ON QUASI- λ -NUCLEARITY

W. Shatanawi & A. Tallafha

Received December 6, 2005

ABSTRACT. We Introduce new type of maps between normed spaces, namely, p-quasi- λ -nuclear map. We prove that the composition of a q-quasi- λ -nuclear map $(0 < q \le 1)$ with a p-quasi- λ -nuclear map $(0 is a pseudo-<math>\lambda$ -nuclear map. Also we prove that for a nuclear G_{∞} -space a linear map T between normed spaces is p-quasi- λ -nuclear iff it is q-quasi- λ -nuclear.

1 Basic Concepts. For two sequences of scalars $x = (x_n)$ and $y = (y_n)$ we write $x_n = O(y_n)$ if there is a $\rho > 0$ such that $x_n \leq \rho y_n$ for all $n \in \mathbf{N}$.

A set A of sequences of non-negative real numbers is called a **Köthe set**, if it satisfies the following conditions:

- 1. For each pair of elements $a, b \in A$ there is $c \in A$ with $a_n = O(c_n)$ and $b_n = O(c_n)$.
- 2. For every integer $r \in N$ there exists $a \in A$ with $a_r > 0$.

The space of all sequences $x = (x_n)$ such that

$$p_a(x) := \sum_n |x_n| \, a_n < +\infty$$

for all $a \in A$, is called the **Köthe space**, $\lambda(A)$, generated by A[3].

A Köthe set P will be called a **power set of infinite type** if it satisfies the following conditions:

- 1. For each $a \in P$, $0 < a_n \le a_{n+1}$ for all n.
- 2. For each $a \in P$, there exists $b \in P$ such that $a_n^2 = O(b_n)$.

A Köthe space of the form $\lambda(P)$ where P is a power set of infinite type is called a G_{∞} -space or a smooth sequence space of infinite type[9].

Let $\alpha = (\alpha_n)$ be an unbounded non-decreasing sequence of positive real numbers. Then $P_{\infty} = \{(k^{\alpha_n}): k \in \mathbf{N}\}$ is countable Köthe set. The corresponding Köthe space $\Lambda_{\infty}(\alpha) = \lambda(P_{\infty})$ is called the **power series of infinite type**[9].

Theorem 1.1. (Grothendieck-Pietsch criterion for nuclearity) [9] A Köthe space $\lambda(A)$ is nuclear if and only if for every $a \in A$, there is $b \in A$ such that $(a_n/b_n) \in \ell_1$.

²⁰⁰⁰ Mathematics Subject Classification. 47B10, 47L20.

Key words and phrases. Nuclear maps, Smooth sequence spaces, Nuclearity, pseudo- λ -nuclear map, quasi- λ -nuclear map.

Let E and F be two arbitrary normed spaces. A linear map T from E into F is called a **nuclear** map if there are sequences (a_n) , (y_n) in E' and F respectively, with

$$\sum\nolimits_n ||a_n||\, ||y_n|| < +\infty \ \text{such that} \ T(x) = \sum\nolimits_n \langle x, a_n \rangle y_n,$$

and a **p-quasi-nuclear** map if there is a sequence (a_n) in E' with

$$\sum_{n} ||a_{n}||^{p} < +\infty \text{ such that } ||T(x)||^{p} \leq \sum_{n} |\langle x, a_{n} \rangle|^{p} [5].$$

In the rest of this paper, letter λ stands for a fixed sequence space contained in ℓ_1 .

A linear map T of a normed space E into a normed space F is called a **pseudo**- λ -**nuclear map** if there exist a sequence (α_n) in λ and a bounded sequences (a_n) and (y_n) in E' and F respectively such that $Tx = \sum_n \alpha_n \langle x, a_n \rangle y_n$, for all x in E, and a **quasi**- λ -**nuclear map** if there exist a sequence (α_n) in λ and a bounded sequence (a_n) in E' such that $||Tx|| \leq \sum_n |\alpha_n| |\langle x, a_n \rangle|$, for all x in E[1][6].

A linear map T of a normed space E into a normed space F is called a **2-quasi**- λ -**nuclear map** if there exist a sequence (α_n) in λ and a bounded sequence (a_n) in E' such that

$$||Tx|| \le \left(\sum_{n} |\alpha_n| |\langle x, a_n \rangle|^2\right)^{1/2},$$

for all x in E[8].

2 Main results. To proceed in our work, we introduce the following definition:

Definition 2.1. For 0 , a linear map T of a normed space E into a normed space F is called a**p-quasi-<math>\lambda-nuclear map** if there exist a sequence (α_n) in λ and a bounded sequence (a_n) in E' such that

$$||Tx|| \le \left(\sum_{n} |\alpha_{n}| |\langle x, a_{n} \rangle|^{p}\right)^{1/p},$$

for all x in E.

Let $\mathcal{N}(E, F)$, $\mathcal{QN}_p(E, F)$, $\mathcal{P}\lambda\mathcal{N}(E, F)$, and $\mathcal{Q}\lambda\mathcal{N}_p(E, F)$, denote the collection of all nuclear, p-quasi-nuclear, pseudo- λ -nuclear, and p-quasi- λ -nuclear maps, respectively, between normed spaces E and F. It is an easy matter to see the following proposition.

Proposition 2.1. If $T \in \mathcal{Q}\lambda \mathcal{N}_p(E, F)$, then $T \in \mathcal{Q}\mathcal{N}_p(E, F)$

Let $\mathbf{B}(E, F)$ denotes the collection of all bounded linear map between normed spaces E and F. Then we have the following proposition.

Proposition 2.2. Let E, F and G be normed spaces. Let T and S be a linear maps from E into F and from F into G respectively. Then

- 1. If $T \in \mathbf{B}(E, F)$ and $S \in \mathcal{P}\lambda\mathcal{N}(F, G)$, then $ST \in \mathcal{P}\lambda\mathcal{N}(E, G)$.
- 2. If $T \in \mathcal{P}\lambda\mathcal{N}(E, F)$ and $S \in \mathbf{B}(F, G)$, then $ST \in \mathcal{P}\lambda\mathcal{N}(E, G)$.
- 3. If $T \in \mathbf{B}(E, F)$ and $S \in \mathcal{Q}\lambda\mathcal{N}_p(F, G)$, then $ST \in \mathcal{Q}\lambda\mathcal{N}_p(E, G)$.
- 4. If $T \in \mathcal{Q}\lambda\mathcal{N}_p(E,F)$ and $S \in \mathbf{B}(F,G)$, then $ST \in \mathcal{Q}\lambda\mathcal{N}_p(E,G)$.

Our next result indicates the relationship between r-quasi- λ -nuclear and s-quasi- λ -nuclear maps.

Theorem 2.1. If $0 < r < s < +\infty$, then r-quasi- λ -nuclear maps are s-quasi- λ -nuclear.

Proof. Suppose that $0 < r < s < +\infty$ and $T : E \to F$ is a r-quasi- λ -nuclear map between normed spaces E and F. Then there exist a sequence (α_n) in λ and a bounded sequence (a_n) in E' such that

$$||Tx||^r \le \sum_n |\alpha_n| |\langle x, a_n \rangle|^r.$$

Let $q = \frac{s}{s-r}$. Then one can show that

$$||Tx|| \le \left(\sum_{n} |\alpha_{n}|\right)^{\frac{1}{rq}} \left(\sum_{n} |\alpha_{n}| |\langle x, a_{n} \rangle|^{s}\right)^{\frac{1}{s}}.$$

Let $\beta = (\sum_{n} |\alpha_{n}|)^{\frac{1}{sq}}$ and $b_{n} = \beta a_{n}$. Then

$$||Tx|| \le \left(\sum_{n} |\alpha_{n}| |\langle x, b_{n} \rangle|^{s}\right)^{1/s}$$

Since $(\alpha_n) \in \lambda$ and (b_n) is a bounded sequence in E', T is a s-quasi- λ -nuclear map.

The relationship between p-quasi-nuclear and p-quasi- ℓ_1 -nuclear maps is given by the following result:

Proposition 2.3. A linear map T from a normed space E into a normed space F is pquasi-nuclear if and only if it is p-quasi- ℓ_1 -nuclear.

The following result is direct consequence of Proposition 2.3 and Theorem 2.1.

Corollary 2.1. [5] If $0 < r < s < +\infty$, then r-quasi-nuclear maps are s-quasi-nuclear.

The following known results are crucial in proving our next result.

Proposition 2.4. [8] Each quasi- λ -nuclear map $T : E \to F$ between normed spaces E and F is also pseudo- λ -nuclear if it is regarded as a map from E into a Banach space $\ell_{\infty}(I)$ in which F is embedded.

Proposition 2.5. [5] If T is a bounded linear map from a normed space E into a Banach space F, then the following conditions are equivalent:

- 1. T is a 2-quasi-nuclear map.
- 2. T factors through the diagonal map $D_{\mu} : \ell_{\infty} \to \ell_2$ for some $\mu \in \ell_2$, that is, there are two bounded linear maps S_1 from E into ℓ_{∞} and S_2 from ℓ_2 into F such that $T = S_2 D_{\mu} S_1$.

Theorem 2.2. Suppose that $0 < q \le 1$ and $0 . If <math>T : E \to F$ is a q-quasi- λ -nuclear map between normed spaces E and F and if S is a p-quasi- λ -nuclear map from F into a Banach space G, then ST is a pseudo- λ -nuclear map.

Proof. Since S is a p-quasi- λ -nuclear map. Then by Theorem 2.1, S is 2-quasi- λ -nuclear. By Proposition 2.1 and Proposition 2.5, S can be factored through a diagonal map $D_{\mu}: \ell_{\infty} \to \ell_2$ for some $\mu \in \ell_2$, that is, there are two bounded linear maps S_1 from F into ℓ_{∞} and S_2 from ℓ_2 into G such that $S = S_2 D_{\mu} S_1$. Since $q \leq 1$, by Theorem 2.1, T is quasi- λ -nuclear. By using Proposition 2.2 and Proposition 2.4, we get the pseudo- λ -nuclearity of ST.

The following result is direct consequence of Proposition 2.3 and Theorem 2.2.

Corollary 2.2. Suppose that $0 < q \le 1$ and $0 . If <math>T : E \to F$ is a q-quasi-nuclear map between normed spaces E and F and if S is a p-quasi-nuclear map from F into a Banach space G, then ST is a pseudo-nuclear map.

The Grothedieck-Pietsch criterion for nuclearity plays a major rule for proving our last result. Before we start our arguments, we introduce the following remark.

Remark. If $\lambda = \lambda(P_0)$ is a G_{∞} -space, then for any $k \in \mathbb{N}$ and $a \in P_0$, there is $b \in P_0$ such that $(a_n)^k = O(b_n)$.

Theorem 2.3. Suppose that $\lambda = \lambda(P_0)$ is a nuclear G_{∞} -space and $0 < q \leq p < +\infty$, a bounded linear map between normed spaces is a q-quasi- λ -nuclear map if and only if it is a p-quasi- λ -nuclear map.

Proof. The "if" part condition follows from Theorem 2.1. To prove the only "if part", let $T: E \to F$ be a p-quasi- λ -nuclear map between normed spaces E and F. Then there exist a sequence (α_n) in λ and a bounded sequence (a_n) in E' such that

$$||Tx|| \le \left(\sum_n |\alpha_n| \, |\langle x, a_n \rangle|^p\right)^{\frac{1}{p}}.$$

Then we have

$$||Tx|| \le \left(\sum_{n} |\alpha_{n}|^{\frac{q}{p}} |\langle x, a_{n} \rangle|^{q}\right)^{\frac{1}{q}}$$

To finish our proof it is enough to show that $(|\alpha_n|^{\frac{1}{p}}) \in \lambda$. Since q/p > 0 we choose $k \in \mathbb{N}$ such that 1/k < q/p. So q/p = 1/k + t for some t > 0. Hence $|\alpha_n|^{q/p} = |\alpha_n|^{1/k} |\alpha_n|^t$. Let $a \in P_0$ be given, by Grothendieck-Pietsch criterion for nuclearity, we choose $b \in P_0$ such that $(a_n/b_n) \in \ell_1$. Since $b \in P_0$, choose $c \in P_0$ and $\rho > 0$ such that

$$b_n \leq \rho (c_n)^{1/k}$$
 for all $n \in \mathbf{N}$.

Therefore

$$\begin{split} \sum_{n=1}^{\infty} \, |\alpha_n|^{\frac{q}{p}} \, a_n &= \sum_{n=1}^{\infty} |\alpha_n|^t \, |\alpha_n|^{\frac{1}{k}} \, \frac{a_n}{b_n} \, b_n \\ &\leq \rho \sum_{n=1}^{\infty} \, |\alpha_n|^t \, |\alpha_n|^{\frac{1}{k}} \, c_n^{\frac{1}{k}} \frac{a_n}{b_n} \end{split}$$

Since $(\alpha_n) \in \lambda(P_0)$, we have (α_n) and $(\alpha_n c_n)$ are in ℓ_1 . So there exist $\gamma > 0$ and $\beta > 0$ such that

$$|\alpha_n| \leq \gamma$$
 and $|\alpha_n| c_n \leq \beta$ for all $n \in \mathbf{N}$.

Therefore

$$|\alpha_n|^t \leq \gamma^t$$
 and $|\alpha_n|^{\frac{1}{k}} c_n^{\frac{1}{k}} \leq \beta^{\frac{1}{k}}$ for all $n \in \mathbf{N}$.

Hence

$$\sum_{n=1}^{\infty} |\alpha_n|^{\frac{q}{p}} a_n \le \rho \gamma^t \beta^{\frac{1}{k}} \sum_{n=1}^{\infty} \frac{a_n}{b_n} < +\infty.$$

Therefore $(|\alpha_n|^{\frac{q}{p}}) \in \lambda(P_0)$ and hence T is q-quasi- λ -nuclear.

Applying Theorem 2.3, the following corollary is resulted:

Corollary 2.3. [7] Suppose that $\lambda = \lambda(P_0)$ is a nuclear G_{∞} -space, a bounded linear map between normed spaces is a quasi- λ -nuclear map if and only if it is a 2-quasi- λ -nuclear map.

In this section, we give some examples to show that the converse of our main previous results are not true in general. For p > 0, we give an example of a sequence space λ and a linear map T such that T is a p-quasi-nuclear map which is not a p-quasi- λ -nuclear map.

Example 2.1. Define a map $D: \ell_1 \to \ell_p$ by $Dx = (x_n/3^n)$. Then D is a p-quasi-nuclear map which is not a p-quasi- $\Lambda_{\infty}(n)$ -nuclear map.

Proof. To show that D is a p-quasi-nuclear map, let $a_n = e_n/3^n$. Then

$$\left|\left|Dx\right|\right|_{p}^{p} = \left|\left|\left(\frac{x_{n}}{3^{n}}\right)\right|\right|_{p}^{p} = \sum_{n} \left|\frac{x_{n}}{3^{n}}\right|^{p} = \sum_{n} \left|\langle x, a_{n} \rangle\right|^{p}.$$

Since (a_n) is a sequence in ℓ_{∞} with $\sum_n ||a_n||_{\infty}^p < +\infty$, D is a p-quasi-nuclear map. To show that D is not a p-quasi- $\Lambda_{\infty}(n)$ -nuclear map, define a map $A : \ell_p \to \ell_1$ by putting $Ax = (x_n/3^n)$. Then A is quasi-nuclear, and hence 2-quasi-nuclear. By Proposition 2.5, A can be factored through D_{μ} for some $\mu \in \ell_2$, that is, there are bounded linear maps $S_2 : \ell_p \to \ell_{\infty}, D_{\mu} : \ell_{\infty} \to \ell_2$, and $S_1 : \ell_2 \to \ell_1$ such that $A = S_1 D_{\mu} S_2$. If we assume that D is p-quasi- $\Lambda_{\infty}(n)$ -nuclear, then by Theorem 2.3, D is quasi- $\Lambda_{\infty}(n)$ -nuclear and hence by Proposition 2.2, $S_2 D$ is quasi- $\Lambda_{\infty}(n)$ -nuclear. Therefore by Proposition 2.4, $S_2 D$ is pseudo- $\Lambda_{\infty}(n)$ -nuclear. Since $AD : \ell_1 \to \ell_1$ is given by $ADx = (x_n/9^n)$ and AD is pseudo- $\Lambda_{\infty}(n)$ -nuclear, we have $(1/9^n) \in \Lambda_{\infty}(n)$, which is a contradiction. So A is not 2-quasi- $\Lambda_{\infty}(n)$ -nuclear.

Now for $0 < r < s \leq 2$, we give an example of a sequence space λ and a linear map T such that T is a s-quasi- λ -nuclear map which is not r-quasi- λ -nuclear. To achieve that we need the following definitions and results. For two normed spaces E and F and for integers $r \geq 0$, $\mathcal{A}_r(E, F)$ denotes the collection of all finite rank linear maps A from E into F whose range is at most r-dimensional.

Definition 2.2. [4; P. 120] Let T be a linear map from a normed space E into a normed space F. The r-th approximation number $\alpha_r(T)$ of T is defined to be $\inf\{||T-A||: A \in \mathcal{A}_r(E,F)\}$.

Definition 2.3. [4; P. 144] Let B be an arbitrary bounded subset in a normed space E with closed unit ball U. The infimum of all $\delta > 0$ for which there is a linear subspace F of E with dimension at most n such that $B \subset \delta U + F$ is called the n-th diameter of B and is denoted by $d_n(B)$.

Definition 2.4. [see 8] Let $T : E \to F$ be a bounded linear map between normed spaces E and F with closed unit balls U and V respectively. The n-th diameter of T, denoted by $d_n(T)$, is defined to be $d_n(T(U))$.

Lemma 2.1. [2, P. 23] Suppose that T is a linear map from a normed space E into a normed space F. Then $d_n(T) \leq \alpha_n(T) \leq \sqrt{n} d_n(T)$.

Lemma 2.2. [2, P. 23] Suppose that T is a compact map from a Banach space X into a Banach space F. Then $\alpha_n(T) = \alpha_n(T')$, where T' is the dual map of T.

To this end, we have furnished the necessary back ground to give our desired example.

Example 2.2. Let $P = \{ (n^{\ln(kn)}) : k = 1, 2, ... \}$, and $0 < r < s \le 2$. Define the map D from ℓ_2 into ℓ_s by $Dx = (\alpha_n^{\frac{1}{s}} x_n)$ where

$$\alpha_n = \frac{1}{n^{\frac{s}{r}} n^{\ln(n^{\frac{s}{r}})}}.$$

Then D is a s-quasi- $\lambda(P)$ -nuclear map which is not r-quasi- $\lambda(P)$ -nuclear.

Proof. It is clear that $\lambda(P)$ is a nuclear Köthe space which is which is subset of ℓ_1 . Let $k \in N$ be given. Then

$$\frac{n^{\ln(kn)}}{n^{\frac{s}{r}} n^{\ln(n^{\frac{s}{r}})}} = O\left(\frac{1}{n^{\frac{s}{r}}}\right).$$

Therefore for any $k \in \mathbf{N}$ we have

$$\sum_{n} \frac{n^{\ln(kn)}}{n^{\frac{s}{r}} n^{\ln(n^{\frac{s}{r}})}} < +\infty$$

So we get $(\alpha_n) \in \lambda(P)$. Since

$$\begin{aligned} ||Dx||_s^s &= \sum_n |\alpha_n| |x_n|^s \\ &= \sum_n |\alpha_n| |\langle x, e_n \rangle|^s, \end{aligned}$$

and (e_n) is bounded sequence in ℓ_2 , we have s-quasi- λ -nuclearity of D. If we assume that D is a r-quasi- $\lambda(P)$ -nuclear map. Then there exist a sequence $(\beta_n) \in \lambda(P)$ and a bounded sequence (a_n) in ℓ_2 with $||a_n|| \leq 1$ for each $n \in \mathbb{N}$ such that

$$||Dx||^r \le \sum_n |\beta_n| |\langle x, a_n \rangle|^r.$$

Let $\gamma_n = \sum_{m=n}^{\infty} |\beta_m|$. Then one can show that $\gamma = (\gamma_n) \in \lambda(P)$. Let

$$M_n = \{ x \in \ell_2 \colon \langle x, a_i \rangle = 0, \ i = 1, 2, \dots, n \}.$$

If $x \in M_n$, then

$$||Dx||^r \le \sum_{m=n}^{\infty} |\beta_m| |\langle x, a_m \rangle|^r \le \gamma_n \sup_n ||a_n||^r ||x||^r$$

Hence, $D(U \cap M_n) \subseteq \gamma_n^{\frac{1}{r}} V$ where U and V are the unit balls of ℓ_2 and ℓ_s respectively. Therefore

$$D'(V^{\circ}) \subseteq \gamma_n^{\frac{1}{r}} U^{\circ} + M_n^{\perp},$$

which gives $d_n(D') \leq \gamma_n^{\frac{1}{r}}$. Since *D* is compact, by Lemma 2.2 we have $\alpha_n(D) = \alpha_n(D')$. Also by Lemma 2.1, we have $\alpha_n(D') \leq \sqrt{n} d_n(D')$. Let *i* be the inclusion map from ℓ_s into ℓ_2 , Then it is clear that $\alpha_n(iD) \leq \alpha_n(D)$. Hence we have $\alpha_n(iD) = \alpha_n^{\frac{1}{s}}$. So we have

$$\alpha_n(iD) \le \alpha_n(D) = \alpha(D') \le \sqrt{n} \, d_n(D'),$$

and hence

$$\alpha_n^{\frac{1}{s}} \le \sqrt{n} \gamma_n^{\frac{1}{r}}.$$

Therefore

But

$$\alpha_n^{\frac{r}{s}} = \frac{1}{n \, n^{\ln(n)}}.$$

 $\alpha_n^{\frac{r}{s}} < n^{\frac{r}{2}} \gamma_n < n \gamma_n.$

So we have $\frac{1}{n^{\ln(n)}} \leq \gamma_n$. Since $(\frac{1}{n^{\ln(n)}}) \notin \lambda(P)$, we have $(\gamma_n) \notin \lambda(P)$, which is a contradiction. Therefore D is not a r-quasi- $\lambda(P)$ -nuclear map.

Problems.

- Q#1 Does Theorem 2.3 still valid for any G_{∞} -space $\lambda(P)$ which is not nuclear?
- Q#2 Does Theorem 2.2 still valid for any p > 2?
- Q#3. Assume that $2 < r < s < +\infty$. Is it possible to find a sequence space λ which is proper subset of ℓ_1 and a linear map T between normed spaces E and F such that T is s-quasi- λ -nuclear which is not r-quasi- λ -nuclear?

References

- [1] E. Dubinsky and M.S. Ramanujan, On λ -Nuclearity, Mem. Amer. Math. Soc., **128** (1982)
- [2] P.K. Kamthan, M. Gupta, Schauder Bases Behaviour and Stability, Indian Institute of Technology, Kanpur, 1988.
- [3] G. Köthe, Topological Vector Spaces I and II, Springer-Verlag, Berlin-Heidelberg, New York (1969) and (1979).
- [4] A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, Berlin-Heidelberg, New York (1972).
- [5] A. Pietsch, Absolut p-summierende Abbildungenin normierten Räumen, Studia Math., 28, 333-353 (1967).
- [6] M.S. Ramanujan, Power Series Spaces $\Lambda(\alpha)$ and Associated $\Lambda(\alpha)$ -Nuclearity, Math. Ann., **189**, 161-168 (1970).
- [7] W. Robinson, Relationships Between λ-Nuclearity and Pseudo-μ-Nuclearity, Trans. Amer. Math. Soc., 201, 291-303 (1975).
- [8] W. Shatanawi, Generalized Sequence Spaces and Nuclearity, Ph.D Thesis, Carleton University 2001.
- [9] T. Terziouglu, Smooth Sequence Spaces and Associated Nuclearity, Proc. Amer. Math. Soc., 37, 497-504 (1973).

W. Shatanawi

Department of Mathematics The Hashemite University Zarqa-Jordan email: swasfi@hu.edu.jo

A. Tallafha

Department of Mathematics Jordan University Amman-Jordan email: atallafha@hotmail.com