A NOTE ON $[\mathfrak{a}, \mathfrak{b}]^r$ -COMPACTNESS AND $[\mathfrak{a}, \mathfrak{b}]^r$ -REFINABILITY

YOSHIFUMI SHIRAYAMA

Received October 27, 2006; revised November 30, 2006

ABSTRACT. In this paper, we shall show: (1) Properties $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness, $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability and weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability are preserved under taking countable closed sums, F_{σ} -subsets and preimages of perfect mappings.

(2) (GCH) Let X be a space with $t(X) \leq \mathfrak{n}$ and Y be a bounded \mathfrak{n} -compact space for some cardinal \mathfrak{n} . If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact (resp. $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable) and $L(Y) < \mathfrak{a}$, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact (resp. $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable).

(3) Suppose that \mathfrak{a} is a regular cardinal with $\mathfrak{a} \geq \omega_1$. Let X be a separable metric space and Y be a $P(\omega)$ -space. If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact (resp. $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable), then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact (resp. $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable).

1. INTRODUCTION

Throughout this paper, X and Y denote topological spaces and $\mathfrak{a}, \mathfrak{b}, \mathfrak{m}$ and \mathfrak{n} denote infinite cardinal numbers. All spaces are assumed to be topological spaces with no separation axioms and all maps are assumed to be continuous.

In [1], Alexandroff and Urysohn introduced $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness. After that, Hodel and Vaughan [5] investigated the relation between $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness and $[\mathfrak{a}, \mathfrak{b}]$ -compatness and they introduced $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability. Weak $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability was introduced in Worrell and Wicke [9] where it was shown that weakly $[\omega_1, \infty)^r$ -refinable, countable compact space is compact.

In this paper, we shall investigate $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness, $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability and weak $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability.

The cardinality of a set A is denoted by |A|.

Definition 1. A space X is said to be $[\mathfrak{a}, \mathfrak{b}]^r$ -compact if every subset M of X such that $\mathfrak{a} \leq |M| \leq \mathfrak{b}$ and $|M| = \mathfrak{m}$ is a regular cardinal has a complete accumulation point, i.e., a point $p \in X$ such that for every neighborhood O of p, $|O \cap M| = |M|$.

A space X is $[\mathfrak{a}, \infty)^r$ -compact if it is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact for every $\mathfrak{b} \geq \mathfrak{a}$.

Definition 2. A space X is said to be $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable if for every open cover \mathcal{U} of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal, there is a collection $\{\mathcal{V}_{\alpha} : \alpha \in A\}$ of open refinements of \mathcal{U} with $|A| < \mathfrak{m}$ such that for each point $p \in X$, $\operatorname{ord}(p, \mathcal{V}_{\alpha}) < \mathfrak{m}$ for some $\alpha \in A$. Here $\operatorname{ord}(p, \mathcal{V}_{\alpha}) = |\{V : p \in V \in \mathcal{V}_{\alpha}\}|$.

A space X is $[\mathfrak{a}, \infty)^r$ -refinable if it is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable for every $\mathfrak{b} \geq \mathfrak{a}$.

Definition 3. A space X is said to be *weakly* $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable if for every open cover \mathcal{U} of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal, there is an open refinement

²⁰⁰⁰ Mathematics Subject Classification. 54B05, 54B10, 54C10, 54D20.

Key words and phrases. $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

YOSHIFUMI SHIRAYAMA

 $\mathcal{V} = \bigcup_{\alpha \in A} \mathcal{V}_{\alpha}$ of \mathcal{U} with $|A| < \mathfrak{m}$ such that for each point $p \in X$, $0 < \operatorname{ord}(p, \mathcal{V}_{\alpha}) < \mathfrak{m}$ for some $\alpha \in A$.

A space X is weakly $[\mathfrak{a},\infty)^r$ -refinable if it is weakly $[\mathfrak{a},\mathfrak{b}]^r$ -refinable for every $\mathfrak{b} \geq \mathfrak{a}$.

It is clear that $\delta\theta$ -refinable space is $[\omega_1, \infty)^r$ -refinable space, and weakly $\delta\theta$ -refinable space is weakly $[\omega_1, \infty)^r$ -refinable space.

A cardinal is an initial ordinal and an ordinal is the set of its predecessors. Thus, for a subset M of a space X with $|M| = \mathfrak{m}$, we can denote $M = \{x_{\alpha} : \alpha < \mathfrak{m}\}$. Similarly, for a cover \mathcal{U} of X with $|\mathcal{U}| = \mathfrak{m}$, we can denote $\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{m}\}$.

The following theorem plays a fundamental role in the theory of $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness. We shall give this theorem with a proof for the convenience of readers.

Theorem 1. [1] For any space X the following conditions are equivalent.

- (a) X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (b) Every open cover \mathcal{U} of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal has a subcover \mathcal{U}' such that $|\mathcal{U}'| < \mathfrak{m}$.

Proof. (a) \Rightarrow (b). Assume that (a) holds and (b) does not hold. Then there is an open cover \mathcal{U} of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal and \mathcal{U} has no subcover whose cardinality $< \mathfrak{m}$. We can denote $\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{m}\}$. For each $\alpha < \mathfrak{m}$, since $X \setminus \bigcup_{\beta < \alpha} U_{\beta} \neq \emptyset$, we can choose $x_{\alpha} \in X \setminus \bigcup_{\beta < \alpha} U_{\beta}$.

Put $M = \{x_{\alpha} : \alpha < \mathfrak{m}\}$. Then $|M| = \mathfrak{m}$. Since X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, there exists a complete accumulation point p of M.

Choose an $\alpha < \mathfrak{m}$ such that $p \in U_{\alpha}$. Since $x_{\lambda} \in X \setminus \bigcup_{\beta < \lambda} U_{\beta}, x_{\lambda} \notin U_{\alpha}$ for every $\lambda > \alpha$. Thus $|U_{\alpha} \cap M| < \mathfrak{m}$. This contradicts that p is a complete accumulation point of M.

(b) \Rightarrow (a). Assume that (b) holds. Let M be a subset of X such that $\mathfrak{a} \leq |M| \leq \mathfrak{b}$ and $|M| = \mathfrak{m}$ is a regular cardinal. Assume that M has no complete accumulation point. Then, for each $x \in X$, there is a neighborhood O_x of x such that $|O_x \cap M| < \mathfrak{m}$.

We may assume that M is an well-orderd set and put $M = \{x_{\alpha} : \alpha < \mathfrak{m}\}$. For each $\alpha < \mathfrak{m}$, put $U_{\alpha} = \bigcup \{O : O \text{ is an open set of } X \text{ such that } \emptyset \neq O \cap M \subset \{x_{\beta} : \beta \leq \alpha\}\}$. Then $\overline{M} \subset \bigcup \{U_{\alpha} : \alpha < \mathfrak{m}\}$. To show this, let $x \in \overline{M}$. There is a neighborhood O_x of x such that $|O_x \cap M| < \mathfrak{m}$. Thus $O_x \cap M \subset \{x_{\beta} : \beta \leq \alpha\}$ for some $\alpha < \mathfrak{m}$. Since $O_x \cap M \neq \emptyset$, $O_x \subset U_{\alpha}$.

Put $\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{m}\} \cup \{X \smallsetminus \overline{M}\}$. Then \mathcal{U} is an open cover of X and $|\mathcal{U}| = \mathfrak{m}$. By the condition (b), there is a subcover \mathcal{U}' of \mathcal{U} with $|\mathcal{U}'| < \mathfrak{m}$. Then there is a $\lambda < \mathfrak{m}$ such that $\mathcal{U}' = \{U_{\alpha} : \alpha < \lambda\} \cup \{X \smallsetminus \overline{M}\}$. Therefore $M \subset \cup \{U_{\alpha} : \alpha < \lambda\}$. Since $\lambda < \mathfrak{m}$ and $|U_{\alpha} \cap M| < \mathfrak{m}$ for every $\alpha < \lambda$ and \mathfrak{m} is a regular cardinal, $|M| = |\cup_{\alpha < \lambda} U_{\alpha} \cap M| = \sum_{\alpha < \lambda} |U_{\alpha} \cap M| < \mathfrak{m} = |M|$. This is a contradiction.

We use Theorem 1 to prove our results in this note.

2. Countable closed sums and F_{σ} -subsets

A subset F is called an F_{σ} -set of X if F is presented by a countable union of closed subsets of X.

In this section we shall show that $[\mathfrak{a}, \mathfrak{b}]^r$ -compactness, $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability and weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinability are preserved under taking F_{σ} -sets and countable closed sums.

Let \mathfrak{a} be a cardinal with $\mathfrak{a} \geq \omega_1$.

First we shall prove the following.

Theorem 2. Let Y be a closed subset of X.

(1) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.

92

(2) If X is $[\mathfrak{a},\infty)^r$ -compact, then Y is $[\mathfrak{a},\infty)^r$ -compact.

(3) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

(4) If X is $[\mathfrak{a},\infty)^r$ -refinable, then Y is $[\mathfrak{a},\infty)^r$ -refinable.

- (5) If X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If X is weakly $[\mathfrak{a},\infty)^r$ -refinable, then Y is weakly $[\mathfrak{a},\infty)^r$ -refinable.

Proof. (2), (4) and (6) follow from (1), (3) and (5), respectively.

To prove (1), (3) and (5), let \mathcal{U} be an open cover of Y such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal. We can write $\mathcal{U} = \{U_{\lambda} : \lambda < \mathfrak{m}\}$. For each $\lambda < \mathfrak{m}$, let G_{λ} be an open subset of X such that $U_{\lambda} = G_{\lambda} \cap Y$, and put $\mathcal{G} = \{G_{\lambda} : \lambda < \mathfrak{m}\} \cup \{X \setminus Y\}$. Then \mathcal{G} is an open cover of X and $|\mathcal{G}| = \mathfrak{m}$.

(1). Since X is $[\mathfrak{a}, \mathfrak{b}]^r$ -conpact, there is a subcover \mathcal{G}' of \mathcal{G} with $|\mathcal{G}'| < \mathfrak{m}$.

Put $\mathcal{U}' = \{G \cap Y : G \in \mathcal{G}'\}$. Then \mathcal{U}' is a subcover of \mathcal{U} with $|\mathcal{U}'| < \mathfrak{m}$. Hence Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.

(3). Since X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, there is a collection $\{\mathcal{H}_\alpha : \alpha \in A\}$ of open refinements of \mathcal{G} with $|A| < \mathfrak{m}$ such that for each $x \in X$, there is an $\alpha \in A$ such that $\operatorname{ord}(x, \mathcal{H}_\alpha) < \mathfrak{m}$.

Put $\mathcal{V}_{\alpha} = \{H \cap Y : H \in \mathcal{H}_{\alpha}\}$. Then $\{\mathcal{V}_{\alpha} : \alpha \in A\}$ is a collection of open refinements of \mathcal{U} , and for each $y \in Y$ there is an $\alpha \in A$ such that $\operatorname{ord}(y, \mathcal{V}_{\alpha}) < \mathfrak{m}$. Hence X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

(5). Since X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -rifinable, there is an open refinement $\mathcal{H} = \bigcup_{\alpha \in A} \mathcal{H}_{\alpha}$ of \mathcal{G} with $|A| < \mathfrak{m}$ such that for each $x \in X$, there is an $\alpha \in A$ such that $0 < \operatorname{ord}(x, \mathcal{H}_{\alpha}) < \mathfrak{m}$.

Put $\mathcal{V}_{\alpha} = \{H \cap Y : H \in \mathcal{H}_{\alpha}\}$ and $\mathcal{V} = \bigcup_{\alpha \in A} \mathcal{V}_{\alpha}$. Then \mathcal{V} is an open refinement of \mathcal{U} , and for each $y \in Y$, there is an $\alpha \in A$ such that $0 < \operatorname{ord}(y, \mathcal{V}_{\alpha}) < \mathfrak{m}$. Hence Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

Theorem 3. Let X be a space and assume that X is the union of countably many closed subspaces $Y_n, n \in \omega$ of X.

- (1) If each Y_n is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If each Y_n is $[\mathfrak{a}, \infty)^r$ -compact, then X is $[\mathfrak{a}, \infty)^r$ -compact.
- (3) If each Y_n is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If each Y_n is $[\mathfrak{a}, \infty)^r$ -refinable, then X is $[\mathfrak{a}, \infty)^r$ -refinable.
- (5) If each Y_n is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If each Y_n is weakly $[\mathfrak{a}, \infty)^r$ -refinable, then X is weakly $[\mathfrak{a}, \infty)^r$ -refinable.

Proof. (2), (4) and (6) follow from (1), (3) and (5), respectively.

To prove (1), (3) and (5), let \mathcal{U} be an open cover of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal. We can denote $\mathcal{U} = \{U_{\lambda} : \lambda < \mathfrak{m}\}$. For each $n \in \omega$, put $\mathcal{U}_n = \{U_{\lambda} \cap Y_n : \lambda < \mathfrak{m}\}$. Then \mathcal{U}_n is an open cover of Y_n and $|\mathcal{U}_n| = \mathfrak{m}$.

(1). Since Y_n is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact by the assumption, there is a subcover \mathcal{V}_n of \mathcal{U}_n such that $|\mathcal{V}_n| < \mathfrak{m}$.

For each $V \in \mathcal{V}_n$, let us choose an element $U_V \in \mathcal{U}$ such that $V = U_V \cap Y_n$ and put $\mathcal{U}'_n = \{U_V : V \in \mathcal{V}_n\}$. Let $\mathcal{U}' = \bigcup_{n \in \omega} \mathcal{U}'_n$. Then \mathcal{U}' is a subcover of \mathcal{U} such that $|\mathcal{U}'| < \mathfrak{m}$. Hence X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.

(3). Since Y_n is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable by the assumption, there is a collection $\{\mathcal{V}'_{n,\alpha} : \alpha \in A_n\}$ of open refinements of \mathcal{U}_n with $|A_n| < \mathfrak{m}$ such that for each $y \in Y_n$, there is an $\alpha \in A_n$ such that $\operatorname{ord}(y, \mathcal{V}'_{n,\alpha}) < \mathfrak{m}$.

For each $V \in \mathcal{V}'_{n,\alpha}$, let us choose an open subset O_V of X such that $V = O_V \cap Y_n$ and an element $U_V \in \mathcal{U}$ such that $V \subset U_V$ and put $H_V = O_V \cap U_V$. Let $\mathcal{V}_{n,\alpha} = \{H_V : V \in \mathcal{V}'_{n,\alpha}\} \cup \{(X \smallsetminus Y_n) \cap U : U \in \mathcal{U}\}$ and put $B = \bigcup_{n \in \omega} (\{n\} \times A_n)$. Then $|B| < \mathfrak{m}$ and $\{\mathcal{V}_{n,\alpha} : (n,\alpha) \in B\}$

is a collection of open refinements of \mathcal{U} . For each $x \in X$, there is an $n \in \omega$ such that $x \in Y_n$. Let us choose an $\alpha \in A_n$ such that $\operatorname{ord}(x, \mathcal{V}'_{n,\alpha}) < \mathfrak{m}$. Then $(n, \alpha) \in B$ and $\operatorname{ord}(x, \mathcal{V}_{n,\alpha}) < \mathfrak{m}$. Hence X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

(5). Since Y_n is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable by the assumption, there is an open refinement $\mathcal{V}'_n = \bigcup_{\alpha \in A_n} \mathcal{V}'_{n,\alpha}$ of \mathcal{U}_n with $|A_n| < \mathfrak{m}$ such that for each $y \in Y_n$, there is an $\alpha \in A_n$ such that $0 < \operatorname{ord}(y, \mathcal{V}'_{n,\alpha}) < \mathfrak{m}$.

For each $V \in \mathcal{V}'_{n,\alpha}$, let us choose an open subset O_V of X such that $V = O_V \cap Y_n$ and an element $U_V \in \mathcal{U}$ such that $V \subset U_V$, and put $H_V = O_V \cap U_V$. Let $\mathcal{V}_{n,\alpha} = \{H_V : V \in \mathcal{V}'_{n,\alpha}\}$ and put $B = \bigcup_{n \in \omega} (\{n\} \times A_n)$. Then $|B| < \mathfrak{m}$ and $\mathcal{V} = \bigcup_{(n,\alpha) \in B} \mathcal{V}_{n,\alpha}$ is an open refinement of \mathcal{U} . For each $x \in X$, there is an $n \in \omega$ such that $x \in Y_n$. Let us choose an $\alpha \in A_n$ such that $0 < \operatorname{ord}(x, \mathcal{V}'_{n,\alpha}) < \mathfrak{m}$. Then $(n, \alpha) \in B$ and $0 < \operatorname{ord}(x, \mathcal{V}_{n,\alpha}) < \mathfrak{m}$. Hence X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

The following theorem follows from Theorems 2 and 3.

Theorem 4. Let F be an F_{σ} -set of X.

- (1) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then F is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If X is $[\mathfrak{a},\infty)^r$ -compact, then F is $[\mathfrak{a},\infty)^r$ -compact.
- (3) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then F is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If X is $[\mathfrak{a},\infty)^r$ -refinable, then F is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then F is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If X is weakly $[\mathfrak{a},\infty)^r$ -refinable, then F is weakly $[\mathfrak{a},\infty)^r$ -refinable.

3. Mappings

A mapping $f: X \to Y$ is said to be *perfect* if f is a closed mapping with $f^{-1}(y)$ compact for each $y \in Y$.

Theorem 5. Let f be a perfect map from X onto Y.

- (1) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If Y is $[\mathfrak{a},\infty)^r$ -compact, then X is $[\mathfrak{a},\infty)^r$ -compact.
- (3) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If Y is $[\mathfrak{a},\infty)^r$ -refinable, then X is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If Y is weakly $[\mathfrak{a}, \infty)^r$ -refinable, then X is weakly $[\mathfrak{a}, \infty)^r$ -refinable.

Proof. (2), (4) and (6) follow from (1), (3) and (5), respectively.

To prove (1), (3) and (5), let \mathcal{U} be an open cover of X such that $\mathfrak{a} \leq |\mathcal{U}| \leq \mathfrak{b}$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal. Put $\mathcal{U}^{<\omega} = \{\mathcal{W} \subset \mathcal{U} : |\mathcal{W}| < \omega\}$ and $\mathcal{U}^F = \{\cup \mathcal{W} : \mathcal{W} \in \mathcal{U}^{<\omega}\}$. We represent \mathcal{U}^F as $\{U_{\alpha} : \alpha \in A\}$. Then $|A| = \mathfrak{m}$.

For each $\alpha \in A$, put $G_{\alpha} = Y \setminus f(X \setminus U_{\alpha})$. Then $\mathcal{G} = \{G_{\alpha} : \alpha \in A\}$ is an open cover of Y.

(1). Since Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, there is a subcover $\mathcal{G}' = \{G_\beta : \beta \in B\}$ of \mathcal{G} such that $|B| < \mathfrak{m}$. Let $\mathcal{U}^{F'} = \{U_\beta \in \mathcal{U}^F : \beta \in B\}$. Since $f^{-1}(\mathcal{G}')$ is an open cover of X and $f^{-1}(G_\beta) \subset U_\beta$ for each $\beta \in B, \mathcal{U}^{F'}$ is an open cover of X.

For each $\beta \in B$, let us choose an element $\mathcal{W}_{\beta} \in \mathcal{U}^{<\omega}$ such that $U_{\beta} = \bigcup \mathcal{W}_{\beta}$. Put $\mathcal{U}' = \bigcup_{\beta \in B} \mathcal{W}_{\beta}$. Then \mathcal{U}' is a subcover of \mathcal{U} and $|\mathcal{U}'| < \mathfrak{m}$. Hence X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.

(3). Since Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, there is a collection $\{\mathcal{H}_\beta : \beta \in B\}$ of open refinements of \mathcal{G} with $|B| < \mathfrak{m}$ such that for each $y \in Y$, there is a $\beta \in B$ such that $\operatorname{ord}(y, \mathcal{H}_\beta) < \mathfrak{m}$.

For each $H \in \mathcal{H}_{\beta}$, let us choose an $\alpha(H) \in A$ such that $H \subset G_{\alpha(H)}$ and an element $\mathcal{W}_{\alpha(H)} \in \mathcal{U}^{<\omega}$ such that $U_{\alpha(H)} = \bigcup \mathcal{W}_{\alpha(H)}$. Let $\mathcal{V}_{H} = \{f^{-1}(H) \cap U : U \in \mathcal{W}_{\alpha(H)}\}$ and $\mathcal{V}_{\beta} = \bigcup_{H \in \mathcal{H}_{\beta}} \mathcal{V}_{H}$. Since $f^{-1}(\mathcal{H}_{\beta})$ is an open cover of X and $f^{-1}(H) \subset f^{-1}(G_{\alpha(H)}) \subset U_{\alpha(H)}$ for each $H \in \mathcal{H}_{\beta}, \mathcal{V}_{\beta}$ is an open cover of X and a refinement of \mathcal{U} .

Then $\{\mathcal{V}_{\beta} : \beta \in B\}$ is a collection of open refinements of \mathcal{U} . Pick $x \in X$. If y = f(x), there is a $\beta \in B$ such that $\operatorname{ord}(y, \mathcal{H}_{\beta}) < \mathfrak{m}$. Then $\operatorname{ord}(x, \mathcal{V}_{\beta}) < \mathfrak{m}$. Hence X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

(5). Since Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, there is an open refinement $\mathcal{H} = \bigcup_{\beta \in B} \mathcal{H}_{\beta}$ of \mathcal{G} with $|B| < \mathfrak{m}$ such that for each $y \in Y$, there is a $\beta \in B$ such that $0 < \operatorname{ord}(y, \mathcal{H}_{\beta}) < \mathfrak{m}$.

For each $H \in \mathcal{H}_{\beta}$, let us choose an $\alpha(H) \in A$ such that $H \subset G_{\alpha(H)}$ and an element $\mathcal{W}_{\alpha(H)} \in \mathcal{U}^{<\omega}$ such that $U_{\alpha(H)} = \bigcup \mathcal{W}_{\alpha(H)}$. Let $\mathcal{V}_H = \{f^{-1}(H) \cap U : U \in \mathcal{W}_{\alpha(H)}\}$ and $\mathcal{V}_{\beta} = \bigcup_{H \in \mathcal{H}_{\beta}} \mathcal{V}_H$. Let $\mathcal{V} = \bigcup_{\beta \in B} \mathcal{V}_{\beta}$. Since $f^{-1}(\mathcal{H})$ is an open cover of X and $f^{-1}(H) \subset f^{-1}(G_{\alpha(H)}) \subset U_{\alpha(H)}$ for each $H \in \mathcal{H}$, \mathcal{V} is an open cover of X.

Then $\mathcal{V} = \bigcup_{\beta \in B} \mathcal{V}_{\beta}$ is an open refinement of \mathcal{U} with $|B| < \mathfrak{m}$. Pick $x \in X$. If y = f(x), there is a $\beta \in B$ such that $0 < \operatorname{ord}(y, \mathcal{H}_{\beta}) < \mathfrak{m}$. Then $0 < \operatorname{ord}(x, \mathcal{V}_{\beta}) < \mathfrak{m}$. Hence X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

Lemma 1. (GCH) Let \mathfrak{m} , \mathfrak{n} be infinite cardinals. Let \mathfrak{m} be a regular cardinal.

- (i) If $\mathfrak{n} < \mathfrak{m}$, then $\mathfrak{m}^{\mathfrak{n}} = \mathfrak{m}$.
- (ii) If $\mathfrak{a} < \mathfrak{m}$, then $\cup_{\mathfrak{n} < \mathfrak{a}} \mathfrak{m}^{\mathfrak{n}} = \mathfrak{m}$.

Proof. (i) is from [6, p49, Corollary 2], and (ii) follows from (i).

The smallest cardinal \mathfrak{a} such that every open cover of a space X has an open refinement whose cardinality $\leq \mathfrak{a}$ is called *Lindelöf number* of the space X and is denoted by L(X). ([4])

Theorem 6. (GCH) Let f be a closed map from X onto Y and $L(f^{-1}(y)) < \mathfrak{a}$ for each $y \in Y$.

- (1) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If Y is $[\mathfrak{a}, \infty)^r$ -compact, then X is $[\mathfrak{a}, \infty)^r$ -compact.
- (3) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If Y is $[\mathfrak{a},\infty)^r$ -refinable, then X is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If Y is weakly $[\mathfrak{a},\infty)^r$ -refinable, then X is weakly $[\mathfrak{a},\infty)^r$ -refinable.

Proof. We can prove similar to Theorem 5 replacing $\mathcal{U}^{<\omega}$ and \mathcal{U}^F in proof of Theorem 5 by $\mathcal{U}^{<\mathfrak{a}} = \{\mathcal{W} \subset \mathcal{U} : |\mathcal{W}| < \mathfrak{a}\}$ and $\mathcal{U}^{(\mathfrak{a})} = \{\cup \mathcal{W} : \mathcal{W} \in \mathcal{U}^{<\mathfrak{a}}\}$ for an open cover \mathcal{U} of X such that $\mathfrak{a} \leq |\mathcal{U}| (\leq \mathfrak{b})$ and $|\mathcal{U}| = \mathfrak{m}$ is a regular cardinal. If we represent $\mathcal{U}^{(\mathfrak{a})}$ as $\{U_{\alpha} : \alpha \in A\}$, then $|A| = \mathfrak{m}$ by Lemma 1.

4. Product spaces

In this section we assume that every space is a Hausdorff space.

Theorem 7. Let X be a compact space.

- (1) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If Y is $[\mathfrak{a},\infty)^r$ -compact, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -compact.
- (3) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If Y is $[\mathfrak{a},\infty)^r$ -refinable, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then $X \times Y$ is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

YOSHIFUMI SHIRAYAMA

(6) If Y is weakly $[\mathfrak{a},\infty)^r$ -refinable, then $X \times Y$ is weakly $[\mathfrak{a},\infty)^r$ -refinable.

Proof. Let p_Y be the projection map from $X \times Y$ onto Y. Then p_Y is a perfect map. Hence $X \times Y$ is a space which has the same property as that of Y by Theorem 5.

A cardinal number \mathfrak{n} is the *tightness* of a space X if it is the smallest infinite cardinal such that, for every $x \in X$ and subset A of X, if $x \in \overline{A}$, then there exists a subset B of A such that $|B| \leq \mathfrak{n}$ and $x \in \overline{B}$. This cardinal is denoted by t(X). ([4])

A space X is an \mathfrak{n} -bounded space if for every subset M of X with $|M| \leq \mathfrak{n}$, there exists a compact subset C of X such that $M \subset C$.

Lemma 2. [7, Lemma 5] Let X be a space with $t(X) \leq \mathfrak{n}$, and Y be an \mathfrak{n} -bounded space for some cardinal \mathfrak{n} . Let p_X be the projection map from $X \times Y$ onto X. Then p_X is a closed map.

In [7, Lemma 5], Kombarov uses strongly n-compact space instead of n-bounded space.

Lemma 3. Let X be a space with $L(X) < \mathfrak{a}$. Then X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact for every $\mathfrak{b} > \mathfrak{a}$.

This proof is obvious.

Theorem 8. (GCH) Let X be a space with $t(X) \leq \mathfrak{n}$ and Y be an \mathfrak{n} -bounded space for some cardinal \mathfrak{n} .

- (1) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact and $L(Y) < \mathfrak{a}$, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If X is $[\mathfrak{a},\infty)^r$ -compact and $L(Y) < \mathfrak{a}$, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -compact.
- (3) If X is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable and $L(Y) < \mathfrak{a}$, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If X is $[\mathfrak{a},\infty)^r$ -refinable and $L(Y) < \mathfrak{a}$, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If X is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable and $L(Y) < \mathfrak{a}$, then $X \times Y$ is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If X is weakly $[\mathfrak{a},\infty)^r$ -refinable and $L(Y) < \mathfrak{a}$, then $X \times Y$ is weakly $[\mathfrak{a},\infty)^r$ -refinable.

Proof. Let p_X be the projection map from $X \times Y$ onto X. Then p_X is a closed map by Lemma 2. Since for each $x \in X$, $L(p_X^{-1}(x)) = L(\{x\} \times Y) = L(Y) < \mathfrak{a}$, $X \times Y$ is a space which has the same property as that of X by Theorem 6.

Let Ω be a set. Denote $\Omega^n = \{(\alpha_0, \alpha_1, \cdots, \alpha_{n-1}) : \alpha_i \in \Omega, \text{ for each } i = 0, 1, \cdots, n-1\}$ for each $n \in \omega, \, \Omega^{<\omega} = \bigcup_{n \in \omega} \Omega^n$ and $\Omega^{\omega} = \{(\alpha_0, \alpha_1, \cdots, \alpha_n, \cdots) : \alpha_n \in \Omega \text{ for each } n \in \omega\}$. For each $\sigma = (\alpha_0, \alpha_1, \cdots, \alpha_{n-1}) \in \Omega^n$ and $\alpha \in \Omega$, we denote $\sigma \lor \alpha = (\alpha_0, \alpha_1, \cdots, \alpha_{n-1}, \alpha)$. For each $\sigma = (\alpha_0, \alpha_1, \cdots, \alpha_{n-1}, \cdots) \in \Omega^{\omega}$, we denote $\sigma \upharpoonright n = (\alpha_0, \alpha_1, \cdots, \alpha_{n-1})$. It is ovbious that $\sigma \upharpoonright n \in \Omega^n$.

A space X is said to be a *P*-space (resp. $P(\mathfrak{m})$ -space) ([8]) if for any set Ω (resp. with $|\Omega| \leq \mathfrak{m}$) and for any family $\{G(\sigma) : \sigma \in \Omega^{<\omega}\}$ of open sets of X satisfying the following condition:

(P1) $G(\sigma) \subset G(\sigma \lor \alpha)$ for $\sigma \in \Omega^{<\omega}$ and $\alpha \in \Omega$,

there exists a family $\{F(\sigma) : \sigma \in \Omega^{<\omega}\}$ of closed sets of X satisfying the following conditions: (P2) $F(\sigma) \subset G(\sigma)$ for $\sigma \in \Omega^{<\omega}$,

(P3) for any $\sigma \in \Omega^{\omega}$, if $\cup_{n \in \omega} G(\sigma \upharpoonright n) = X$, then $\cup_{n \in \omega} F(\sigma \upharpoonright n) = X$.

The smallest cardinal of a base of a space X is said to be the *weight* of X and is denoted by w(X).

Lemma 4. [3] If X is a metrizable space, then for each $n \in \omega$, there are locally finite open covers \mathcal{H}_n and \mathcal{B}_n of X satisfying the following conditions:

(i) $\mathcal{H}_n = \{H(\sigma) : \sigma \in \Omega^n\}, \mathcal{B}_n = \{B(\sigma) : \sigma \in \Omega^n\} \text{ with } |\mathcal{H}_n| = |\mathcal{B}_n| = w(X),$

(ii) $\overline{B(\sigma)} \subset H(\sigma)$ for each $\sigma \in \Omega^n$,

96

- (iii) $H(\sigma) = \bigcup_{\alpha \in \Omega} H(\sigma \lor \alpha), \ B(\sigma) = \bigcup_{\alpha \in \Omega} B(\sigma \lor \alpha) \text{ for each } \sigma \in \Omega^n,$
- (iv) for each $x \in X$, there is a $\sigma \in \Omega^{\omega}$ such that $\{H(\sigma \upharpoonright n) : n \in \omega\}$ is a local base of xand $\{B(\sigma \upharpoonright n) : n \in \omega\}$ is a local base of x.

The following theorem is due to the suggestion by Prof. K. Chiba.

Theorem 9. Suppose that \mathfrak{a} is a regular cardinal with $\mathfrak{a} \ge \omega_1$. Let X be a separable metric space and Y be a $P(\omega)$ -space.

- (1) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.
- (2) If Y is $[\mathfrak{a},\infty)^r$ -compact, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -compact.
- (3) If Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (4) If Y is $[\mathfrak{a},\infty)^r$ -refinable, then $X \times Y$ is $[\mathfrak{a},\infty)^r$ -refinable.
- (5) If Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable, then $X \times Y$ is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.
- (6) If Y is weakly $[\mathfrak{a},\infty)^r$ -refinable, then $X \times Y$ is weakly $[\mathfrak{a},\infty)^r$ -refinable.

Proof. (2), (4) and (6) follow from (1), (3) and (5), respectively.

To prove (1), (3) and (5), let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of $X \times Y$ with $\mathfrak{a} \leq |\Lambda| \leq \mathfrak{b}$ and $|\Lambda| = \mathfrak{m}$ is a regular cardinal. Since $w(X) = \omega$, there are sequences $\{\mathcal{H}_n : n \in \omega\}$ and $\{\mathcal{B}_n : n \in \omega\}$ of locally finite open covers with $|\Omega| = \omega$ satisfying the conditions in Lemma 4.

For each $\sigma \in \Omega^{<\omega}$ and $\lambda \in \Lambda$, let us define

 $G_{\sigma,\lambda} = \bigcup \{G : G \text{ is an open subset of } Y \text{ such that } H(\sigma) \times G \subset U_{\lambda} \}$. Then $G_{\sigma,\lambda}$ is an open subset of Y and $H(\sigma) \times G_{\sigma,\lambda} \subset U_{\lambda}$. For each $\sigma \in \Omega^{<\omega}$, put $G(\sigma) = \bigcup_{\lambda \in \Lambda} G_{\sigma,\lambda}$.

Let $\sigma \in \Omega^{\omega}$. If $\{H(\sigma \upharpoonright n) : n \in \omega\}$ is a local base of a point x of X, then $\bigcup_{n \in \omega} G(\sigma \upharpoonright n) = Y$. For each $\sigma \in \Omega^{<\omega}$ and each $\alpha \in \Omega$, $G(\sigma) \subset G(\sigma \lor \alpha)$. Since Y is a $P(\omega)$ -space, there is a closed cover $\{F(\sigma) : \sigma \in \Omega^{<\omega}\}$ of Y satisfying the following conditions:

 $(\mathrm{P2}) \ F(\sigma) \subset G(\sigma) \text{ for each } \sigma \in \Omega^{<\omega},$

(P3) for each $\sigma \in \Omega^{\omega}$, if $\bigcup_{n \in \omega} G(\sigma \upharpoonright n) = Y$, then $\bigcup_{n \in \omega} F(\sigma \upharpoonright n) = Y$.

Put $M_n = \{\overline{B(\sigma)} \times F(\sigma) : \sigma \in \Omega^n\}$. Then M_n is a closed set of $X \times Y$ and we have $X \times Y = \bigcup_{n \in \omega} M_n$.

For each $\sigma \in \Omega^{<\omega}$, $\mathcal{G}_{\sigma} = \{G_{\sigma,\lambda} : \lambda \in \Lambda\}$ is a collection of open sets of Y, covers $F(\sigma)$ and $\mathcal{G}'_{\sigma} = \mathcal{G}_{\sigma} \cup \{Y \smallsetminus F(\sigma)\}$ is an open cover of Y and $|\mathcal{G}'_{\sigma}| = \mathfrak{m}$.

(1). Since Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact, there is a subcover \mathcal{G}'_{σ} of \mathcal{G}'_{σ} such that $|\mathcal{G}''_{\sigma}| < \mathfrak{m}$.

Put $\mathcal{O}_{\sigma} = \{G \in \mathcal{G}_{\sigma}'': G \cap F(\sigma) \neq \emptyset\}, \mathcal{V}(\sigma) = \{H(\sigma) \times O: O \in \mathcal{O}_{\sigma}\} \text{ and } \mathcal{V} = \bigcup_{\sigma \in \Omega^{<\omega}} \mathcal{V}(\sigma).$ Then since $|\Omega^{<\omega}| = \omega$ and $|\mathcal{V}(\sigma)| < \mathfrak{m}$ for each $\sigma \in \Omega^{<\omega}$ and \mathfrak{m} is a regular caldinal, we have $|\mathcal{V}| < \mathfrak{m}$. Thus \mathcal{V} is an open cover of $X \times Y$, and is a refinement of \mathcal{U} with $|\mathcal{V}| < \mathfrak{m}$.

For each $V \in \mathcal{V}$, choose an element $U_V \in \mathcal{U}$ such that $V \subset U_V$. Then $\mathcal{U}' = \{U_V : V \in \mathcal{V}\}$ is a subcover of \mathcal{U} with $|\mathcal{U}'| < \mathfrak{m}$. Hence $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -compact.

(3). Since Y is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinble, there is a collection $\{\mathcal{O}'_{\sigma,\alpha} : \alpha \in A_\sigma\}$ of open refinements of \mathcal{G}'_{σ} with $|A_{\sigma}| < \mathfrak{m}$ such that for each $y \in Y$, there is an $\alpha \in A_{\sigma}$ such that $\operatorname{ord}(y, \mathcal{O}'_{\sigma,\alpha}) < \mathfrak{m}$.

Put $\mathcal{O}_{\sigma,\alpha} = \{ O \in \mathcal{O}'_{\sigma,\alpha} : O \cap F(\sigma) \neq \emptyset \}$. Then for each $\alpha \in A_{\sigma}$, $\mathcal{O}_{\sigma,\alpha}$ is a collection of open sets of Y, which covers $F(\sigma)$ and is a partial refinement of \mathcal{G}'_{σ} , such that for each $y \in Y$, there is an $\alpha \in A_{\sigma}$ with $\operatorname{ord}(y, \mathcal{O}_{\sigma,\alpha}) < \mathfrak{m}$ and for each $y \in F(\sigma)$, there is an $\alpha \in A_{\sigma}$ with $0 < \operatorname{ord}(y, \mathcal{O}_{\sigma,\alpha}) < \mathfrak{m}$.

Put $A = \bigcup_{\sigma \in \Omega^{<\omega}} A_{\sigma}$. Then, since $|\Omega^{<\omega}| = \omega$ and $|A_{\sigma}| < \mathfrak{m}$ for each $\sigma \in \Omega^{<\omega}$ and \mathfrak{m} is a regular cardinal, we have $|A| < \mathfrak{m}$. For each $\sigma \in \Omega^{<\omega}$, let us choose $\gamma_{\alpha} \in A_{\sigma}$ and define $\mathcal{O}'_{\sigma,\alpha} = \mathcal{O}'_{\sigma,\gamma_{\alpha}}$ for each $\alpha \in A \smallsetminus A_{\sigma}$. Thus we may assume that $A_{\sigma} = A$ for each $\sigma \in \Omega^{<\omega}$. Define $\Gamma'(n,k) = \{n\} \times \{k\} \times (\Omega^n)^k \times A^k$, $\Gamma(n,k) = \{(n,k,(\sigma_i)_{i < k},(\gamma_i)_{i < k}) \in \mathbb{C}\}$

 $\Gamma'(n,k): \gamma_i \in A_{\sigma_i}, i < k$ and $\Gamma = \bigcup_{n \in \omega} \bigcup_{k \in \omega} \Gamma(n,k)$. Then $|\Gamma| < \mathfrak{m}$. For each $\gamma = (n,k,(\sigma_i)_{i < k},(\gamma_i)_{i < k}) \in \Gamma$, define $\mathcal{V}(\gamma) = \{H(\sigma_i) \times O_i: O_i \in \mathcal{O}_{\sigma_i,\alpha_i}, i < k\} \cup \{H(\sigma) \times G_{\sigma,\lambda}: \sigma \in \Omega^n \setminus \{\sigma_i: i < k\}\} \cup \{(X \times Y \setminus M_n) \cap U_\lambda : \lambda \in \Lambda\}$. Then $\mathcal{V}(\gamma)$ is an open cover of $X \times Y$ and $\mathcal{V}(\gamma)$ is a refinement of \mathcal{U} .

For each $(x, y) \in X \times Y$, there is a $\gamma \in \Gamma$ such that $\operatorname{ord}((x, y), \mathcal{V}(\gamma)) < \mathfrak{m}$. To show this, let $(x, y) \in X \times Y$. Then there is an $n \in \omega$ such that $(x, y) \in M_n$. Since \mathcal{H}_n is locally finite, there is a finite set $\{\sigma_i : i < k\}$ of Ω^n such that $x \in H(\sigma_i)$ and $x \notin H(\sigma)$ if $\sigma \notin \{\sigma_i : i < k\}$. Since $(x, y) \in M_n$, $(x, y) \in H(\sigma) \times F(\sigma)$ for some $\sigma \in \Omega^n$. Without loss of generality, we may assume $\sigma = \sigma_0$. Since $y \in F(\sigma_0)$, there is a $\gamma_0 \in A_{\sigma_0}$ such that $0 < \operatorname{ord}(y, \mathcal{O}_{\sigma_0, \gamma_0}) < \mathfrak{m}$. For each $i = 1, \cdots, k - 1$, there is a $\gamma_i \in A_{\sigma_i}$ such that $\operatorname{ord}(y, \mathcal{O}_{\sigma_i, \gamma_i}) < \mathfrak{m}$. Put $\gamma = (n, k, (\sigma_i)_{i < k}, (\gamma_i)_{i < k})$. Then $\operatorname{ord}((x, y), \mathcal{V}(\gamma)) \leq \sum_{i=0}^{k-1} \operatorname{ord}(y, \mathcal{O}_{\sigma_i, \gamma_i}) < \mathfrak{m}$.

Hence $X \times Y$ is $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

(5). Since Y is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinble, there is an open refinement $\mathcal{O}'_{\sigma} = \bigcup_{\alpha \in A_{\sigma}} \mathcal{O}'_{\sigma,\alpha}$ of \mathcal{G}'_{σ} with $|A_{\sigma}| < \mathfrak{m}$ such that for each $y \in Y$, there is an $\alpha \in A_{\sigma}$ such that $0 < \operatorname{ord}(y, \mathcal{O}'_{\sigma\alpha}) < \mathfrak{m}$.

Put $\mathcal{O}_{\sigma,\alpha} = \{ O \in \mathcal{O}'_{\sigma,\alpha} : O \cap F(\sigma) \neq \emptyset \}$ and $\mathcal{O}_{\sigma} = \bigcup_{\alpha \in A_{\sigma}} \mathcal{O}_{\sigma,\alpha}$. Then \mathcal{O}_{σ} is a collection of open sets of Y, which covers $F(\sigma)$ and is a partial refinement of \mathcal{G}'_{σ} , such that for each $y \in Y$, there is an $\alpha \in A_{\sigma}$ with $0 < \operatorname{ord}(y, \mathcal{O}_{\sigma,\alpha}) < \mathfrak{m}$ and for each $y \in F(\sigma)$, there is an $\alpha \in A_{\sigma}$ with $0 < \operatorname{ord}(y, \mathcal{O}_{\sigma,\alpha}) < \mathfrak{m}$.

Put $A = \bigcup_{\sigma \in \Omega^{<\omega}} (\{\sigma\} \times A_{\sigma}), \mathcal{V}(\sigma, \alpha) = \{H(\sigma) \times O : O \in \mathcal{O}_{\sigma,\alpha}\}$ and $\mathcal{V} = \bigcup_{(\sigma,\alpha) \in A} \mathcal{V}(\sigma, \alpha)$. Then, since $|\Omega^{<\omega}| = \omega$ and $|A_{\sigma}| < \mathfrak{m}$ for each $\sigma \in \Omega^{<\omega}$ and \mathfrak{m} is a regular cardinal, we have $|A| < \mathfrak{m}$. Thus \mathcal{V} is an open cover of $X \times Y$ and is a refinement of \mathcal{U} with $|A| < \mathfrak{m}$.

Let $(x, y) \in X \times Y$. Then $(x, y) \in H(\sigma) \times F(\sigma)$ for some $\sigma \in \Omega^{<\omega}$. Then, there is an $\alpha \in A_{\sigma}$ such that $0 < \operatorname{ord}(y, \mathcal{O}_{\sigma, \alpha}) < \mathfrak{m}$. It is easy to see that $0 < \operatorname{ord}((x, y), \mathcal{V}(\sigma, \alpha)) < \mathfrak{m}$. Hence $X \times Y$ is weakly $[\mathfrak{a}, \mathfrak{b}]^r$ -refinable.

Acknowledgement. The author is grateful to Prof. K. Chiba for her valuable comments and suggestions.

References

- P. S. Alexandorff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Koninkl. Akad. Wetensch. Amsterdam., 14 (1929) 1-39.
- [2] D. K. Burke, Covering Properties, Handbook of Set Theoretic Topology, chapter 9, K. Kunen and J. Vaughan, editors, Horth-Holland, Amsterdam (1984), 347-422.
- [3] K. Chiba and Y. Shirayama, $\delta\theta$ -refinability of product spaces, to appear in Sci. Math. Japonicae.
- [4] R. Engelking, General Topology, Polish Scientific publishers, Warszawa (1988).
- [5] R. E. Hodel and J. E. Vaughan, A note on [a, b]-compactness, Gen. Top. and its Appli., 4 (1974), 179-189.
- [6] T. Jech, Set Theory, Academic Press, New York, San Francisco, London, (1978)
- [7] A. P. Kombarov, On the product of normal spaces, Uniformities on Σ-products, Soviet Math. Dokl. 13 (1972), 1068-1071.
- [8] K. Morita, Products of nomal spaces with metric spaces, Math. Ann., 154 (1964), 365-382.
- [9] J. M. Worrell and H. H. Wicke, A covering property which implies isocompactness I, Proc. Amer. Math. Soc., (1979), 331-334.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, OHYA 836, SURUGA-KU, SHIZUOKA, 422-8529 JAPAN

E-mail address: r5444012@ipc.shizuoka.ac.jp