉n〈h2g

−1
2 g0Ẽ1, E0〉mdh2 = 0 (n > m).

Hence (4.11) implies (4.8). Q.E.D.
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Proof of Proposition 4.2. (i) From (3.6) we have∫
KR

K̃n,l(gE0, Y )K̃n,k(X, gE0)dg(4.12)

=
∫

H1

∫
H2

K̃n,l(h1h2E0, Y )K̃n,k(X, h1h2E0)dh2 dh1

=
∫

H1

∫
H2

K̃n,l(h2E0, h
−1
1 Y )K̃n,k(h−1

1 X, h2E0)dh2 dh1.

Assume k > l. Then from (4.8) it is valid that for any X1, Y1 ∈ p∫
H2

K̃n,l(h2E0, Y1)K̃n,k(X1, h2E0)dh2(4.13)

= {K̃2(E0, Y1)}l{K̃2(X1, E0)}k

×
∫

H2

K̃n−2l(h2E0, Y1)K̃n−2k(X1, h2E0)dh2 = 0.

Therefore, by (4.12) and (4.13) we have (4.6). When k < l, we obtain (4.6) because

∫
KR

K̃n,k(X, gE0)K̃n,l(gE0, Y )dg =
∫

KR

K̃n,k(gE0, X)K̃n,l(Y, gE0)dg = 0.

(ii) We define the inner product of L2(KRE0) by

(f, h) =
∫

KR

f(gE0)h(gE0)dg

for f, h ∈ L2(KRE0). Then from (4.6) we have Hn,k ⊥ Hn,l for k �= l with respect to the
inner product ( , ). To prove Hn =

⊕[n/2]
k=0 Hn,k, we have only to show that the number

of KR-irreducible components of Hn is [n/2] + 1 because Hn,k �= {0} and Hn,k ⊥ Hn,l for
k �= l. We denote by Sn(C2p ⊗ C2) the n-th symmetric tensor product space of C2p ⊗ C2.
Then the sum

(4.14) Sn(C2p ⊗ C2) =
∑

λ

Sλ(C2p) ⊗ Sλ(C2)

gives the irreducible decomposition of Sn(C2p ⊗ C2) with respect to the natural action of
GL(2p,C)×GL(2,C), where Sλ(C2p) and Sλ(C2) denote the GL-irreducible representation
space corresponding to the partition λ = (λ1, λ2) (λ1 ≥ λ2 ≥ 0, λ1 + λ2 = n). Then using
the branching rule from GL(2p,C) to Sp(p) stated in [4; p.507], we can see that Sλ(C2)
is always irreducible as an Sp(1)-module and Sλ(C2p) splits into λ2 + 1 Sp(p)-irreducible
components with highest weight (λ1 − λ2 + k)ε1 + kε2 = (λ1 − λ2)Λ1 + kΛ2 (k = 0 ∼ λ2),
where we use the usual numbering. Since λ2 moves from 0 to [n/2], it follows that the
number of KR-irreducible components of (4.14) is 1 + 2 + · · · + ([n/2] + 1), which is equal
to the number of KR-irreducible subspaces of Sn. Let Jm be the space of KR-invariant
homogeneous polynomials of degree m. In this case we have J2m−1 = {0} and dimJ2m = 1
(m ∈ Z+). Then, from the formula Sn = ⊕n

k=0HkJn−k (cf. Theorem1.1 (i)) we can
easily show that the number of KR-irreducible subspaces of Hn is [n/2] + 1 and this shows
Hn =

⊕[n/2]
k=0 Hn,k.
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Next we show that Hn,k and Hm,l are not KR-equivalent if (n, k) �= (m, l). By using
the results Sn = ⊕n

k=0HkJn−k and Sλ(C2p) is a sum of Sp(p)-irreducible components with
highest weight (λ1−λ2)Λ1+kΛ2, we can show that Hn is a sum of Sp(p)×Sp(1)-irreducible
components with highest weight {(n − 2k)Λ1 + kΛ2} ⊗ (n − 2k)Λ1 (k = 0 ∼ [n/2]). From
this fact we can easily see that Hn,k � Hm,l if and only if n = m and k = l, because
two irreducible representations are equivalent if and only if their highest weights coincide.

Q.E.D.

Remark 4.4. The irreducible decomposition of Sn and the generators of irreducible
components of this representation are also stated in [3], though the number of irreducible
components in [3] was misprinted. However the generators given in [3] are not fitted to our
purpose, and we give here a new proof for the sake of completeness.

Now we put Λ = {(n, k) ; n ∈ Z+, 0 ≤ k ≤ [n/2]}. Under these preliminaries we define
the function H̃n,k(X, Y ) on p × p as follows:

(4.15) H̃n,k(X, Y ) =
∫

KR

K̃n,k(X, gE0)K̃n,k(gE0, Y )dg.

From the definition it is clear that H̃n,k( , Y ) ∈ Hn,k for any Y ∈ p. Therefore we can
easily show that H̃n,k( , Y ) satisfies the conditions (1.1)–(1.3) in Theorem 1.2. Then we can
show the following theorem completely in the same way as in the case of su(p, 1) (Theorem
2.1).

Theorem 4.5. Let X0 ∈ p and assume that H̃n,k(X0, X0) �= 0 (∀(n, k) ∈ Λ). Then for
any f ∈ Hm,l and X ∈ p we have

δn,mδk,lf(X) =
dim Hn,k

H̃n,k(X0, X0)

∫
KR

f(gX0)H̃n,k(X, gX0)dg.(4.16)

Especially for any X0 ∈ N and f ∈ Hn,k we have

H̃n,k(X, X0) = K̃n,k(X, X0)(4.17)

and

δn,mδk,lf(X) =
dim Hn,k

K̃n,k(X0, X0)

∫
KR

f(gX0)K̃n,k(X, gX0)dg.(4.18)

Remark 4.6. For any Z0 ∈ ΣR we have

H̃n,k(Z0, Z0) =
∫

KR

|K̃n,k(Z0, gE0)|2dg =
∫

KR

|K̃n,k(gZ0, E0)|2dg.

Since K̃n,k(E0, E0) = 1, we have K̃n,k(X, E0) �≡ 0 on p. From this we see K̃n,k(X, E0)|ΣR

�≡ 0 and
∫

KR
|K̃n,k(gZ0, E0)|2dg �= 0 because K̃n,k( , E0) ∈ Hn. Therefore we can see that

H̃n,k(Z0, Z0) �= 0 and
�Hn,k(X,Y )�Hn,k(Z0,Z0)

satisfies (1.7) in [20].
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Remark 4.7. We have H̃n,k(X0, X0) �= 0 for any (n, k) ∈ Λ if and only if X0 /∈ λKRẼ1

and X0 /∈ λKRẼ0 for any λ ∈ C.

Remark 4.8. To write down H̃n,k(X, Y ) for the cases su(p, 1) and sp(p, 1) in a simple
form by using some special functions is our subject.

Appendix.

In this section we will get the dimension of Hn,k for the case sp(p, 1).

Proposition A.1. When gR = sp(p, 1) (p ≥ 2), we have

(A.1) dim Hn,k =
(n − 2k + 1)2 (2p + n − 1) (2p + n − k − 2)! (2p + k − 3)!

(n − k + 1)! k!(2p − 3)! (2p − 1)!
.

Furthermore the highest weight of Hn,k is {(n−2k)Λ1 +kΛ2}⊗ (n−2k)Λ1 (k = 0 ∼ [n/2]).

To prove this proposition we use the following lemma.

Lemma A.2 (cf. [19] Theorem 2.2). Assume p ≥ 2. For any f ∈ Hn and any X ∈ p
we have

(A.2) f(X) = dimHn

∫ 1

0

ρ(t)
(∫

KR

f(gẼt)〈X, gẼt〉ndg

)
dt,

where we put

ρ(t) = 24p−3 Γ(2p − 1
2 )√

π(2p − 3)!
t4p−5(1 − t2)2p−3(2t2 − 1)2 (0 ≤ t ≤ 1).

For the proof of this lemma see [19].

Proof of Proposition A.1. We can see that there exist an,q ∈ R (q = 1, 2, · · · , [n/2] − k)
such that

(A.3) Kn,k(X, Y ) = K̃n,k(X, Y ) +
[n/2]−k∑

q=1

an,qK̃n,q+k(X, Y ) (X, Y ∈ p)

by (4.3). (4.18) and (A.3) give that

(dimHn,k)−1f(X) =
∫

KR

f(gE0)K̃n,k(X, gE0)dg(A.4)

=
∫

KR

f(gE0)Kn,k(X, gE0)dg,
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because K̃n,k(E0, E0) = 1. From (A.2) and (4.3) we have for any X ∈ p and Y ∈ N

(dimHn)−1K̃n,k(X, Y ) =
∫ 1

0

ρ(t)
(∫

KR

K̃n,k(gẼt, Y )〈X, gẼt〉ndg

)
dt(A.5)

= Bn,k

∫ 1

0

ρ(t)
(∫

KR

K̃n,k(gẼt, Y )K̃n,k(X, gẼt)dg

)
dt

= An,kBn,k(dimHn,k)−1K̃n,k(X, Y )

= An,kBn,k

∫
KR

K̃n,k(gE0, Y )K̃n,k(X, gE0)dg

= An,k

∫
KR

K̃n,k(gE0, Y )〈X, gE0〉ndg,

where

An,k =
∫ 1

0

K̃n,k(Ẽt, Ẽt)ρ(t)dt

and

〈X, Y 〉n =
[n/2]∑
q=0

Bn,qK̃n,q(X, Y ) (X, Y ∈ p).

Since

K̃n,k(Ẽt, Ẽt) =

⎧⎨⎩
t2k(1 − t2)k{(1 − t2)n−2k+1 − t2(n−2k+1)}

(n − 2k + 1)(1 − 2t2)
(t �= 1√

2
),

2−n (t = 1√
2
),

we get

An,k = 24p−3 Γ(2p − 1
2 )(2p + n − k − 2)! (2p + k − 3)!√
π(2p − 3)! (4p + n − 3)!

.

By (A.5) we get for any f ∈ Hn,k

(A.6) (dim Hn)−1f(X) = An,k

∫
KR

f(gE0)〈X, gE0〉ndg.

Now we introduce the following polynomial to simplify the calculations:

hn,k(X) = 〈X, Ẽ1〉n−2k{K2(X, E0)}k (X ∈ p).

Then we have hn,k ∈ Hn. By using (4.6) we can see that
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∫
KR

hn,k(gE0)K̃n,l(X, gE0)dg = 0 (k �= l, X ∈ p)

and this and (4.18) show that hn,k belongs to Hn,k. Hence (A.4) and (A.6) imply

(dimHn,k)−1 =
∫

KR

hn,k(gE0)Kn,k(E0, gE0)dg

and

(dim Hn)−1 = An,k

∫
KR

hn,k(gE0)〈E0, gE0〉ndg

because hn,k(E0) = 1. In order to compute dimHn,k, we compare the values of the right

hand sides of these two formulas. By some calculations we obtain

∫
KR

hn,k(gE0)Kn,k(E0, gE0)dg

=
1

n − 2k + 1

∫
H1

|K2(X, E0)|2k

∫
H2

〈h2X, Ẽ1〉n−2k〈E0, h2X〉n−2k dh2 dh1

=
1

2(n − 2k + 1)2

∫
H1

(|x1|2 + |w1|2)n−2k|K2(X, E0)|2k
dh1

and ∫
KR

hn,k(gE0)〈E0, gE0〉ndg

=
∫

H1

K2(X, E0)k

∫
H2

〈h2X, Ẽ1〉n−2k〈E0, h2X〉n dh2 dh1

=
n!

2k! (n − k + 1)!

∫
H1

(|x1|2 + |w1|2)n−2k|K2(X, E0)|2k
dh1,

where we put X = Φ−1

�
��

x
y
z
w

�
�� = h1E0 and xi = x · ei, wi = w · ei (i = 1, 2). Hence we

obtain

dimHn,k = An,k
n! (n − 2k + 1)2

k! (n − k + 1)!
dim Hn.

From this we get (A.1).

In the proof of Proposition 4.2 (ii) we showed that Hn is a direct sum of KR-irreducible
components with highest weight {(n − 2k)Λ1 + kΛ2} ⊗ (n − 2k)Λ1 (k = 0 ∼ [n/2]). By
using Weyl’s dimension formula, we know that the dimension of the irreducible component
corresponding to {(n − 2k)Λ1 + kΛ2} ⊗ (n − 2k)Λ1 just coincides with (A.1). Hence the
highest weight of Hn,k is given by {(n − 2k)Λ1 + kΛ2} ⊗ (n − 2k)Λ1. Q.E.D.
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