INTUITIONISTIC FUZZY SETS IN SEMIGROUPS

MEHMET ALI ÖZTÜRK, YILMAZ ÇEVEN AND YOUNG BAE JUN*

Received November 15, 2006

ABSTRACT. Further properties of intuitionistic fuzzy setting of several ideals of a semigroup are discussed.

1. INTRODUCTION.

After the introduction of fuzzy sets by Zadeh [10], several researchers were conducted on the generalizations of the notion of fuzzy set. The concept of intuitionistic fuzzy set was introduced by Atanassov [1, 2] as a generalization of the notion of fuzzy set. In [7], Kuroki gave some properties of fuzzy ideals and fuzzy bi-ideals in semigroups. In [6, 5], Kim and Jun considered the intuitionistic fuzzification of the concept of several ideals in a semigroup, and investigated some properties of such ideals. In this paper, we discuss further properties of intuitionistic fuzzy setting of several ideals in a semigroup.

2. Preliminaries

Let G be a semigroup. By a subsemigroup of G we mean a non-empty subset U of G such that $U^2 \subseteq U$, and by a left (right) ideal of G we mean a non-empty subset U of G such that $GU \subseteq U$ ($UG \subseteq U$). By two-sided ideal or simply ideal, we mean a non-empty subset of G which is both a left and a right ideal of G. A subsemigroup U of a semigroup G is called a bi-ideal of G if $UGU \subseteq U$. A semigroup G is said to be right (resp. left) zero if xy = y (resp. xy = x) for all $x, y \in G$. A semigroup G is said to be regular if, for each element $a \in G$, there exists an element x in G such that a = axa. A semigroup G is said to be left (resp. right) simple if G itself is the only left (resp. right) ideal of G.

After the introduction of fuzzy sets by Zadeh [10], several researces were conducted on the generalizations of the notion of fuzzy set. The concept of intuitionistic fuzzy set was introduced by Atanassov [1, 2], as a generalization of the notion of fuzzy set. An intuitionistic fuzzy set (briefly, IFS) A in a non-empty set X is an object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$$

where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \le \mu_A(x) + \gamma_A(x) \le 1$$

for all $x \in X$. An intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$ in X can be identified to an ordered pair (μ_A, γ_A) in $I^X \times I^X$, where I = [0, 1]. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$.

²⁰⁰⁰ Mathematics Subject Classification. 20M12, 03E72, 03F55.

Key words and phrases. intuitionistic fuzzy (interior, bi-) ideal, intuitionistic fuzzy left simple semigroup. *Corresponding author. Tel.: +82 55 751 5674.

3. INTUITIONISTIC FUZZY IDEALS

In what follows, let G be a semigroup unless otherwise specified.

Definition 3.1. [6] For an IFS $A = (\mu_A, \gamma_A)$ in G, consider the following axioms: (S1) $(\forall x, y \in G) \ (\mu_A(xy) \ge \min\{\mu_A(x), \ \mu_A(y)\}),$

(S2) $(\forall x, y \in G)$ $(\gamma_A(xy) \leq \max\{\gamma_A(x), \gamma_A(y)\}).$

Then $A = (\mu_A, \gamma_A)$ is called a first (resp. second) intuitionistic fuzzy subsemigroup (IFSS₁ (resp. IFSS₂)) of G if it satisfies (S1) (resp. (S2)). A first and second intuitionistic fuzzy subsemigroup $A = (\mu_A, \gamma_A)$ is called an *intuitionistic fuzzy subsemigroup* (IFSS) of G.

Theorem 3.2. If U is a subsemigroup of G, then the IFS $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFSS of G.

Proof. Let $x, y \in G$. If $x, y \in U$, then $xy \in U$ since U is a subsemigroup of G. Hence

 $\chi_U(xy) = 1 \ge \min\{\chi_U(x), \chi_U(y)\}$

and

$$\begin{aligned} \bar{\chi}_U(xy) &= 1 - \chi_U(xy) \le 1 - \min\{\chi_U(x), \, \chi_U(y)\} \\ &= \max\{1 - \chi_U(x), \, 1 - \chi_U(y)\} = \max\{\bar{\chi}_U(x), \, \bar{\chi}_U(y)\} \end{aligned}$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus

$$\chi_U(xy) \ge 0 = \min\{\chi_U(x), \, \chi_U(y)\}$$

and

$$\max\{\bar{\chi}_U(x), \, \bar{\chi}_U(y)\} = \max\{1 - \chi_U(x), \, 1 - \chi_U(y)\}\$$

= 1 - min{ $\chi_U(x), \, \chi_U(y)$ } = 1 $\geq \bar{\chi}_U(xy).$

Therefore $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFSS* of *G*.

Theorem 3.3. Let U be a nonempty subset of G. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFSS₁ or IFSS₂ of G, then U is a subsemigroup of G.

Proof. Assume that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFSS_1$ of G. Let $x \in U^2$. Then x = ab for some $a, b \in U$. It follows from (S1) that

$$\chi_U(x) = \chi_U(ab) \ge \min\{\chi_U(a), \, \chi_U(b)\} = 1$$

so that $\chi_U(x) = 1$, i.e., $x \in U$. Hence U is a subsemigroup of G. Now suppose that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFSS_2$ of G. Let $x \in U^2$. Then x = ab for some $a, b \in U$. Using (S2), we have

$$\bar{\chi}_U(x) = \bar{\chi}_U(ab) \le \max\{\bar{\chi}_U(a), \, \bar{\chi}_U(b)\} \\ = \max\{1 - \chi_U(a), \, 1 - \chi_U(b)\} = 0,$$

and thus $1 - \chi_U(x) = \bar{\chi}_U(x) = 0$, i.e., $\chi_U(x) = 1$. This shows that $x \in U$, completing the proof.

Definition 3.4. [6] For an IFS $A = (\mu_A, \gamma_A)$ in G, consider the following axioms:

(I1) $(\forall x, y \in G) (\mu_A(xy) \ge \mu_A(y)),$

(I2)
$$(\forall x, y \in G) (\gamma_A(xy) \leq \gamma_A(y))$$

Then $A = (\mu_A, \gamma_A)$ is called a first (resp. second) intuitionistic fuzzy left ideal (IFLI₁ (resp. IFLI₂)) of G if it satisfies (I1) (resp. (I2)). A first and second intuitionistic fuzzy left ideal $A = (\mu_A, \gamma_A)$ is called an *intuitionistic fuzzy left ideal* (IFLI) of G. An intuitionistic fuzzy right ideal (IFRI) of G is defined in an analogous way. Both an IFLI and an IFRI is called an *intuitionistic fuzzy ideal* (IFI).

Proposition 3.5. Let U be a left zero subsemigroup of G. If $A = (\mu_A, \gamma_A)$ is an IFLI of G, then A(x) = A(y) for all $x, y \in U$, that is, the restriction function of A into U is constant.

Proof. Let $x, y \in U$. Then xy = x and yx = y. Thus

$$\mu_A(x) = \mu_A(xy) \ge \mu_A(y) = \mu_A(yx) \ge \mu_A(x)$$

and

$$\gamma_A(x) = \gamma_A(xy) \le \gamma_A(y) = \gamma_A(yx) \le \gamma_A(x).$$

Hence A(x) = A(y).

Lemma 3.6. If U is a left ideal of G, then $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFLI of G.

Proof. Let $x, y \in G$. If $y \in U$, then $xy \in U$. Hence $\chi_U(xy) = 1 = \chi_U(y)$ and $\bar{\chi}_U(xy) = 1 - \chi_U(xy) = 0 = 1 - \chi_U(y) = \bar{\chi}_U(y)$. If $y \notin U$, then $\chi_U(xy) \ge 0 = \chi_U(y)$ and $\bar{\chi}_U(y) = 1 - \chi_U(y) = 1 \ge \bar{\chi}_U(xy)$. Therefore $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFLI* of *G*.

Theorem 3.7. Let $A = (\mu_A, \gamma_A)$ be an IFLI of G. If the set of all idempotent elements of G forms a left zero subsemigroup of G, then A(u) = A(v) for all idempotent elements u and v of G.

Proof. Let E_G be the set of all idempotent elements of G and assume that E_G is a left zero subsemigroup of G. For any $u, v \in E_G$, we have uv = u and vu = v, and so

$$\mu_A(u) = \mu_A(uv) \ge \mu_A(v) = \mu_A(vu) \ge \mu_A(u)$$

and

$$\gamma_A(u) = \gamma_A(uv) \le \gamma_A(v) = \gamma_A(vu) \le \gamma_A(u).$$

This means that A(u) = A(v) for all $u, v \in E_G$.

Theorem 3.8. Let G be a regular semigroup. If, for every subset U of G, $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFLI₁ (or, IFLI₂) of G, then E_G , the set of all idempotent elements of G, is a left zero subsemigroup of G.

Proof. Note that $E_G \neq \emptyset$ since G is regular, and obviously E_G is a subsemigroup of G. Let $u, v \in E_G$. Since G is regular, L[u] = Gu which is a left ideal of G (see [3, Lemma 2.13]). Hence $\widetilde{L[u]} = (\chi_{L[u]}, \overline{\chi}_{L[u]})$ is an $IFLI_1$ (or, $IFLI_2$) of G by Lemma 3.6. Thus $\chi_{L[u]}(v) = \chi_{L[v]}(u) = 1$ (or, $\overline{\chi}_{L[u]}(v) = \overline{\chi}_{L[v]}(u) = 0$). It follows that $v \in L[u] = Gu$ so that v = xu = xuu = vu for some $x \in G$. This means that E_G is a left zero subsemigroup of G.

Definition 3.9. [5] For an IFS $A = (\mu_A, \gamma_A)$ in G, consider the following axioms:

- (I3) $(\forall a, x, y \in G) (\mu_A(xay) \ge \mu_A(a)),$
- (I4) $(\forall a, x, y \in G) (\gamma_A(xay) \le \gamma_A(a)).$

Then $A = (\mu_A, \gamma_A)$ is called a first (resp. second) fuzzy intuitionistic fuzzy interior ideal $(IFII_1 \text{ (resp. } IFII_2))$ of G if it is an $IFSS_1 \text{ (resp. } IFSS_2)$ satisfying the condition (I3) (resp. (I4)). If $A = (\mu_A, \gamma_A)$ is both an $IFII_1$ and an $IFII_2$, we say that it is an intuitionistic fuzzy interior ideal (IFII) of G.

It is clear that every *IFI* is an *IFII*.

Theorem 3.10. If G is regular, then every IFII is an IFI.

Proof. Let $A = (\mu_A, \gamma_A)$ be an *IFII* of *G*. Let *a* and *b* be any elements of *G*. Then there exists *x* and *y* in *G* such that a = axa and b = byb. Thus

$$\mu_A(ab) = \mu_A((axa)b) = \mu_A((ax)(ab)) \ge \mu_A(a)$$

and

$$\gamma_A(ab) = \gamma_A((axa)b) = \gamma_A((ax)(ab)) \le \mu_A(a).$$

This shows that $A = (\mu_A, \gamma_A)$ is an *IFLI* of *G*. Similarly, we can see that $A = (\mu_A, \gamma_A)$ is an *IFRI* of *G*, completing the proof.

Theorem 3.11. If U is an interior ideal of G, then the IFS $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFII of G.

Proof. Let a, x and y be any elements of G. If $a \in U$, then $xay \in GUG \subseteq U$ and so $\chi_U(xay) = 1 = \chi_U(a)$ and

$$\bar{\chi}_U(xay) = 1 - \chi_U(xay) = 1 - 1 = 0 = 1 - \chi_U(a) = \bar{\chi}_U(a).$$

Since $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFSS* of *G* by Theorem 3.2, we conclude that $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFII* of *G*.

Theorem 3.12. Suppose that G is regular and let U be a nonempty subset of G. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFII₁ or IFII₂ of G, then U is an interior ideal of G.

Proof. Let $z \in GUG$. Then z = xay for some $x, y \in G$ and $a \in U$. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFII_1$ of G, then $\chi_U(z) = \chi_U(xay) \ge \chi_U(a) = 1$, and so $\chi_U(z) = 1$, that is, $z \in U$. If $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an $IFII_2$ of G, then

$$\bar{\chi}_U(z) = \bar{\chi}_U(xay) \le \bar{\chi}_U(a) = 1 - \chi_U(a) = 0,$$

which implies that $1 - \chi_U(z) = \overline{\chi}_U(z) = 0$. Hence $\chi_U(z) = 1$, that is, $z \in U$. This completes the proof.

Definition 3.13. A semigroup G is said to be *first* (resp. *second*) *intuitionistic fuzzy left* simple if every $IFLI_1$ (resp. $IFLI_2$) of G is a constant function. A semigroup G is said to be *intuitionistic fuzzy left simple* if it is first and second intuitionistic fuzzy left simple, i.e., every IFLI of G is constant.

Theorem 3.14. If G is left simple, then G is intuitionistic fuzzy left simple.

Proof. Let $A = (\mu_A, \gamma_A)$ be an *IFLI* of G and let $a, b \in G$. Since G is left simple, it follows from [3, p. 6] that there exist elements x and y in G such that b = xa and a = yb. Using (I1) and (I2), we have

$$\mu_A(a) = \mu_A(yb) \ge \mu_A(b) = \mu_A(xa) = \mu_A(a)$$

and

$$\gamma_A(a) = \gamma_A(yb) \le \gamma_A(b) = \gamma_A(xa) = \gamma_A(a),$$

and so $\mu_A(a) = \mu_A(b)$ and $\gamma_A(a) = \gamma_A(b)$. Thus A(a) = A(b), which means A is a constant function because a and b are any elements of G. Therefore G is intuitionistic fuzzy left simple.

Theorem 3.15. If G is first (or second) intuitionistic fuzzy left simple, then G is left simple.

Proof. Let U be a left ideal of G. Assume that G is first (or, second) intuitionistic fuzzy left simple. Since $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFLI* of G by Lemma 3.6, χ_U (or, $\bar{\chi}_U$) is a constant function. Since U is nonempty, it follows that $\chi_U = \mathbf{1}$ (or, $\bar{\chi}_U = \mathbf{0}$), where $\mathbf{1}$ and $\mathbf{0}$ are fuzzy sets in G given by $\mathbf{1}(x) = 1$ and $\mathbf{0}(x) = 0$ for all $x \in G$, respectively. Thus every element of G is in U, and so G is left simple.

Theorem 3.16. If G is simple, then every IFII of G is constant.

Proof. Let $A = (\mu_A, \gamma_A)$ be an *IFII* of G, and a and b any elements of G. Since G is simple, it follows from [9, I.3.9] that there exist elements x and y in G such that a = xby. Since $A = (\mu_A, \gamma_A)$ is an *IFII* of G, we have $\mu_A(a) = \mu_A(xby) \ge \mu_A(b)$ and $\gamma_A(a) = \gamma_A(xby) \le \gamma_A(b)$. It can be seen in a similar way that $\mu_A(b) \ge \mu_A(a)$ and $\gamma_A(b) \le \gamma_A(a)$. Since a and b are arbitrary elements, this means that $A = (\mu_A, \gamma_A)$ is a constant function.

Definition 3.17. [6] An *IFSS* $A = (\mu_A, \gamma_A)$ of *G* is called an *intuitionistic fuzzy bi-ideal* (*IFBI*) of *G* if

- (I5) $(\forall w, x, y \in G) (\mu_A(xwy) \ge \min\{\mu_A(x), \mu_A(y)\}),$
- (I6) $(\forall w, x, y \in G) (\gamma_A(xwy) \le \max\{\gamma_A(x), \gamma_A(y)\}).$

Note that every IFLI (resp. IFRI) of G is an IFBI of G (see [6]).

Theorem 3.18. If G is left simple, then every IFBI of G is an IFRI of G.

Proof. Let $A = (\mu_A, \gamma_A)$ be an *IFBI* of *G*, and *a* and *b* any elements of *G*. Since *G* is left simple, there exists $x \in G$ such that b = xa. Since $A = (\mu_A, \gamma_A)$ is an *IFBI* of *G*, it follows that

$$\mu_A(ab) = \mu_A(axa) \ge \min\{\mu_A(a), \mu_A(a)\} = \mu_A(a)$$

and

$$\gamma_A(ab) = \gamma_A(axa) \le \max\{\gamma_A(a), \gamma_A(a)\} = \gamma_A(a)$$

so that $A = (\mu_A, \gamma_A)$ is an *IFRI* of *G*.

Lemma 3.19. If U is a bi-ideal of G, then the IFS $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an IFBI of G.

Proof. Let $w, x, y \in G$. If $x, y \in U$, then $xwy \in UGU \subseteq U$, and so

$$\chi_U(xwy) = 1 = \min\{\chi_U(x), \, \chi_U(y)\}$$

and

$$\bar{\chi}_U(xwy) = 1 - \chi_U(xwy) = 0 = \max\{\bar{\chi}_U(x), \bar{\chi}_U(y)\}.$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Hence

$$\chi_U(xwy) \ge 0 = \min\{\chi_U(x), \, \chi_U(y)\}$$

and

 $\bar{\chi}_U(xwy) \le 1 = \max\{\bar{\chi}_U(x), \, \bar{\chi}_U(y)\}.$

Therefore $\tilde{U} = (\chi_U, \bar{\chi}_U)$ is an *IFBI* of *G*.

Theorem 3.20. Let G be a regular semigroup. For every IFBI $A = (\mu_A, \gamma_A)$ of G, if $\mu_A(u) = \mu_A(v)$ (or, $\gamma_A(u) = \gamma_A(v)$) for all idempotents u and v of G, then G is a group.

Proof. Assume that $\mu_A(u) = \mu_A(v)$ (or, $\gamma_A(u) = \gamma_A(v)$) for all idempotents u and v of G. Denote by B[x] the principle bi-ideal of G generated by x in G, that is, $B[x] = \{x\} \cup \{x^2\} \cup xGx$. Since G is regular, it follows that B[x] = xGx. Using Lemma 3.19, $\overline{B[v]} = (\chi_{B[v]}, \overline{\chi}_{B[v]})$ is an *IFBI* of G. Since $v \in B[v]$, we have $\chi_{B[v]}(u) = \chi_{B[v]}(v) = 1$ (or, $\overline{\chi}_{B[v]}(u) = 1 - \chi_{B[v]}(u) = 0$), and so $u \in B[v] = vGv$. Hence u = vxv for some $x \in G$. It can be obtained in a similar way that v = uyu for some $y \in G$. Therefore

$$u = vxv = vxvv = uv = uuyu = uyu = v$$
,

which means that, since G is regular, E_G is nonempty and G contains exactly one idempotent. It follows from [3, p.33] that G is a group.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1986), 87–96.
- [2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy sets and Systems 61 (1994), 137–142.
- [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups Vol. I, American Math. Soc., Providence, RI, 1961.
- [4] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum, 65 (2002), 128– 132.
- [5] K. H. Kim and Y. B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Internat. J. Math. Math. Sci. 27(5) (2001), 261–267.
- [6] K. H. Kim and Y. B. Jun, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33(4) (2002), 443–449.
- [7] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), 203-215.
- [8] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982), 71–79.
- [9] M. Petrich, Introduction to Semigroups, Merril, Columbus, OH, 1973.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

M. A. ÖZTÜRK AND Y. ÇEVEN DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCES CUMHURIYET UNIVERSITY 58140 SIVAS, TURKEY *E-mail : maozturk@cumhuriyet.edu.tr E-mail : yceven@cumhuriyet.edu.tr*

Y. B. JUN DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS) GYEONGSANG NATIONAL UNIVERSITY CHINJU 660-701, KOREA *E-mail : skywine@gmail.com*