Scientiae Mathematicae Japonicae Online, e-2007, 1-7 1

ON QUASI-)-NUCLEARITY
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ABSTRACT. We Introduce new type of maps between normed spaces, namely, p-quasi-
A-nuclear map. We prove that the composition of a g-quasi-A-nuclear map (0 < ¢ < 1)
with a p-quasi-A-nuclear map (0 < p < 1) is a pseudo-A-nuclear map. Also we prove
that for a nuclear Goo-space a linear map 7" between normed spaces is p-quasi-A-nuclear
iff it is g-quasi-A-nuclear.

1 Basic Concepts. For two sequences of scalars © = (z,,) and y = (y,) we write z,, =
O(yn) if there is a p > 0 such that x,, < py,, for all n € N.

A set A of sequences of non-negative real numbers is called a Kothe set, if it satisfies
the following conditions:

1. For each pair of elements a,b € A there is ¢ € Awith a,, = O(c,,) and b, = O(cy,).

2. For every integer r € N there exists a € A with a, > 0.

The space of all sequences © = (x,,) such that

pa(z) := Z |Tn| an < 400

n

for all a € A, is called the K&the space, A(A4), generated by A[3].

A Kothe set P will be called a power set of infinite type if it satisfies the following
conditions:

1. For each a € P, 0 < a,, < apy; for all n.
2. For each a € P, there exists b € P such that a2 = O(by,).

A Kothe space of the form A(P) where P is a power set of infinite type is called a G-space
or a smooth sequence space of infinite type[9].

Let o = (av,) be an unbounded non-decreasing sequence of positive real numbers. Then
P, = {(k®"): k € N} is countable Kothe set. The corresponding Kéthe space Ao (o) =
A(Ps) is called the power series of infinite type[9].

Theorem 1.1. (Grothendieck-Pietsch criterion for nuclearity) [9] A Kdéthe space A\(A) is
nuclear if and only if for every a € A, there is b € A such that (a,/b,) € (1.
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Let E and F be two arbitrary normed spaces. A linear map T from FE into F' is called
a nuclear map if there are sequences (a,,), (y,) in E' and F respectively, with

Zn [lan]| [|yn|| < +o0 such that T'(z) = Zn (Z, an)Yn,

and a p-quasi-nuclear map if there is a sequence (a,,) in E' with
Z [lan||P < 400 such that ||T(x)|]P < Z x, an)|P[5]

In the rest of this paper, letter A stands for a fixed sequence space contained in #;.

A linear map T of a normed space F into a normed space F' is called a pseudo-\-
nuclear map if there exist a sequence (ay,) in A and a bounded sequences (a,) and (yy)
in E' and F respectively such that Tz = ) oy (2,an)yn, for all z in E, and a quasi-\-
nuclear map if there exist a sequence (a,) in A and a bounded sequence (a,) in E’ such
that |[Tz|| < 37, |on||{x,an)|, for all z in E[1][6].

A linear map T of a normed space E into a normed space F is called a 2-quasi-A-
nuclear map if there exist a sequence (a,) in A and a bounded sequence (a,) in E’ such

that s
T2l < (32 ol [wsan)?)
for all x in E[8].

2 Main results. To proceed in our work, we introduce the following definition:

Definition 2.1. For 0 < p < 400, a linear map T of a normed space E into a normed
space F is called a p-quasi-A\-nuclear map if there exist a sequence (o) in A and a
bounded sequence (ay,) in E' such that

/
el < (32, lawl 1z, an)

for all x in E.

Let N(E,F), ON,(E,F), PA\N(E,F), and QAN ,(E, F), denote the collection of all
nuclear, p-quasi-nuclear, pseudo-A-nuclear, and p-quasi-A-nuclear maps, respectively, be-
tween normed spaces E and F. It is an easy matter to see the following proposition.

Proposition 2.1. If T € QM ,(E, F), then T € QN ,(E, F)

Let B(E, F') denotes the collection of all bounded linear map between normed spaces FE
and F. Then we have the following proposition.

Proposition 2.2. Let E, F' and G be normed spaces. Let T and S be a linear maps from
E into F and from I into G respectively. Then

1. If T € B(E,F) and S € PAN(F,G), then ST € PAN(E,G).
2. If T € PAN(E,F) and S € B(F,G), then ST € PAN(E,G).
3. IfT € B(E,F) and S € QAN (F,G), then ST € QM ,(E,G).
4. If T € QAN ,(E,F) and S € B(F,G), then ST € QM ,(E,G).
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Our next result indicates the relationship between r-quasi-A-nuclear and s-quasi-A-nuclear
maps.

Theorem 2.1. If0 < r < s < 400, then r-quasi-A\-nuclear maps are s-quasi-A-nuclear.

Proof. Suppose that 0 < r < s < +oc and T : E — F is a r-quasi-A-nuclear map
between normed spaces F and F. Then there exist a sequence («,) in A and a bounded
sequence (ay) in E’ such that

1T|” < Jan] |2, an)]".

Let ¢ = =%=. Then one can show that

s—r"

1
s

|IT|| < (Zn |an|)%q (Zn || |<w,an>\s)'

)%1 and b, = Ba,. Then

1T < (3 Joal b))

Since (a;,) € A and (by,) is a bounded sequence in E’, T is a s-quasi-A-nuclear map. Wl

Let 8= (3, lan

The relationship between p-quasi-nuclear and p-quasi-¢1-nuclear maps is given by the
following result:

Proposition 2.3. A linear map T from a normed space E into a normed space F is p-
quasi-nuclear if and only if it is p-quasi-f1-nuclear.

The following result is direct consequence of Proposition 2.3 and Theorem 2.1.
Corollary 2.1. [5] If 0 < r < s < 400, then r-quasi-nuclear maps are s-quasi-nuclear.
The following known results are crucial in proving our next result.

Proposition 2.4. [8] Fach quasi-A\-nuclear map T : E — F between normed spaces E and

F is also pseudo-A-nuclear if it is regarded as a map from E into a Banach space {oo(I) in
which F' is embedded.

Proposition 2.5. [5] If T is a bounded linear map from a normed space E into a Banach
space F, then the following conditions are equivalent:

1. T is a 2-quasi-nuclear map.

2. T factors through the diagonal map D, : oo — Lo for some p € £, that is, there
are two bounded linear maps S1 from E into ls and So from Lo into F such that
T =5,D,5.

Theorem 2.2. Suppose that0 < ¢ <1 and0<p<2. IfT: E — F is a g-quasi-\-nuclear
map between normed spaces E and F and if S is a p-quasi-A-nuclear map from F into a
Banach space G, then ST is a pseudo-A-nuclear map.

Proof. Since S is a p-quasi-A-nuclear map. Then by Theorem 2.1, S is 2-quasi-A-
nuclear. By Proposition 2.1 and Proposition 2.5, S can be factored through a diagonal map
D, : loo — {3 for some p € fo, that is, there are two bounded linear maps S; from F into
{s and Sy from ¢ into G such that S = S>D,S;. Since ¢ < 1, by Theorem 2.1, T" is quasi-
A-nuclear. By using Proposition 2.2 and Proposition 2.4, we get the pseudo-A-nuclearity of
sT. N

The following result is direct consequence of Proposition 2.3 and Theorem 2.2.
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Corollary 2.2. Suppose that 0 < ¢ <1 and 0 <p < 2. IfT: E — F is a q-quasi-nuclear
map between normed spaces E and F and if S is a p-quasi-nuclear map from F into a
Banach space G, then ST is a pseudo-nuclear map.

The Grothedieck-Pietsch criterion for nuclearity plays a major rule for proving our last
result. Before we start our arguments, we introduce the following remark.

Remark. If A = A(F)) is a G-space, then for any k£ € N and a € Py, there is b € Py such
that (a,)* = O(by).

Theorem 2.3. Suppose that A = A\(FPy) is a nuclear Goo-space and 0 < ¢ < p < +00, a
bounded linear map between normed spaces is a g-quasi-A-nuclear map if and only if it is a
p-quasi-A-nuclear map.

Proof. The ”if” part condition follows from Theorem 2.1. To prove the only ”if part”,
let T : E — F be a p-quasi-A-nuclear map between normed spaces E and F. Then there
exist a sequence (ay,) in A and a bounded sequence (a,) in E’ such that

1

1Tzl < (32, lanl @, an) )

Then we have

Q=

1Tal| < (3 lanl? Iz, an)l?)

To finish our proof it is enough to show that (\an|%) € A. Since ¢/p > 0 we choose k € N
such that 1/k < q/p. So q/p = 1/k +t for some t > 0. Hence |a,|?? = |a,|"/* |on|t. Let
a € Py be given, by Grothendieck-Pietsch criterion for nuclearity, we choose b € Py such
that (a,/b,) € ¢1. Since b € Py, choose ¢ € Py and p > 0 such that

bp < p(cn)'/* for all n e N.

Therefore

‘s\n

oo
Z = Z|an| |an|k_nb

1
p Y ol ot o 22
n=1 n

IA

Since (o) € A(Fo), we have (o) and (ay, ¢,) are in ¢1. So there exist v > 0 and § > 0
such that
lan| <+ and |ay|e, < B for all n € N.

Therefore )
1 = 1
||t <" and |ay,|* ¢k < 8% for all n € N.

Hence

sha
x-h—‘

o0 (o)
D lan 4py o<t
n=1 n=1
Therefore (Joy,|?) € A(Py) and hence T is g-quasi-A-nuclear. W
Applying Theorem 2.3, the following corollary is resulted:



ON QUASI-A-NUCLEARITY 5

Corollary 2.3. [7]Suppose that A = MN(Fy) is a nuclear Goo-space, a bounded linear map
between normed spaces is a quasi-A-nuclear map if and only if it is a 2-quasi-A-nuclear map.

In this section, we give some examples to show that the converse of our main previous
results are not true in general. For p > 0, we give an example of a sequence space \ and a
linear map T such that T is a p-quasi-nuclear map which is not a p-quasi-A-nuclear map.

Example 2.1. Define a map D : {1 — £, by Dz = (z,/3™). Then D is a p-quasi-nuclear
map which is not a p-quasi-As (n)-nuclear map.

Proof. To show that D is a p-quasi-nuclear map, let a,, = e, /3"™. Then

ety ] -, [ -, et

Since (an) is a sequence in lo with > |lan|[Z, < 400, D is a p-quasi-nuclear map. To
show that D is not a p-quasi-A(n)-nuclear map, define a map A : ¢, — {1 by putting
Az = (x,/3™). Then A is quasi-nuclear, and hence 2-quasi-nuclear. By Proposition 2.5,
A can be factored through D,, for some p € {2, that is, there are bounded linear maps
So il = Lo, Dy i bog — Lo, and Sq : £ — {1 such that A = 51D,S,. If we assume that
D is p-quasi-A(n)-nuclear, then by Theorem 2.3, D is quasi-A (n)-nuclear and hence by
Proposition 2.2, SoD is quasi-A (n)-nuclear. Therefore by Proposition 2.4, Ss D is pseudo-
Aoo(n)-nuclear. Thus by Proposition 2.2, AD is pseudo-A(n) -nuclear. Since AD : {1 — ¢4
is given by ADz = (2,/9") and AD is pseudo-Ao(n)-nuclear, we have (1/9™) € A (n),
which is a contradiction. So A is not 2-quasi-A(n)-nuclear.

Tn
3n

Now for 0 < 7 < s < 2, we give an example of a sequence space A and a linear map T
such that T is a s-quasi-A-nuclear map which is not r-quasi-A-nuclear. To achieve that we
need the following definitions and results. For two normed spaces F and F' and for integers
r >0, A.(E, F') denotes the collection of all finite rank linear maps A from E into F' whose
range is at most r-dimensional.

Definition 2.2. [4; P. 120] Let T be a linear map from a normed space E into a normed
space F'. The r-th approximation number o..(T) of T is defined to be inf{||T — A||: A €
A, (E, F)}.

Definition 2.3. [4; P. 144] Let B be an arbitrary bounded subset in a normed space E with
closed unit ball U. The infimum of all § > 0 for which there is a linear subspace F of E
with dimension at most n such that B C 0U + F is called the n-th diameter of B and is
denoted by d,,(B).

Definition 2.4. [see 8/ Let T : E — F be a bounded linear map between normed spaces
E and F with closed unit balls U and V respectively. The n-th diameter of T, denoted by
dn(T), is defined to be d,(T(U)).

Lemma 2.1. [2, P. 23] Suppose that T is a linear map from a normed space E into a
normed space F. Then d,(T) < a,(T) < /nd,(T).

Lemma 2.2. [2, P. 23] Suppose that T is a compact map from a Banach space X into a
Banach space F. Then o, (T) = a,(T"), where T' is the dual map of T

To this end, we have furnished the necessary back ground to give our desired example.
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Example 2.2. Let P = {( In(kn) ) k= 1,2,...}, and 0 < r < s < 2. Define the map D
from £y into £y by Dx = (anb Zn) where

1

Qp = ———=—.
n% nln(”7')

Then D is a s-quasi-A(P)-nuclear map which is not r-quasi-A\(P)-nuclear.

Proof. It is clear that A(P) is a nuclear Kothe space which is which is subset of ¢;.
Let k € N be given. Then
In(kn) 1
nii =0 ( s ) .
n+ pn(nr) nr

Therefore for any k € N we have

nln(kn)
Z — =, < +oo.

n pr pln(nr)

So we get (ay,) € A(P). Since

1Dlls = > lanllenal®
n
= > lanll{z,ea)l”,

n

and (e, ) is bounded sequence in ¢35, we have s-quasi-A-nuclearity of D. If we assume that
D is a r-quasi-A(P)-nuclear map. Then there exist a sequence (3,) € A(P) and a bounded
sequence (ay) in fo with ||a,|| < 1 for each n € N such that

1Dal <3 18l (a0
Let v, =Y oo _ |Bm|. Then one can show that v = (v,) € A(P). Let
M, ={xely: (x,a;) =0,9=1,2,... ,n}.
If x € M, then

||Dz]]" < Z B [(@, am)|" <y supy||an|[" [[][".

Hence, D(U N M,,) C 'yji V where U and V are the unit balls of ¢ and ¢s respectively.
Therefore

1 o
D'(V°) Sy U + M,

which gives d,, (D) < 'yi Since D is compact, by Lemma 2.2 we have oy, (D) = oy, (D).
Also by Lemma 2.1, we have a,(D’) < \/nd,(D’). Let i be the inclusion map from ¢, into

1
U, Then it is clear that a,(iD) < ay, (D). Hence we have o, (iD) = a;;. So we have

an(iD) < an(D) = a(D') < vnd, (D'),

and hence

1 1
o <y
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Therefore ;
ai <n? v, < noy,.
But
T 1
Qn = nninn)

So we have —i— < ,,. Since (—my) ¢ A(P), we have (v,,) ¢ A(P), which is a contradiction.

Ay
Therefore D is not a r-quasi-A(P)-nuclear map.

Problems.
Q#1 Does Theorem 2.3 still valid for any Go-space A(P) which is not nuclear?
Q#2 Does Theorem 2.2 still valid for any p > 27

Q#3. Assume that 2 < r < s < 4+00. Is it possible to find a sequence space A\ which is
proper subset of ¢; and a linear map T between normed spaces E and F' such that T
is s-quasi-A-nuclear which is not r-quasi-A-nuclear?
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