
Scientiae Mathematicae Japonicae Online, e-2007, 23–36 23
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Abstract. We study conditions on a topological space that guarantee that its product
with every Lindelöf space is Lindelöf. The main tool is a condition discovered by K.
Alster and we call spaces satisfying his condition Alster spaces. We also study some
variations on scattered spaces that are relevant for this question.

1 Introduction. It is well known that a product of two Lindelöf spaces need not be
Lindelöf. On the other hand, many spaces are known whose product with every Lindelöf
space is Lindelöf. Let us call such a space productively Lindelöf.

K. Alster, [Alster (1988)], discovered (and we rediscovered, [Barr, Kennison, & Raphael
(2006), Section 4] and called amply Lindelöf ) a property which we will here call Alster’s
condition that is sufficient—and possibly necessary—for a space to be productively Lin-
delöf . Our formulation of Alster’s condition follows. It looks rather different from Alster’s
but the two are readily shown to be equivalent.

Definition 1. A space satisfies Alster’s condition if every cover by Gδ sets that covers each
compact set finitely contains a countable subcover. A space that satisfies this condition will
be called an Alster space.

The point about covering each compact set finitely is crucial. In the space of real
numbers, every point is a Gδ but the cover by points has no proper subcover. But the reals
are σ-compact and it is obvious that every σ-compact space is an Alster space. It is a trivial
observation that if a space has the property that every compact set is a Gδ (this is the case
in any metric space), then it is Alster if and only if it is σ-compact.

Alster proves, assuming CH, that a space of weight of at most ℵ1 is productively Lindelöf
if and only if it is Alster. However, it is quite evident in his paper that the “if” direction uses
neither CH nor the weight condition; thus he showed that his condition implies productively
Lindelöf . Neither he nor any of us is aware of any productively Lindelöf space that is not
Alster, no matter the weight or set theory.

A somewhat different proof that Alster implies productively Lindelöf is found in [Barr,
Kennison, & Raphael (2006), Theorem 4.5] where it is also shown that the product of two
Alster spaces is Alster.

Oddly, despite interest in the question of productively Lindelöf, Alster’s paper does not
seem to be widely known. We have found only two citations, one by Alster himself and one
in a paper that is widely unavailable (and we have not been able to see).

The paper [Telgarsky, 1971] studies C-scattered spaces in some detail (see Section 5 for
the definition). One result we will be showing is that Lindelöf C-scattered spaces (and some
more general ones) satisfy Alster’s condition and therefore are productively Lindelöf.
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2 Definitions and basic properties. All spaces considered here are completely regular
and Hausdorff. We denote by C(X) the ring of continuous real-valued functions on the
space X .

We will be dealing with covers by Gδ sets. Since a finite union of Gδ sets is again a Gδ

set, we can, and often will, suppose that the covers are closed under finite unions.
We recall that a continuous map θ : X → Y is called perfect if it closed and if θ−1(y)

is compact for all y ∈ Y . It can be shown that whenever B ⊆ Y is compact, θ−1(B) is also
compact. It is not always assumed that a perfect map is continuous, but we will suppose
that it is. The inclusion map of a subspace is perfect if and only if the subspace is closed.

We also recall from [Barr, Kennison, & Raphael (2006), 2.2] that any θ : X → Y induces
three maps on subsets, the direct image also denoted θ : P (X) → P (Y ), the inverse image
θ−1 : P (Y ) → P (X) and the universal image θ# : P (X) → P (Y ). These are characterized
by the fact that if A ⊆ X and B ⊆ Y , then θ(A) ⊆ B if and only if A ⊆ θ−1(B) and
θ−1(B) ⊆ A if and only if B ⊆ θ#(A). Since θ#(A) = Y − θ(X −A), we see that when θ is
closed, θ# takes open sets to open sets.

We also recall that if X is a space, a point p ∈ X is called a P-point if for any f ∈ C(X),
the set {q ∈ X | f(q) = f(p)} is a neighbourhood of p. A P-space is a space in which every
point is a P-point. It is immediate that P -spaces are characterized by the fact that Gδ sets
are open.

A not-necessarily-open cover of a space is called ample if it covers every compact set
finitely. We will say that a point p ∈ X satisfies the open refinement condition (ORC)
if every ample Gδ cover that is closed under finite union contains a neighbourhood of p. If
p is a P-point, it satisfies the ORC because one element of the cover contains p and a Gδ

that contains p is a neighbourhood of p. If p has a compact neighbourhood A then some
member of the cover contains A and hence is a neighbourhood. Thus this condition is a
common generalization of being a P-point and having a compact neighbourhood. We will
say that a space satisfies the ORC or that it is an ORC space if every point satisfies
the ORC. This is a common generalization of P-spaces and locally compact spaces. We
will see that the class of ORC spaces is closed under finite products and closed subspaces
and hence gives a much broader class than simply the union of the P-spaces and the locally
compact spaces.

One of the main results of this paper is that Lindelöf ORC-scattered spaces (defined in
Section 5) are Alster (see 25).

Theorem 2. Of the following properties on a space:

1. discrete

2. P-space;

3. locally compact;

4. ORC;

5. Alster;

6. productively Lindelöf.

1 implies 2 and 3, each of which implies 4. Condition 4 for Lindelöf spaces implies 5
and 5 implies 6.

Proof. We have already discussed the facts that 2 and 3 imply 4. It is clear that, for Lindelöf
spaces, 4 implies 5 and Alster showed that 5 implies 6 (see also [Barr, Kennison, & Raphael
(2006), Theorem 4.5]).
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The space of rational numbers gives an example that is Alster but not ORC, since the
cover by compact sets is an ample Gδ cover and every compact subset of the space is nowhere
dense.

3 Permanence properties. A Gδ cover of a space is a cover by Gδ sets. We will say
that a cover U of a space is closed under finite unions if U, V ∈ U implies that U ∪V ∈ U.
We will say that U is a Gδ ideal if it is closed under finite unions and if, whenever V is a
Gδ subset of U and U ∈ U, then also V ∈ U. It is easy to see that a union of finitely many
Gδ sets is a Gδ set so that the finite union closure and the Gδ ideal closure of a Gδ cover is
also a Gδ cover. Moreover, the original cover has a countable refinement if and only if each
of the finite union closure and the Gδ ideal closure does.

By substituting open for Gδ in the preceding paragraph, we can say that an open cover
is finite union closed or an open ideal.

Theorem 3. The product of two ORC spaces is an ORC space.

We use several lemmas.

Lemma 4. Let X and Y be spaces and W be an ample Gδ cover of X × Y . Then for any
compact sets A ⊆ X and B ⊆ Y , and any W ∈ W such that A×B ⊆ W , there are Gδ sets
U ⊆ X and V ⊆ Y with A × B ⊆ U × V ⊆ W .

Proof. Let W =
⋂

n∈N Wn with each Wn open. According to [Kelley (1955), Theorem 5.12]
there are, for each n ∈ N open sets Un ⊆ X and Vn ∈ Y with A × B ⊆ Un × Vn ⊆ Wn. If
we let U =

⋂
Un and V =

⋂
Vn, then U and V are Gδ sets.

Lemma 5. Let X and Y be spaces with X being ORC. Let W be an ample Gδ ideal cover
of X × Y . Then for any compact set B ⊆ Y , there is an open ideal cover U(B) of X with
the property that whenever U ∈ U(B) there is a Gδ set V ⊆ Y with B ⊆ V and U ×V ∈ W .

Proof. Let U′(B) denote the set of all Gδ sets U ⊆ X for which there is a Gδ set V ⊇ B
with U × V ∈ W . If U1, U2 ∈ U′(B) there are Gδ sets V1, V2 containing B such that
Ui × Vi ∈ W for i = 1, 2. But then B ⊆ V1 ∩ V2 and

(U1 ∪ U2) × (V1 ∩ V2) ⊆ (U1 × V1) ∪ (U2 × V2) ∈ W

It is trivial to see that U′(B) is closed under Gδ subsets and hence is a Gδ ideal. Finally,
if A ⊆ X is compact, the ampleness of W implies that there is some W ∈ W that contains
A × B and the preceding lemma gives Gδ sets U and V with A × B ⊆ U × V ⊆ W . Thus
U ∈ U′(B). This shows that U′(B) is an ample Gδ ideal cover of X . The set U(B) of open
sets in U′(B) is the required open ideal cover.

Lemma 6. If, in addition to the hypotheses of the preceding lemma, Y is also an ORC
space, then for each compact A ∈ X, there is an open cover V (A) of Y such that for each
V ∈ V (A) there is an open set U ⊆ X such that A ⊆ U and U × V ∈ W .

Proof. Let V ′(A) denote the set of all Gδ sets V ⊆ Y for which there is an open set U ⊆ X
that contains A and for which U × V ∈ W . To show that V ′(A) is ample, let B ∈ Y
be compact. According to the preceding lemma, there is an open ideal cover U(B) of X
with the property that for all U ∈ U(B) there is a Gδ set V ⊆ Y such that B ⊆ V and
U × V ∈ W . Since U(B) is an open ideal cover, there is a U ∈ U(B) with A ⊆ U and
this shows that V ∈ V ′(A). The fact that V ′(A) is an ideal cover follows exactly as in the
preceding lemma. The set V (A) of open sets in V ′(A) is the required cover.
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Proof of Theorem 3. Let W be an ample Gδ ideal cover of X ×Y . Given any point (x, y) ∈
X × Y , let V be an element of V ({x}) that contains y. By definition, there is an open set
U ⊆ X with x ∈ U such that (x, y) ∈ U ×V ∈ W . Thus the open sets in W cover X ×Y .

The table of permanence properties below has one row labeled “Local”. A property of
spaces is local provided a space has the property if and only if every neighbourhood of
every point contains a neighbourhood that has the property. The properties here are all
closed under formation of closed subspaces and the closed subspaces are a neighbourhood
base, so that to verify that a property is local, we need assume only that each point has
some neighbourhood with that property.

Theorem 7. The following table expresses the permanence of these properties. In this
table, D means discrete, P means P-space, LC means locally compact, A means Alster, and
PL means productively Lindelöf. A + sign indicates the property is preserved, while a −
sign means it is not necessarily preserved.

D P LC ORC A PL
Finite products + + + + + +
Perfect preimage ∗ ∗ + + + +
Closed subspaces + + + + + +
Continuous image − − − − + +
Local + + + + ∗∗ ∗∗
Quotient + + − − + +
Open image + + + + + +
Perfect image + + + + + +
* Preserved, provided the inverse image of each point is finite.
** Yes, provided the total space is Lindelöf.

Proof. We will verify only the positive properties here as the negative ones are not used
in this paper and examples are mostly easy. See 6.3 to see that local compactness and
satisfaction of ORC do not pass to quotients. Certain properties follow from others and will
not be mentioned explicitly: a closed subspace is a perfect preimage and both open images
and closed images are quotients while quotients are continuous images. We will take each
class of spaces in turn.

Discrete: Obvious.

P-space: See [Gillman & Jerison (1960), 4K] for products. Closure under subspaces
and quotient mappings is obvious. It is known that a perfect preimage of a P-space
need not be a P-space. We will prove it here under the additional hypothesis that the
inverse image of each point is a singleton or doubleton. Any finite-to-one map will
work, but the notation gets ugly. So let θ : Y → X be such a map with X a P-space.
Let y ∈ Y and f : Y → [0, 1] be continuous with f(y) = 0. Suppose that θ(y′) = θ(y)
and f(y′) = 1. The case that there is no such y′ or that f(y′) = 0 is easier and we
omit it. For each pair of positive integers m and n, the set

Umn = {p | f(p) < 1/m} ∪ {q | 1 − f(q) < 1/n}

is an open neighbourhood of {y, y′} and hence θ#(Umn) is an open neighbourhood of
θ#(y, y′) = θ(y). Since X is a P-space,

⋂
θ#(Umn) = θ#(

⋂
Umn) is a neighbourhood

of θ(y) and hence θ−1(θ#(
⋂

Umn)) ⊆ ⋂
Umn is a neighbourhood of {y, y′}. But⋂

Umn = f−1(0) ∪ f−1(1) and the only way it can be a neighbourhood of {y, y′} is
for the first component to be a neighbourhood of y and the second a neighbourhood
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of y′. Now suppose that every point has a neighbourhood that is a P-space. Since
every subspace of a P-space is a P-space, we can assume that every point has an open
P-space neighbourhood. A Gδ set will meet every such neighbourhood in an open set
and hence is a union of open sets.

Locally compact: It is well-known that a finite product of locally compact spaces is
locally compact. It is shown in [Engelking, (1989), p. 189] that local compactness
is closed under perfect image and preimage. It is obvious that the open image of
a locally compact space is locally compact. Local compactness is the quintessential
local property.

ORC: The closure under products is Theorem 3.

If θ : Y → X is perfect and X is ORC, let V be an ample Gδ cover of Y . Assume it is
closed under finite unions. For any y ∈ Y , θ−1(θ(y)) is compact and hence contained
in some V ∈ V . It follows that θ(y) ∈ θ#(θ−1(θ(y))) ⊆ θ#(V ) so that θ#(V ) is a Gδ

cover of X . A similar argument shows it is ample. The finite sum closure has an open
cover refinement and the inverse image of that refinement refines V .

Assume that each x ∈ X has an ORC neighbourhood U(x). Let V be an ample Gδ

cover of X and assume that V is a Gδ ideal cover. Then V restricted to U(x) has an
open subcover. In particular, there is some set V ∈ V that contains x and is open
relative to U(x). But then x ∈ V ∩ int(U(x)) ∈ V , and V ∩ int(U(x)) is open in X .

If θ : X → Y is open and X is ORC, let V be an ample Gδ cover of Y , which we will
suppose closed under finite union. Then θ−1(V ) = {θ−1(V ) | V ∈ V } is an ample Gδ

cover of X and also closed under finite union. Thus there is an open cover U such
that for all U ∈ U there is a V ∈ V with U ⊆ θ−1(V ), which implies that θ(U) ⊆ V .
Moreover θ(U) is open by hypothesis and hence θ(U) = {θ(U) | U ∈ U} is an open
refinement of V .

Let θ : X → Y be perfect and assume that X is ORC. If V is an ample Gδ cover of
Y , closed under finite unions, then θ−1(V ) is an ample Gδ cover of X closed under
finite unions. It therefore has an open cover refinement U, which may be assumed to
be closed under finite unions. Then each compact set in X , in particular, every set of
the form θ−1(y), is contained in a single set of U ∈ U. This implies that y ∈ θ#(U).
Thus θ#(U) is an open cover refinement of V .

Alster: For finite products, see [Barr, Kennison, & Raphael (2006), Theorem 4.5].
Suppose θ : Y → X is perfect and X is Alster. Let V be an ample Gδ cover of
Y . If p ∈ Y , θ−1(θ(p)) is compact and hence contained in some V ∈ V so that
θ(p) = θ#(θ−1(θ(p))) ∈ θ#(V ) and thus θ#(V ) is a cover of X . Since θ# preserves
open sets and meets, θ#(V ) is a Gδ cover. If A ∈ X is compact, θ−1(A) is compact and
therefore contained in some V ∈ V , whence A = θ#(θ−1(A)) ⊆ θ#(V ). Thus θ#(V ) is
an ample Gδ cover of X and has a countable subcover U. If U ∈ U there is a V ∈ V
such that U ⊆ θ#(V ), from which we conclude that θ−1(U) ⊆ θ−1(θ#(V )) ⊆ V .
Suppose θ : X → Y is a continuous surjection and X is Alster. Let V be an ample
Gδ cover of Y . Then θ−1(V ) is a Gδ cover of X . Since the image of a compact
space is compact, it is clear that θ−1(V ) is ample. There is a countable subcover
{θ−1(V1), θ−1(V2), . . . , } and the corresponding {V1, V2, . . .} is a countable subcover of
V . If X is Lindelöf and every point has an Alster neighbourhood, there is a countable
family of them whose interiors cover X . The sum of that countable family of subspaces
is Alster and X is a continuous image of the sum.
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Productively Lindelöf: Closure under finite products follows from the definition. Most
of the remaining properties follow from the corresponding properties of Lindelöf
spaces. The one that does not is localness and the proof works exactly the same
as for Alster.

4 Derived spaces. If S is a property of topological spaces, let us call a space that has
that property an S-space. An S-subspace is a subspace having property S; if it is a
neighbourhood of some point, we will call it an S-neighbourhood of that point. We have in
mind mainly the following four properties:

D: being discrete;

P: being a P-space;

C: being compact;

ORC: being ORC.

Hypothesis 8. We will suppose that S satisfies the following conditions:

1. A closed subspace of an S-space is an S-space.

2. The union of two closed S-subspace is an S-subspace.

3. The product of two S-spaces is an S-space.

Proposition 9. The four examples D, P, C, and ORC satisfy these conditions.

Proof. The first and third of these is either evident or follows from Theorem 7. As for the
second, the union of two closed subspaces is a perfect image of their sum and it is obvious
that these conditions are all preserved by sums.

From here until Theorem 25, S stands for any property of spaces that satisfies Hypothe-
ses 8.

Define
LS(X) = {p ∈ X | p has an S-neighbourhood}

and DS(X) = X−LS(X). We define Dα
S(X) for any ordinal α inductively by Dα

S = DS(Dβ
S)

when α = β + 1 and, if α is a limit ordinal, then Dα
S =

⋂
β<α Dβ

S . Evidently, Dα
S(X) is

closed in X for all α.
From now on, we will usually suppress the S and write L(X) and D(X) for LS(X) and

DS(X), respectively.

Proposition 10. If A is an open or closed subset of X, then L(A) ⊇ A ∩ L(X) and
D(A) ⊆ A ∩ D(X). When A is open these inclusions are equalities.

Proof. Suppose first that A is closed. If p ∈ A and U ⊆ X is an S-neighbourhood of p, then
A ∩ U is closed in U and is therefore an S-neighbourhood of p in A and so p ∈ L(A). We
have

D(A) = A − L(A) ⊆ A − (A ∩ L(X)) ⊆ A ∩ (X − L(X)) = A ∩ D(X)

When A is open, suppose p ∈ A∩L(X). Let U be an S-neighbourhood of p in X and let V
be a closed neighbourhood of p inside A. Then U ∩ V is an S-neighbourhood of p so that
p ∈ L(A). Conversely, if p ∈ L(A) then p has an S-neighbourhood inside A, but, A being
open in X , this is also an S-neighbourhood in X .
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Proposition 11. If A is a closed or open subset of X, then Dα(A) ⊆ A ∩ Dα(X) for all
α; when A is open, the inclusion is an equality.

Proof. First suppose that A is closed. If we suppose that Dβ(A) ⊆ Dβ(X) then Dβ(A) is
closed in A, which is closed in X and therefore Dβ(A) is closed in Dβ(X) so that

Dβ+1(A) = D(Dβ(A)) ⊆ D(Dβ(X)) = Dβ+1(X)

from which the conclusion is obvious. The same conclusion holds at limit ordinals by taking
intersections.

Now let A be open. If we suppose that Dβ(A) = A ∩ Dβ(X), then since A is open,
A ∩ Dβ(X) is open in Dβ(X) so that

Dβ+1(A) = D(Dβ(A)) = D(A ∩ Dβ(X)) = A ∩ Dβ(X) ∩ Dβ+1(X) = A ∩ Dβ+1(X)

Again, the same conclusion holds at limit ordinals by taking intersections.

Proposition 12. If A and B are both open or both closed subsets of X, then D(A ∪ B) =
D(A) ∪ D(B).

Proof. For open sets, we have from Proposition 11 that D(A) = A ∩ D(X) and D(B) =
B ∩ D(X) so that D(A) ∪ D(B) = (A ∪ B) ∩ D(X) = D(A ∪ B). For closed sets, we
have from Proposition 11 that D(A) ⊆ A ∩ D(A ∪ B) and D(B) ⊆ B ∩ D(A ∪ B), so that
D(A)∪D(B) ⊆ (A∪B)∩D(A∪B) = D(A∪B). For the reverse inequality we must show
that

A ∪ B − L(A ∪ B) ⊆ (A − L(A)) ∪ (B − L(B))

In other words, that if p ∈ A ∪ B and p /∈ L(A ∪ B), then either p ∈ A and p /∈ L(A) or
p ∈ B and p /∈ L(B).

If p ∈ A − B and p ∈ L(A), then p has an S-neighbourhood and, since B is closed,
p has a closed neighbourhood disjoint from B. Their intersection is an S-neighbourhood
disjoint from B, which is then an S-neighbourhood of p in A ∪ B so that p ∈ L(A ∪ B).
If p ∈ B − A, we have the same argument. Finally we consider the case that p ∈ A ∩ B
and p ∈ L(A) ∩ L(B). Then p has a closed S-neighbourhood U ⊆ A and a closed S-
neighbourhood V ⊆ B. Let U ′ and V ′ be A∪B-neighbourhoods of p such that U ′ ∩A = U
and V ′ ∩ B = V . Then U ′ ∩ V ′ is an (A ∪ B)-neighbourhood of p and

U ′∩V ′ = (U ′ ∩V ′)∩ (A∪B) = (U ′ ∩V ′ ∩A)∪ (U ′ ∩V ′∩B) = (U ∩V ′)∪ (U ′ ∩V ) ⊆ U ∪V

so that U ∪ V is an S-neighbourhood of p in (A ∪ B).

Corollary 13. If A and B are both open or both closed subsets of X, then for any ordinal
α, Dα(A ∪ B) = Dα(A) ∪ Dα(B).

Proposition 14 (Leibniz formula). For any spaces X and Y , D(X×Y ) ⊆ (X×D(Y ))∪
(D(X) × Y ).

Proof. Since L(X) and L(Y ) satisfy S, so does L(X)×L(Y ) ⊆ X ×Y so that L(X ×Y ) ⊇
L(X)× L(Y ) from which the conclusion is clear.

Corollary 15. For all n ∈ N, Dn(X × Y ) ⊆ ⋃
i+j=n(Di(X) × Dj(Y )).

Proposition 16. For all n > 0 in N, D2n−1(X × Y ) ⊆ (X × Dn(Y )) ∪ (Dn(X) × Y ).
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Proof.

D2n−1(X × Y ) ⊆
n−1⋃
i=0

(Di(X) × D2n−1−iY ) ∪
2n−1⋃
i=n

(Di(X) × D2n−1−iY )

⊆ (X × Dn(Y )) ∪ (Dn(X) × Y )

Corollary 17. Dω(X × Y ) ⊆ (X × Dω(Y )) ∪ (Dω(X) × Y ).

Proof.

Dω(X × Y ) =
⋂

((X × Dn(Y )) ∪ (Dn(X) × Y )) =
⋂

(X × Dn(Y )) ∪
⋂

(Dn(X) × Y )

= (X × Dω(Y )) ∪ (Dω(X) × Y )

where the commutation of the meet and join is justified by the fact that the sequences of
Dn(X) and Dn(Y ) are descending.

Theorem 18. Assume the Hypothesis 8. Then for any limit ordinal α, we have

Dα(X × Y ) ⊆ (X × Dα(Y )) ∪ (Dα(X) × Y )

Proof. Either α = β + ω with β a limit ordinal, or α =
⋃

β, the latter union over all the
limit ordinals below α. In the first case, we can suppose by induction that the result is valid
for β and then we see that Dβ+2n−1(X × Y ) ⊆ Dβ(X) × Dβ+n(Y ) ∪ Dβ+n(X) × Dβ(Y ).
Forming the meet over all n, we conclude the result for α. In the second case, we assume
inductively that the conclusion is true for all β < α and form the meet over all such β.

5 Scattered spaces. If S is a property of topological spaces, we will say that a space X is
S-scattered if for some ordinal α, Dα

S(X) = ∅. The following is an immediate consequence
of the preceding section.

Theorem 19. An open or closed subspace of an S-scattered space, a union of two open or
two closed S-scattered subspaces and a product of two S-scattered spaces, is S-scattered.

The following is an immediate consequence of Proposition 11:

Proposition 20. A space X is S-scattered if and only if every non-empty closed subset
A ⊆ X contains an S-space whose A-interior is non-empty.

Corollary 21. A space that is S-scattered for S = D, P, or C is also ORC-scattered.

Proposition 22. Suppose X = Y ∪ Z and both Y and Z are S-scattered. If one of Y or
Z is either open or closed in X, then X is also S-scattered.

Proof. Suppose Y is open. From Proposition 11, we have that for all ordinals α, Dα(Y ) =
Y ∩ Dα(X). If α is chosen so that Dα(Y ) = ∅, we conclude that Dα(X) ⊆ Z and then the
result follows since Z is scattered.

Now suppose that Y is closed. Then X − Y is an open subset of X and therefore
scattered, so the result follows from the first part applied to (X − Y ) ∪ Y .

Corollary 23. The union of finitely many S-scattered subspaces, each of which is either
open or closed, is S-scattered.
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One can show that if a Lindelöf space X contains an open subspace U for which U and
X − U are P-spaces, then X is Alster. This is a special case of the following (a space is
δ-Lindelöf if it is Lindelöf when retopologized by taking the Gδ sets of the original topology
as a neighbourhood base.)

Theorem 24 ([Henriksen et. al., (to appear)]). A Lindelöf P-scattered space is δ-Lindelöf.

Using a transfinite induction argument similar to that of [Henriksen et. al., (to appear)],
we will prove:

Theorem 25. A Lindelöf ORC-scattered space is Alster.

It follows from Corollary 21 that this theorem will show that any Lindelöf D, P, C, or
ORC-scattered space is Alster.

Proof. Suppose X is a space and Dα(X) = ∅. We make the inductive hypothesis that, for
any β < α, any Lindelöf space Y for which Dβ(Y ) = ∅, is Alster. We first consider the case
that α is a limit ordinal. In that case, X =

⋃
β<α(X − Dβ(X)), which is a union of open

sets. For any β < α and any element x ∈ X − Dβ(X), there is a closed neighbourhood
V (x) of x contained in X − Dβ(X). Since V (x) is closed, it follows from Proposition 11
that Dβ(V (x)) ⊆ V (x) ∩ Dβ(X − D) = ∅. It also follows that V (x) is Lindelöf and hence,
by the inductive hypothesis, that V (x) is Alster. Thus every point of X has an Alster
neighbourhood. Since X is Lindelöf, the localness of Alster (Theorem 7) implies that X is
Alster.

Now suppose that α = β + 1 is a successor. In that case, every element of Y = Dβ(X)
has an ORC neighbourhood. We showed in Theorem 7 that being ORC is a local property,
and hence Y is ORC. Let U be an ample Gδ cover of X . From [Barr, Kennison, & Raphael
(2006), 4.8] we may suppose, without loss of generality, that U consists of zerosets. Since
a finite union of zerosets is a zeroset, we can suppose that U is closed under finite unions.
Then U|Y = {U ∩ Y | U ∈ U} has an open refinement by sets of the form V ∩ Y , where V
is open in X . This open refinement has a further refinement by cozerosets of X . Since Y is
Lindelöf, there is a countable subfamily, {Vn | n ∈ N} of cozerosets of X such that {Vn∩Y }
covers Y and refines U|Y . For each n ∈ N, let Un ∈ U be a set for which Vn ∩ Y ⊆ Un.
Now X − ⋃

Vn is closed in X and thus, by Proposition 11

Dβ
(
X −

⋃
Vn

)
⊆

(
X −

⋃
Vn

)
∩ Dβ(X) ⊆ (X − Y ) ∩ Y = ∅

and the inductive hypothesis implies that X − ⋃
Vn is countably covered by U. Each set

Vn − Un is the difference of a cozeroset and a zeroset, which is a cozeroset, hence an Fσ,
and therefore Lindelöf. If Vn − Un =

⋃
m Anm with each Anm closed, we have

Dβ(Anm) ⊆ Anm ∩ Y ⊆ (Vn − Un) ∩ Y ⊆ (Vn ∩ Y ) − Un = ∅
so that the inductive hypothesis implies that Anm is countably covered by U and then so
is

⋃
n(Vn − Un) =

⋃
n,m Anm. Finally,

⋃
n Un is countably covered by the Un and so

X =
(
X −

⋃
Vn

)
∪

(⋃
(Vn − Un)

)
∪

⋃
Un

is countably covered. Thus X is Alster.

Theorem 26. When S is one of the classes D, P, C, or ORC, being S-scattered is preserved
by perfect surjections. In case that S is C or ORC, being S-scattered is preserved by perfect
preimage; in case that S is D or P, being S-scattered is preserved by preimage under perfect
mappings in which the preimage of each point is finite.
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The proof will proceed by a series of lemmas. Note that all four of the classes are
preserved by perfect image (which implies closure under finite unions of closed subobjects)
and, subject to the proviso in the statement, perfect preimage (see Theorem 7).

Lemma 27. Suppose θ : X →→ Y is a perfect surjection. Then θ(D(X)) ⊇ D(Y ).

Proof. We must show that y /∈ L(Y ) implies that there is some x ∈ θ−1(y) such that
x /∈ L(X). Equivalently, we must show that x ∈ L(X) for all x ∈ θ−1(y) implies y ∈ L(Y ).
Suppose that for each x ∈ θ−1(y) there is an S-neighbourhood U(x) of x. We may suppose
that each U(x) is closed. Since θ−1(y) is compact, there is finite set x1, . . . , xn ∈ θ−1(y)
such that the interiors of U(x1), . . . , U(xn) cover θ−1(y). Thus θ−1(y) ⊆ U =

⋃n
i=1 U(xi)

and so θ#(U) is a neighbourhood of y. By Theorem 7, θ(U) is an S-subspace of Y and also
a neighbourhood of y since θ(U) ⊇ θ#(U).

Lemma 28. Suppose θ : X →→ Y is a perfect surjection. Then for all ordinals α, θ(Dα(X)) ⊇
Dα(Y ).

Proof. If we make the inductive hypothesis that θ(Dα(X)) ⊇ Dα(Y ), it follows that there
is a perfect surjection Xα = θ−1(Dα(Y )) ∩ Dα(X) →→ Dα(Y ). Since Xα ⊆ Dα(X), we
have that D(Xα) ⊆ Dα+1(X) so that θ(Dα+1(X)) ⊇ θ(D(Xα)) ⊇ Dα+1(Y ). Now suppose
that α is a limit ordinal and θ(Dβ(X)) ⊇ Dβ(Y ) for all β < α. We want to show that
θ
(⋂

β<α Dβ(X)
)
⊇ Dα(Y ). For each y ∈ Dα(Y ) and each β < α the set {x ∈ Dβ(X) |

θ−1(y)} is a non-empty closed subset of the compact set θ−1(y) and hence their meet over
all β < α is non-empty.

Corollary 29. If θ : X →→ Y is a perfect surjection and X is S-scattered, then so is Y .

In order to simplify the statements of the following results, we will say that a map is
S-perfect if it is perfect and, in case S = D or P, that the inverse image of each point is
finite.

Lemma 30. Suppose θ : X →→ Y is S-perfect. Then θ(D(X)) ⊆ D(Y ).

Proof. We have
θ(D(X)) ⊆ D(Y ) if and only if

θ(X − L(X)) ⊆ Y − L(Y ) if and only if
Y − θ#(L(X)) ⊆ Y − L(Y ) if and only if

L(Y ) ⊆ θ#(L(X)) if and only if
θ−1(L(Y )) ⊆ L(X)

If y ∈ L(Y ), then y has an S-neighbourhood U . Then θ−1(U) is a neighbourhood of each
point of θ−1(y) and, from Theorem 7, is an S-subset and hence each point of θ−1(y) is in
L(U).

Lemma 31. Suppose θ : X →→ Y is S-perfect. Then for all ordinals α, θ(Dα(X)) ⊆ Dα(Y ).

Proof. Assume by induction that θ(Dα(X)) ⊆ Dα(Y ). Then

θ(Dα+1(X)) = θ(D(Dα(X))) ⊆ θ(D(Dα)(X)) ⊆ D(Dα(Y )) = Dα+1(Y )

If α is a limit ordinal and θ(Dβ(X)) ⊆ Dβ(Y ) for all β < α, then

θ(Dα(X)) = θ

⎛
⎝ ⋂

β<α

Dβ(X)

⎞
⎠ ⊆

⋂
θ(Dβ(X)) ⊆

⋂
Dβ(Y ) = Dα(X)
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Corollary 32. If θ : X → Y is S-perfect and Y is S-scattered, so is X.

This finishes the proof of Theorem 26. As an application, we have:

Corollary 33. Suppose X =
⋃

i∈I Xi is a locally finite union of closed S-scattered spaces.
Then X is S-scattered.

Proof. The canonical map from the categorical sum to the union is easily seen to be closed
with the inverse images of points being finite.

6 Examples. In this section, we give two examples to distinguish between some of these
classes of spaces.

6.1 Example The first is an example of a space that is Alster, but does not satisfy the
ORC. Let p ∈ βX −X and X = N∪{p} as a subspace of βX . Then X , being countable, is
Alster. It is not ORC since each point is a Gδ and every compact set is finite, so the cover
by finite sets is an ample Gδ cover that contains no neighbourhood of p. It is easy to see
that the space is space is ORC-scattered, in fact D2

ORC(X) = ∅.

6.2 Scattering degrees. We define the degree of an S-scattered space X to be the
smallest ordinal α for which Dα

S(X) = ∅. The example above raises the question of whether
we can find ORC-scattered spaces of arbitrary degree. We answer this question here. We
claim that there exists a Lindelöf ORC-scattered space of degree α for any countable ordinal
α. We further claim that if we drop the “Lindelöf”, then there is an ORC-scattered space
of any degree. We start by saying that the degree of a point p ∈ X , denoted degX(p) or
deg(p) if X is clear, is the smallest ordinal γ for which p /∈ Dγ(X). We note that deg(p)
can never be a limit ordinal. Clearly the degree of X is the supremum of {deg(p) | p ∈ X}.
Our claim about the degree of ORC-scattered spaces is a consequence of the constructions
in the previous example and the proofs of the following lemma and theorem.

Lemma 34. Let X be an ORC-scattered space. Let p ∈ X be a point of degree α. For any
point q ∈ βN−N, the space Y = (X ×N) ∪ {(p, q)} ⊆ X × βN is ORC-scattered and (p, q)
is a point of Y of degree α + 1. If X is Lindelöf, so is Y .

Proof. For each n ∈ N consider X ×{n}, which is a clopen subset of Y . By Proposition 11,
Dγ(X ×{n}) ⊆ Dγ(Y ). It is obvious that Dγ(X × {n}) = Dγ(X)×{n} so (p, n) ∈ Dγ(Y )
for all n ∈ N. Since Dγ(Y ) is closed, we see that (p, q) ∈ Dγ(Y ) too. By the argument given
in Example 6.1, applied to the closed subset {p}×(N∪{q}), we see that (p, q) /∈ Dγ+1(Y ) =
Dα(Y ). But (p, q) is an isolated point in Dα(Y ) because (X − Dα(X) × N ∪ {(p, q)} is a
neighbourhood of (p, q) which meets Dα(Y ) in just the point (p, q). The result follows.

Theorem 35. For each ordinal α, there is an ORC-scattered space of scattering degree α.

Proof. Suppose by transfinite induction that this is true for all smaller ordinals. If α is a
non-limit ordinal, the lemma gives the result. If α is a limit ordinal, choose, for each γ < α,
a space Xγ of scattering degree γ. Then

∑
Xγ has scattering degree α.
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6.3 Example Here is an example that illustrates several points. It is an example of the
fact that local compactness is not preserved by quotients (in fact, see [Kelley (1955), Exercise
5N] for the example of which the present one is a slight modification); that satisfying ORC
is not preserved under quotients; and another example that shows that an Alster space need
not satisfy the ORC.

Let X denote the quotient of the space [0, 1]×N by the equivalence relation that identifies
all the points {0} × N. We will call the point corresponding to the identified points p; all
other points will be identified by their coordinates in the product.

There is a neighbourhood base at p that consists of all sets of the form {p}∪⋃
n∈N((0, εn)×

{n}), where 0 < εn for each n. There is no uniformity in the choices of εn.
The space is completely regular. There is no problem separating a point different from

p from a closed set not containing it. As for p, let {p} ∪ ⋃
((0, εn) × {n}) be a basic

neighbourhood of p. The function f : X → R for which f(p) = 0 and whose restriction
(0, 1] × {n} is given by f(t, n) = t/εn is continuous, vanishes at p, and ≥ 1 outside the
neighbourhood and thus separates p from any closed set that does not meet the given
neighbourhood.

We claim that every compact set is contained in a subset {p} ∪ ⋃
n≤m((0, 1] × {n})

for some m ∈ N. Otherwise, let K be a compact set that is not contained in any such
finite union. For each n ∈ N, let tn be the largest first coordinate of any element of
K ∩ ((0, 1] × {n}), if any. If there are no such elements, let tn = 1. For each m ∈ N, let
Um = {p}∪⋃

n≤m((0, 1]×{n})∪⋃
n>m((0, tn)×{n}). Then {Un} is an increasing sequence

of open sets that covers K, but no single one does and hence K is not compact.
It follows that no neighbourhood of p has a compact closure so that X is not locally

compact. We have just shown that the cover by the sets {p} ∪ ((0, 1] × {1, 2, . . . , m}), for
m ∈ N, is ample and it obviously contains no neighbourhood of p. These sets are Gδ since
the mth set is

∞⋂
n=1

({p} ∪ ((0, 1] × {1, 2, · · · , m}) ∪ ((0, 1/n) × {m + 1, m + 2, · · ·}))

It is therefore not ORC, but it is Alster since it is a quotient of an Alster space.
Again, it is easy to see that X is ORC-scattered. Indeed since every point but p has a

compact neighbourhood, DORC(X) is a single point and D2
ORC(X) = ∅.

6.4 Example For the next example, we assume CH and give an example of a space
that is Lindelöf and not productively Lindelöf, but has an uncountable discrete subspace
whose complement is countable. This example contradicts [Abu Osma and Henriksen, 2004,
Theorem 3.8] in which the eleventh line of the claimed proof interchanges a join and a meet
without explanation.

It is also an example of an Alster-scattered space that is not Alster and shows that one
cannot replace the ORC-scattered by Alster-scattered in Theorem 25.

Let R denote the space of reals with the usual topology and Rν the same pointset with
a new topology that we describe below. We denote by Q the space of rationals with the
usual topology.

In Rν , every irrational point is open. A basic neighbourhood of a rational point q has
the form (a, b) − D where a < q < b and D is a countable subset of irrational numbers.
Since such a set is determined by the endpoints and a choice of D, the cardinality of such
basic opens is ω1. It is clear that since D consists of irrational numbers, Q appears as a
subspace of Rν with its usual topology.

Proposition 36. Rν is regular.
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Proof. We will show that whenever U is open and p ∈ U , then there is an open set V such
that p ∈ V ⊆ cl(V ) ⊆ U . Since each irrational is clopen this is clear when p /∈ Q. Now
suppose p ∈ Q. It is sufficient to consider the case that U is basic, so suppose U = (a, b)−D
as above. If c and d are chosen so that a < c < p < d < b and c and d are irrational, then
(c, d) and (c, d)−D are closed since each irrational is clopen. Then p ∈ (c, d)−D ⊆ (a, b)−D
is the required sequence.

The following is an obvious consequence of the Baire category theorem and is probably
well known. We include it for completeness.

Proposition 37. Every dense Gδ in R is uncountable.

Proof. A dense Gδ is a countable meet of dense open sets. If it were countable, we could
further intersect the Gδ set with the complements of the points of that countable set and
then we would have an empty countable meet of dense open sets, which contradicts the
Baire category theorem.

Let us say that a countable set B of basic open sets of Rν (as defined above) is a
countable basic open cover of Q if it is a countable cover of Q in Rν . Since there are
ω1-many basic open sets and such a cover is determined by a sequence of basic open sets, it
is clear by CH that there are ω1-many such countable basic open covers. Let us enumerate
them as B1, B2, . . . , Bα, . . ., α < ω1.

Proposition 38. If B is a countable basic open cover of Rν , then
⋃

B is a dense Gδ in R.

Proof. Suppose B = {(an, bn) − Dn) | n ∈ N} is a countable basic open cover. Then

⋃
B =

⋃
((an, bn) − Dn) =

⋃
(an, bn) ∩

⋂
{(Rν − {x}) | x ∈

⋂
Dn}

which is the meet of an open set and a Gδ and hence a Gδ in R. It is dense in R because it
contains Q.

We will now choose inductively an ω1-indexed sequence t1, t2, . . . , tα, . . . of irrational
numbers. We let t1 be any irrational. Suppose we have chosen tβ for all β < α. Since

⋃
Bβ

is a dense Gδ of R for all β < α and there are only countably many β < α, it follows that⋂
β<α

⋃
Bβ is a dense Gδ and therefore uncountable. The set {tβ | β < α} is countable and

hence we can choose some

tα ∈
⎛
⎝ ⋂

β<α

⋃
Bβ

⎞
⎠ − {tβ | β < α} − Q

Now we let X = Q ∪ {tα | α < ω1} with the topology inherited from Rν .

Proposition 39. X is Lindelöf and completely regular.

Proof. Any open cover has a refinement by basic opens. Let O be such a cover of X . Since
O contains a cover of Q, some Bα ⊆ O. But by construction, tγ ∈ ⋃

Bα for every γ > α.
Thus Bα, together with sets in O that cover the countably many tβ for β < α is a countable
refinement of O. So X is Lindelöf, regular by Proposition 36, thus normal by [Kelley (1955),
Lemma 4.1], and hence completely regular.

Proposition 40. X is not Alster and therefore, in the presence of CH, not productively
Lindelöf.
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Proof. We begin by observing that, since each irrational is open, a compact set can contain
only finitely many of them. A compact set in Q must be compact and therefore closed and
a Gδ in the usual topology, which makes it a Gδ in Rν . Thus the cover consisting of all the
compact sets of Q and all the singletons of X −Q is an ample Gδ cover without a countable
refinement. Since X has weight ω1, it follows from [Alster (1988), 1.1], which assumes CH,
that X cannot be productively Lindelöf.

7 Some open questions.

1. Is productively Lindelof weaker than Alster?

2. If a space is S-scattered, must each Dα
S be nowhere dense in Dα+1

S ? (This is known
to be true in the cases D and P.)

3. Is there an example of 6.4 that does not use CH?

4. In an earlier version of the paper, we had a condition called the compact P-support
(CPS) which meant that for every point p, there is a compact set A with the prop-
erty that every Gδ containing A contains a neighbourhood of p. This condition was
intended to be a single condition that included both P-spaces and LC-spaces, was
preserved by products, closed subspaces, etc. We then discovered the ORC that had
all those properties and was implied by CPS. It is an open question whether CPS is
strictly stronger than ORC.
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