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ON QUASI-λ-NUCLEARITY
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Abstract. We Introduce new type of maps between normed spaces, namely, p-quasi-
λ-nuclear map. We prove that the composition of a q-quasi-λ-nuclear map (0 < q ≤ 1)
with a p-quasi-λ-nuclear map (0 < p ≤ 1) is a pseudo-λ-nuclear map. Also we prove
that for a nuclear G∞-space a linear map T between normed spaces is p-quasi-λ-nuclear
iff it is q-quasi-λ-nuclear.

1 Basic Concepts. For two sequences of scalars x = (xn) and y = (yn) we write xn =
O(yn) if there is a ρ > 0 such that xn ≤ ρyn for all n ∈ N.

A set A of sequences of non-negative real numbers is called a Köthe set, if it satisfies
the following conditions:

1. For each pair of elements a, b ∈ A there is c ∈ Awith an = O(cn) and bn = O(cn).

2. For every integer r ∈ N there exists a ∈ A with ar > 0.

The space of all sequences x = (xn) such that

pa(x) :=
∑

n

|xn| an < +∞

for all a ∈ A, is called the Köthe space, λ(A), generated by A[3].

A Köthe set P will be called a power set of infinite type if it satisfies the following
conditions:

1. For each a ∈ P , 0 < an ≤ an+1 for all n.

2. For each a ∈ P , there exists b ∈ P such that a2
n = O(bn).

A Köthe space of the form λ(P ) where P is a power set of infinite type is called a G∞-space
or a smooth sequence space of infinite type[9].

Let α = (αn) be an unbounded non-decreasing sequence of positive real numbers. Then
P∞ = {(kαn) : k ∈ N} is countable Köthe set. The corresponding Köthe space Λ∞(α) =
λ(P∞) is called the power series of infinite type[9].

Theorem 1.1. (Grothendieck-Pietsch criterion for nuclearity) [9] A Köthe space λ(A) is
nuclear if and only if for every a ∈ A, there is b ∈ A such that (an/bn) ∈ �1.
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Let E and F be two arbitrary normed spaces. A linear map T from E into F is called
a nuclear map if there are sequences (an), (yn) in E′ and F respectively, with

∑
n
||an|| ||yn|| < +∞ such that T (x) =

∑
n
〈x, an〉yn,

and a p-quasi-nuclear map if there is a sequence (an) in E′ with
∑

n
||an||p < +∞ such that ||T (x)||p ≤

∑
n
|〈x, an〉|p[5].

In the rest of this paper, letter λ stands for a fixed sequence space contained in �1.

A linear map T of a normed space E into a normed space F is called a pseudo-λ-
nuclear map if there exist a sequence (αn) in λ and a bounded sequences (an) and (yn)
in E′ and F respectively such that Tx =

∑
n αn〈x, an〉yn, for all x in E, and a quasi-λ-

nuclear map if there exist a sequence (αn) in λ and a bounded sequence (an) in E′ such
that ||Tx|| ≤ ∑

n |αn| |〈x, an〉|, for all x in E[1][6].

A linear map T of a normed space E into a normed space F is called a 2-quasi-λ-
nuclear map if there exist a sequence (αn) in λ and a bounded sequence (an) in E′ such
that

||Tx|| ≤
(∑

n
|αn| |〈x, an〉|2

)1/2

,

for all x in E[8].

2 Main results. To proceed in our work, we introduce the following definition:

Definition 2.1. For 0 < p < +∞, a linear map T of a normed space E into a normed
space F is called a p-quasi-λ-nuclear map if there exist a sequence (αn) in λ and a
bounded sequence (an) in E′ such that

||Tx|| ≤
(∑

n
|αn| |〈x, an〉|p

)1/p

,

for all x in E.

Let N (E, F ), QN p(E, F ), PλN (E, F ), and QλN p(E, F ), denote the collection of all
nuclear, p-quasi-nuclear, pseudo-λ-nuclear, and p-quasi-λ-nuclear maps, respectively, be-
tween normed spaces E and F . It is an easy matter to see the following proposition.

Proposition 2.1. If T ∈ QλN p(E, F ), then T ∈ QN p(E, F )

Let B(E, F ) denotes the collection of all bounded linear map between normed spaces E
and F . Then we have the following proposition.

Proposition 2.2. Let E, F and G be normed spaces. Let T and S be a linear maps from
E into F and from F into G respectively. Then

1. If T ∈ B(E, F ) and S ∈ PλN (F,G), then ST ∈ PλN (E, G).

2. If T ∈ PλN (E, F ) and S ∈ B(F,G), then ST ∈ PλN (E, G).

3. If T ∈ B(E, F ) and S ∈ QλN p(F,G), then ST ∈ QλN p(E, G).

4. If T ∈ QλN p(E, F ) and S ∈ B(F,G), then ST ∈ QλN p(E, G).
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Our next result indicates the relationship between r-quasi-λ-nuclear and s-quasi-λ-nuclear
maps.

Theorem 2.1. If 0 < r < s < +∞, then r-quasi-λ-nuclear maps are s-quasi-λ-nuclear.

Proof. Suppose that 0 < r < s < +∞ and T : E → F is a r-quasi-λ-nuclear map
between normed spaces E and F . Then there exist a sequence (αn) in λ and a bounded
sequence (an) in E′ such that

||Tx||r ≤
∑

n
|αn| |〈x, an〉|r .

Let q = s
s−r . Then one can show that

||Tx|| ≤
(∑

n
|αn|

) 1
rq

(∑
n
|αn| |〈x, an〉|s

) 1
s

.

Let β = (
∑

n |αn|)
1

sq and bn = β an. Then

||Tx|| ≤
(∑

n
|αn| |〈x, bn〉|s

)1/s

.

Since (αn) ∈ λ and (bn) is a bounded sequence in E′, T is a s-quasi-λ-nuclear map.

The relationship between p-quasi-nuclear and p-quasi-�1-nuclear maps is given by the
following result:

Proposition 2.3. A linear map T from a normed space E into a normed space F is p-
quasi-nuclear if and only if it is p-quasi-�1-nuclear.

The following result is direct consequence of Proposition 2.3 and Theorem 2.1.

Corollary 2.1. [5] If 0 < r < s < +∞, then r-quasi-nuclear maps are s-quasi-nuclear.

The following known results are crucial in proving our next result.

Proposition 2.4. [8] Each quasi-λ-nuclear map T : E → F between normed spaces E and
F is also pseudo-λ-nuclear if it is regarded as a map from E into a Banach space �∞(I) in
which F is embedded.

Proposition 2.5. [5] If T is a bounded linear map from a normed space E into a Banach
space F , then the following conditions are equivalent:

1. T is a 2-quasi-nuclear map.

2. T factors through the diagonal map Dµ : �∞ → �2 for some µ ∈ �2, that is, there
are two bounded linear maps S1 from E into �∞ and S2 from �2 into F such that
T = S2DµS1.

Theorem 2.2. Suppose that 0 < q ≤ 1 and 0 < p ≤ 2. If T : E → F is a q-quasi-λ-nuclear
map between normed spaces E and F and if S is a p-quasi-λ-nuclear map from F into a
Banach space G, then ST is a pseudo-λ-nuclear map.

Proof. Since S is a p-quasi-λ-nuclear map. Then by Theorem 2.1, S is 2-quasi-λ-
nuclear. By Proposition 2.1 and Proposition 2.5, S can be factored through a diagonal map
Dµ : �∞ → �2 for some µ ∈ �2, that is, there are two bounded linear maps S1 from F into
�∞ and S2 from �2 into G such that S = S2DµS1. Since q ≤ 1, by Theorem 2.1, T is quasi-
λ-nuclear. By using Proposition 2.2 and Proposition 2.4, we get the pseudo-λ-nuclearity of
ST .

The following result is direct consequence of Proposition 2.3 and Theorem 2.2.
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Corollary 2.2. Suppose that 0 < q ≤ 1 and 0 < p ≤ 2. If T : E → F is a q-quasi-nuclear
map between normed spaces E and F and if S is a p-quasi-nuclear map from F into a
Banach space G, then ST is a pseudo-nuclear map.

The Grothedieck-Pietsch criterion for nuclearity plays a major rule for proving our last
result. Before we start our arguments, we introduce the following remark.

Remark. If λ = λ(P0) is a G∞-space, then for any k ∈ N and a ∈ P0, there is b ∈ P0 such
that (an)k = O(bn).

Theorem 2.3. Suppose that λ = λ(P0) is a nuclear G∞-space and 0 < q ≤ p < +∞, a
bounded linear map between normed spaces is a q-quasi-λ-nuclear map if and only if it is a
p-quasi-λ-nuclear map.

Proof. The ”if” part condition follows from Theorem 2.1. To prove the only ”if part”,
let T : E → F be a p-quasi-λ-nuclear map between normed spaces E and F . Then there
exist a sequence (αn) in λ and a bounded sequence (an) in E′ such that

||Tx|| ≤
(∑

n
|αn| |〈x, an〉|p

) 1
p

.

Then we have

||Tx|| ≤
(∑

n
|αn|

q
p |〈x, an〉|q

) 1
q

.

To finish our proof it is enough to show that (|αn|
1
p ) ∈ λ. Since q/p > 0 we choose k ∈ N

such that 1/k < q/p. So q/p = 1/k + t for some t > 0. Hence |αn|q/p = |αn|1/k |αn|t. Let
a ∈ P0 be given, by Grothendieck-Pietsch criterion for nuclearity, we choose b ∈ P0 such
that (an/bn) ∈ �1. Since b ∈ P0, choose c ∈ P0 and ρ > 0 such that

bn ≤ ρ (cn)1/k for all n ∈ N.

Therefore

∞∑
n=1

|αn|
q
p an =

∞∑
n=1

|αn|t |αn| 1
k

an

bn
bn

≤ ρ

∞∑
n=1

|αn|t |αn| 1
k c

1
k
n

an

bn
.

Since (αn) ∈ λ(P0), we have (αn) and (αn cn) are in �1. So there exist γ > 0 and β > 0
such that

|αn| ≤ γ and |αn|cn ≤ β for all n ∈ N.

Therefore
|αn|t ≤ γt and |αn| 1

k c
1
k
n ≤ β

1
k for all n ∈ N.

Hence ∞∑
n=1

|αn|
q
p an ≤ ρ γt β

1
k

∞∑
n=1

an

bn
< +∞.

Therefore (|αn|
q
p ) ∈ λ(P0) and hence T is q-quasi-λ-nuclear.

Applying Theorem 2.3, the following corollary is resulted:
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Corollary 2.3. [7]Suppose that λ = λ(P0) is a nuclear G∞-space, a bounded linear map
between normed spaces is a quasi-λ-nuclear map if and only if it is a 2-quasi-λ-nuclear map.

In this section, we give some examples to show that the converse of our main previous
results are not true in general. For p > 0, we give an example of a sequence space λ and a
linear map T such that T is a p-quasi-nuclear map which is not a p-quasi-λ-nuclear map.

Example 2.1. Define a map D : �1 → �p by Dx = (xn/3n). Then D is a p-quasi-nuclear
map which is not a p-quasi-Λ∞(n)-nuclear map.

Proof. To show that D is a p-quasi-nuclear map, let an = en/3n. Then

||Dx||pp =
∣∣∣
∣∣∣(xn

3n

)∣∣∣
∣∣∣p
p

=
∑

n

∣∣∣xn

3n

∣∣∣p =
∑

n
|〈x, an〉|p .

Since (an) is a sequence in �∞ with
∑

n ||an||p∞ < +∞, D is a p-quasi-nuclear map. To
show that D is not a p-quasi-Λ∞(n)-nuclear map, define a map A : �p → �1 by putting
Ax = (xn/3n). Then A is quasi-nuclear, and hence 2-quasi-nuclear. By Proposition 2.5,
A can be factored through Dµ for some µ ∈ �2, that is, there are bounded linear maps
S2 : �p → �∞, Dµ : �∞ → �2, and S1 : �2 → �1 such that A = S1DµS2. If we assume that
D is p-quasi-Λ∞(n)-nuclear, then by Theorem 2.3, D is quasi-Λ∞(n)-nuclear and hence by
Proposition 2.2, S2D is quasi-Λ∞(n)-nuclear. Therefore by Proposition 2.4, S2D is pseudo-
Λ∞(n)-nuclear. Thus by Proposition 2.2, AD is pseudo-Λ∞(n) -nuclear. Since AD : �1 → �1

is given by ADx = (xn/9n) and AD is pseudo-Λ∞(n)-nuclear, we have (1/9n) ∈ Λ∞(n),
which is a contradiction. So A is not 2-quasi-Λ∞(n)-nuclear.

Now for 0 < r < s ≤ 2, we give an example of a sequence space λ and a linear map T
such that T is a s-quasi-λ-nuclear map which is not r-quasi-λ-nuclear. To achieve that we
need the following definitions and results. For two normed spaces E and F and for integers
r ≥ 0, Ar(E, F ) denotes the collection of all finite rank linear maps A from E into F whose
range is at most r-dimensional.

Definition 2.2. [4; P. 120] Let T be a linear map from a normed space E into a normed
space F . The r-th approximation number αr(T ) of T is defined to be inf{||T −A|| : A ∈
Ar(E, F )}.

Definition 2.3. [4; P. 144] Let B be an arbitrary bounded subset in a normed space E with
closed unit ball U . The infimum of all δ > 0 for which there is a linear subspace F of E
with dimension at most n such that B ⊂ δ U + F is called the n-th diameter of B and is
denoted by dn(B).

Definition 2.4. [see 8] Let T : E → F be a bounded linear map between normed spaces
E and F with closed unit balls U and V respectively. The n-th diameter of T , denoted by
dn(T ), is defined to be dn(T (U)).

Lemma 2.1. [2, P. 23] Suppose that T is a linear map from a normed space E into a
normed space F . Then dn(T ) ≤ αn(T ) ≤ √

ndn(T ).

Lemma 2.2. [2, P. 23] Suppose that T is a compact map from a Banach space X into a
Banach space F . Then αn(T ) = αn(T ′), where T ′ is the dual map of T .

To this end, we have furnished the necessary back ground to give our desired example.
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Example 2.2. Let P =
{(

nln(kn)
)
: k = 1, 2, . . .

}
, and 0 < r < s ≤ 2. Define the map D

from �2 into �s by Dx = (αn
1
s xn) where

αn =
1

n
s
r nln(n

s
r )

.

Then D is a s-quasi-λ(P )-nuclear map which is not r-quasi-λ(P )-nuclear.

Proof. It is clear that λ(P ) is a nuclear Köthe space which is which is subset of �1.
Let k ∈ N be given. Then

nln(kn)

n
s
r nln(n

s
r )

= O

(
1

n
s
r

)
.

Therefore for any k ∈ N we have

∑
n

nln(kn)

n
s
r nln(n

s
r )

< +∞.

So we get (αn) ∈ λ(P ). Since

||Dx||ss =
∑

n

|αn||xn|s

=
∑

n

|αn||〈x, en〉|s,

and (en) is bounded sequence in �2, we have s-quasi-λ-nuclearity of D. If we assume that
D is a r-quasi-λ(P )-nuclear map. Then there exist a sequence (βn) ∈ λ(P ) and a bounded
sequence (an) in �2 with ||an|| ≤ 1 for each n ∈ N such that

||Dx||r ≤
∑

n
|βn| |〈x, an〉|r.

Let γn =
∑∞

m=n |βm|. Then one can show that γ = (γn) ∈ λ(P ). Let

Mn = {x ∈ �2 : 〈x, ai〉 = 0, i = 1, 2, . . . , n}.
If x ∈ Mn, then

||Dx||r ≤
∑∞

m=n
|βm| |〈x, am〉|r ≤ γn supn||an||r ||x||r .

Hence, D(U ∩ Mn) ⊆ γ
1
r
n V where U and V are the unit balls of �2 and �s respectively.

Therefore

D′(V ◦) ⊆ γ
1
r
n U◦ + M⊥

n ,

which gives dn(D′) ≤ γ
1
r
n . Since D is compact, by Lemma 2.2 we have αn(D) = αn(D′).

Also by Lemma 2.1, we have αn(D′) ≤ √
ndn(D′). Let i be the inclusion map from �s into

�2, Then it is clear that αn(iD) ≤ αn(D). Hence we have αn(iD) = α
1
s
n . So we have

αn(iD) ≤ αn(D) = α(D′) ≤ √
ndn(D′),

and hence
α

1
s
n ≤ √

nγ
1
r
n .
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Therefore
α

r
s
n ≤ n

r
2 γn ≤ n γn.

But
α

r
s
n =

1
n nln(n)

.

So we have 1
nln(n) ≤ γn. Since ( 1

nln(n) ) /∈ λ(P ), we have (γn) /∈ λ(P ), which is a contradiction.
Therefore D is not a r-quasi-λ(P )-nuclear map.

Problems.

Q#1 Does Theorem 2.3 still valid for any G∞-space λ(P ) which is not nuclear?

Q#2 Does Theorem 2.2 still valid for any p > 2?

Q#3. Assume that 2 < r < s < +∞. Is it possible to find a sequence space λ which is
proper subset of �1 and a linear map T between normed spaces E and F such that T
is s-quasi-λ-nuclear which is not r-quasi-λ-nuclear?
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