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Abstract.

A category Cln representing free algebras of clones of operations of finite but
arbitrary arities is constructed together with an adjunction 〈F, U, η, ε〉 : Set → Cln.
This gives rise to an algebraic theory T over Set. A single-sorted variety V of clone
algebras is, then, equationally defined inspired by the multi-sorted construction of
Taylor [20]. It is shown that the Eilenberg-Moore category of T-algebras is isomorphic
to the category �V corresponding to the variety V.

1 Introduction In algebraic logic one studies the classes of algebras that form the so-
called algebraic semantics of deductive systems ([2, 3]). Along these lines several attempts
have been made to define algebras that would be appropriate for algebraizing equational
logic. Some of these attempts were focusing on ordinary, single-sorted, algebras, whereas
others were using many-sorted algebras. The general theory of this latter type of algebras
has been developed independently in [14, 15],[9] and [1]. Some of these attempts are P.
Hall’s notion of clone (see [6]), which gives a partial single-sorted algebra, B.H. Neumann
and E.C. Wiegold’s representation of varieties in terms of semigroups [18], W.D. Neumann’s
substitution algebras [17], having infinitary substitution operations, W. Lawvere’s algebraic
theories [10, 11] (see also [12, 19]), W. Taylor’s heterogeneous variety of substitution algebras
[20] and, finally, N. Feldman’s polynomial substitution algebras [8] (see also [5]). In a similar
direction Czelakowski and Pigozzi [7] view equational logic as a 2-deductive system in the
sense of [3] and propose its algebraization via another 2-deductive system, based on [8],
which they call hyperequational logic.

The common feature underlying all these algebraizations is the a priori choice of the basic
operations of the class of algebras that is chosen as the algebraizing class. For instance,
in [18] the identity, repetition, deletion and transposition operators are taken as constants
and composition of operators as an associative binary operation, in [17] projections and
infinitary substitutions are the basic operations, in [20] n-ary projections and m-ary to
n-ary substitutions, for all m, n ≥ 1, are chosen as basic, whereas in [8] projections and
one-place substitutions are basic.

In [21, 23], a general framework for the algebraization of multi-signature logical systems,
based on the notion of equivalence of institutions [22, 24] was introduced. This framework
suggests another approach to the algebraization of equational logic (see [25]) closer in spirit
to [11], based on the categorical algebraic notion of an algebraic theory ([4, 13, 16]). Namely,
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the algebraizing class of algebras is not presented in the traditional way by choosing a
priori basic operations and relating them via equational axioms. Rather, an adjunction is
constructed based on the original logical system that is chosen to represent equational logic
over multiple signatures. This adjunction gives rise in the standard way to an algebraic
theory in monoid form. The Eilenberg-Moore algebras of this algebraic theory constitute
the algebraizing class of algebras. Thus, basic operations are not given. Instead all clone
operations are assigned equal weight. On the other hand, in an attempt to connect this
approach to the traditional one, in Section 5, a variety V of algebras is constructed based
on a similar construction in [20]. The algebras of V correspond to clones of algebras with
operations of arbitrary finite arities. It is then shown, in Section 6, that the category of
the Eilenberg-Moore algebras of the aforementioned algebraic theory is isomorphic to the
category �V of this variety V .

2 Basic Constructions A countably infinite set of variables V is fixed in advance and
well-ordered and by Set is denoted the category of all small sets. Given a set X, we define
the set of X-terms with variables in the set V.

Definition 1 Let X ∈ |Set|. We define the set of X-terms TmX(V ) ∈ |Set|, to be the
smallest set with

(i) V ⊆ TmX(V ) and
(ii) If x ∈ X, n ∈ ω and t0, . . . , tn−1 ∈ TmX(V ), with tn−1 �= vn−1, then

x(t0, . . . , tn−1) ∈ TmX(V ).

The definitions of simultaneous substitution of terms for variables in a term and that of
the extension of a given set map f : X → TmY (V ) to a map f∗ : TmX(V ) → TmY (V ) are
given next.

Definition 2 Let X ∈ |Set|, as before. Define a function

RX : TmX(V ) ×
∞⋃

k=0

TmX(V )k → TmX(V )

by RX : TmX(V ) × TmX(V )0 → TmX(V ); (t, 〈〉) �→ t, and, otherwise, by recursion on the
structure of X-terms as follows:

(i)

RX(vi, 〈s0, . . . , sm−1〉) =
{

si, i < m
vi, i ≥ m

for every m ∈ ω, s0, . . . , sm−1 ∈ TmX(V ),
(ii) RX(x(t0, . . . , tn−1), �s) = x(RX(t0, �s), . . . , RX(tn−1, �s), sn, . . . , sm−1), for every x ∈

X, n ∈ ω, t0, . . . , tn−1 ∈ TmX(V ), tn−1 �= vn−1, and every m ∈ ω,�s ∈ TmX(V )m.
It is understood that the last, say k-th, term inside the parenthesis on the right, i.e.,

RX(tk−1, �s), 0 ≤ k < n, if m ≤ n, and either RX(tk−1, �s) or sk−1, 0 ≤ k < m, if n < m,
must be the last term that is not equal to the variable vk−1.

Definition 3 Let X, Y ∈ |Set| and f : X → TmY (V ). Define f∗ : TmX(V ) → TmY (V )
by recursion on the structure of X-terms as follows:

(i) f∗(v) = v, for every v ∈ V,
(ii) f∗(x(t0, . . . , tn−1)) = RY (f(x), 〈f∗(t0), . . . , f∗(tn−1)〉), for every x ∈ X, n ∈ ω,

t0, . . . , tn−1 ∈ TmX(V ), tn−1 �= vn−1.
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In the sequel, we write f : X ⇁ Y to denote a Set-map f : X → TmY (V ), as above.
The choice follows an analogous notation used in [16] for Kleisli morphisms. It is used
to anticipate the fact that these morphisms will turn out to be morphisms in the Kleisli
category of the algebraic theory T in Set that will be constructed in the fourth section.
Given two such maps f : X ⇁ Y and g : Y ⇁ Z, their composition g ◦ f : X ⇁ Z is
defined to be

g ◦ f = g∗f.

This definition is also reminiscent of the composition in a Kleisli category of an algebraic
theory. We denote by Cln the category having as collection of objects |Set| and as its
collections of morphisms

Cln(X, Y ) = {f : X ⇁ Y : f ∈ Set(X, TmY (V ))},
for every X, Y ∈ |Set|. Composition in Cln is the composition ◦ as defined above and the
identity arrows jX : X ⇁ X are the set maps jX : X → TmX(V ), with

jX(x) = x(), for every x ∈ X.

Given two Cln-maps f : X ⇁ Y, g : Y ⇁ Z, a Set-map from TmX(V ) into TmZ(V )
may be obtained either by taking the extension (g ◦f)∗ of g ◦f to X-terms or by composing
the extensions f∗ and g∗. It is now shown that the outcomes are the same both ways. Two
lemmas are needed first.

Lemma 4 Let f : X ⇁ Y, k,m ∈ ω, t ∈ TmX(V ), �u ∈ TmX(V )k and �s ∈ TmX(V )m. Then

RX(RX(t, �u), �s) = RX(t, 〈RX(u0, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1〉).
Proof:
By recursion on the structure of t.
If t = vi ∈ V,

RX(RX(vi, �u), �s) =
{

RX(ui, �s), i < k
RX(vi, �s), i ≥ k

}
=




RX(ui, �s), i < k
si, k ≤ i < m
vi, m ≤ i


 =

= RX(vi, 〈RX(u0, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1〉).
Next, if x ∈ X, n ∈ ω and t0, . . . , tn−1 ∈ TmX(V ), tn−1 �= vn−1,

RX(RX(x(t0, . . . , tn−1), �u), �s) =

= RX(x(RX (t0, �u), . . . , RX(tn−1, �u), un, . . . , uk−1), �s)
(by definition of RX)

= x(RX(RX(t0, �u), �s), . . . , RX(RX(tn−1, �u), �s),
RX(un, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1) (by definition of RX)

= x(RX(t0, 〈RX(u0, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1〉), . . . ,
RX(tn−1, 〈RX(u0, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1〉), RX(un, �s), . . . ,
RX(uk−1, �s), sk, . . . , sm−1) (by the induction hypothesis)

= RX(x(t0, . . . , tn−1), 〈RX(u0, �s), . . . , RX(uk−1, �s), sk, . . . , sm−1〉),
(by definition of RX).

�
The proofs of Lemmas 5 and 6 below are also by induction on the structure of the term

t and will be omitted. Lemma 4 is used in the proof of the inductive step in Lemma 5 and
Lemma 5 in the inductive step of Lemma 6.
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Lemma 5 Let f : X ⇁ Y, m ∈ ω, t ∈ TmX(V ), �s ∈ TmX(V )m. Then

f∗(RX(t, �s)) = RY (f∗(t), f∗(�s)).

Lemma 6 Let f : X ⇁ Y, g : Y ⇁ Z be two Cln-maps. Then

(g ◦ f)∗ = g∗f∗.

3 The Adjunction We are now ready to proceed with the construction of the promised
adjunction

〈F,U, η, ε〉 : Set → Cln.

First, define a functor F : Set → Cln by

F (X) = X, for every X ∈ |Set|,
and, if f : X → Y ∈ Mor(Set),

F (f) = jY f : X ⇁ Y.

If f : X → Y, g : Y → Z ∈ Mor(Set), then

F (gf) = jZ(gf) = (jZg)∗(jY f) = F (g)∗F (f) = F (g) ◦ F (f),

i.e., F is a functor.
Now define a functor U : Cln → Set by

U(X) = TmX(V ), for every X ∈ |Cln|,
and, if f : X ⇁ Y ∈ Mor(Cln),

U(f) = f∗ : TmX(V ) → TmY (V ).

Then, if f : X ⇁ Y, g : Y ⇁ Z ∈ Mor(Cln), we have

U(g ◦ f) = (g ◦ f)∗

= g∗f∗ (by Lemma 6)
= U(g)U(f),

i.e., U is also a functor.
Finally, define natural transformations η : ISet → UF by ηX : X → TmX(V ) with ηX =

jX , for every X ∈ |Set|, and ε : FU → ICln by εX : TmX(V ) ⇁ X with εX = iTmX (V ), for
every X ∈ |Cln|. It is now shown that η and ε are indeed natural transformations.

To this end, let f : X → Y ∈ Mor(Set). Then, for every x ∈ X,

Y U(F (Y ))�
ηY

X U(F (X))�ηX

�

f

�

U(F (f))

U(F (f))(ηX(x)) = U(F (f))(x()) = (jY f)∗(x()) =
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= RY ((jY f)(x), 〈〉) = jY f(x) = ηY (f(x)).

Next, let f : X ⇁ Y ∈ Mor(Cln). Then, for every t ∈ TmX(V ),

F (U(Y )) Y�
εY

F (U(X)) X�εX

�

F (U(f))

�

f

(f ◦ εX)(t) = f∗(εX(t)) = f∗(t) = ε∗Y (jTmY (V )(f∗(t))) = (εY ◦ F (U(f)))(t).

Finally, if t ∈ TmX(V ), then

i∗TmX(V )(ηTmX (V )(t)) = i∗TmX(V )(t()) = t,

and, if y ∈ Y,

i∗TmX (V )(ηTmY (V )(ηY (y))) = i∗TmX (V )(y()()) = y() = ηY (y),

i.e., the following triangles commute
TmX(V ) TmTmX(V )(V )�ηTmX(V )

iTmX(V )

�
�

�
�

�
�

�
��
TmX(V )

�

i∗TmX (V )

Y TmY (V )�ηTmY (V )ηY

ηY

�
�

�
�

�
�

�
��

Y
�

iTmY (V )

which proves

Theorem 7 〈F,U, η, ε〉 : Set → Cln is an adjunction.

4 The Theory of the Adjunction It is well-known ([13, 16, 4]) that an adjunction
〈F,U, η, ε〉 : Set → Cln gives rise to an algebraic theory T = 〈T, η, µ〉 in monoid form over
Set, with T = UF and µ = UεF . Moreover there exists a unique functor K : SetT → Cln
from the Kleisli category of the theory to Cln, called the Kleisli comparison functor of the
adjunction, that makes the F - and U -paths of the following diagrams commute.

SetT Cln�K

Set

FT

�
�

�
��

F
�

�
�

��

SetT Cln�K

Set

UT

�
�

�
��

U
�

�
�

��

It is easy to verify that, in this case SetT = Cln and K = ICln. Therefore Cln is the
category of all free algebras of the algebraic theory T in Set.

Also recall that a T-algebra 〈X, ξ〉 consists of a set X together with a map ξ : T (X) → X,
i.e., ξ : TmX(V ) → X, such that the following diagrams commute

X TmX(V )�jX

iX
�

�
�
��

X
�

ξ

TmX(V ) X�
ξ

TmTmX(V )(V ) TmX(V )�(jXξ)∗

�

i∗TmX (V )

�

ξ
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5 Clone Algebras In this section a variety of algebras V is equationally defined whose
members are called clone algebras. The construction is inspired by W. Taylor’s construc-
tion of a multi-sorted analog in [20]. In the next section, it will be shown that the category
�V of this variety is isomorphic to the Eilenberg-Moore category SetT of the algebraic theory
T in Set, that was constructed in the previous section.

Let L = 〈Λ, ρ〉 be the language type defined as follows.

Λ = {vi, Ci : i ∈ ω}, with ρ(vi) = 0, ρ(Ci) = i + 1.

Definition 8 A clone algebra A is an L-algebra that satisfies the following identities,
for every n, m ∈ ω,

• C0(x) = x

• Cn(x, y0 . . . , yn−2, vn−1) = Cn−1(x, y0 . . . , yn−2)
•

Cn(vm, x0, . . . , xn−1) =
{

xm, if m < n
vm, otherwise

• Cn(z, Cn(y0, �x), . . . ,Cn(ym−1, �x), xm, . . . , xn−1) = Cn(Cm(z, �y), �x)

Let V be the variety of all clone algebras and denote by �V the category associated with V .

It will now be shown that a functor P can be constructed from the category �V, associated
with the variety V , to the category SetT of all T-algebras in Set. The object part of P is
constructed first.

Let A = 〈A,LA〉 be a clone algebra. Define A∗ = 〈A, ξA∗〉 as follows: ξA∗ : TmA(V ) →
A is defined by recursion on the structure of A-terms, by

• ξA∗(vi) = vA
i , for every i ∈ ω,

• If a ∈ A,n ∈ ω, t0, . . . , tn−1 ∈ TmA(V ), tn−1 �= vn−1,

ξA∗(a(t0, . . . , tn−1)) = CA
n (a, ξA∗(t0), . . . , ξA∗(tn−1)).

Lemma 9 Let A ∈ V ,A∗ = 〈A, ξA∗〉. Then, for every t ∈ TmA(V ),m ∈ ω,�s ∈ TmA(V )m,

ξA∗(RA(t, �s)) = CA
m(ξA∗(t), ξA∗(�s)).

Proof:
By induction on the structure of t.
If t = vi ∈ V, then

ξA∗(RA(vi, �s)) =
{

ξA∗(si), if i < m
ξA∗(vi), if i ≥ m

}
=

{
ξA∗(si), if i < m
vA

i , if i ≥ m

}

= CA
m(vA

i , ξA∗(�s)) (by the third axiom)
= CA

m(ξA∗(vi), ξA∗(�s)).

If a ∈ A,n ∈ ω,�t ∈ TmA(V )n, tn−1 �= vn−1, then

ξA∗(RA(a(�t), �s)) =
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= ξA∗(a(RA(t0, �s), . . . , RA(tn−1, �s), sn, . . . , sm−1)) (by definition of RA)
= CA

m(a, ξA∗(RA(t0, �s)), . . . , ξA∗(RA(tn−1, �s)), ξA∗(sn), . . . , ξA∗(sm−1))
(by definition of ξA∗)

= CA
m(a,CA

m(ξA∗(t0), ξA∗(�s)), . . . , CA
m(ξA∗(tn−1), ξA∗(�s)), ξA∗(sn), . . . , ξA∗(sm−1))

(by the induction hypothesis)
= CA

m(CA
n (a, ξA∗(�t)), ξA∗(�s)) (by the fourth axiom)

= CA
m(ξA∗(a(�t)), ξA∗(�s)). (by definition of ξA∗)

�

Lemma 10 Let A ∈ V . Then A∗ = 〈A, ξA∗〉 ∈ |SetT|.

Proof:
We need to show that the following diagrams commute

A TmA(V )�jA

iA
�

�
�
��

A
�

ξA∗

TmA(V ) A�
ξA∗

TmTmA(V )(V ) TmA(V )�(jAξA∗)∗

�

i∗TmA(V )

�

ξA∗

For the triangle, we have, for every a ∈ A,

ξA∗(jA(a)) = ξA∗(a()) (by definition of jA)
= CA

0 (a) (by definition of ξA∗)
= a (by the first axiom)
= iA(a).

For the rectangle, we proceed by induction on the structure of a TmA(V )-term t. If t =
vi ∈ V, then

ξA∗((jAξA∗)∗(vi)) = ξA∗(vi) = ξA∗(i∗TmA(V )(vi)).

If s ∈ TmA(V ), n ∈ ω,�t ∈ TmTmA(V )(V )n, tn−1 �= vn−1, then

ξA∗((jAξA∗)∗(s(�t))) = ξA∗(RA((jAξA∗)(s), (jAξA∗)∗(�t))) (by definition of (jAξA∗)∗)
= CA

m(ξA∗(jA(ξA∗(s))), ξA∗ ((jAξA∗)∗(�t))) (by Lemma 9)
= CA

m(ξA∗(s), ξA∗(i∗TmA(V )(�t)))
(by commutativity of triangle and the induction hypothesis)

= ξA∗(RA(s, i∗TmA(V )(�t))) (by Lemma 9)
= ξA∗(i∗TmA(V )(s(�t))). (by definition of i∗TmA(V ))

�
Next suppose that A = 〈A,LA〉,B = 〈B,LB〉 ∈ V and h : A → B ∈ �V(A,B). We show

that the following diagram commutes

A B�
h

TmA(V ) TmB(V )�(jBh)∗

�

ξA∗

�

ξB∗
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i.e., that h ∈ SetT(A∗,B∗).
We work by induction on the structure of an A-term t.
If t = vi ∈ V, then

ξB∗((jBh)∗(vi)) = ξB∗(vi) (by definition of (jBh)∗)
= vB

i (by definition of ξB∗)
= h(vA

i ) (since h ∈ �V(A,B))
= h(ξA∗(vi)). (by definition of ξA∗)

If a ∈ A,n ∈ ω,�t ∈ TmA(V )n, tn−1 �= vn−1,

ξB∗((jBh)∗(a(�t))) = ξB∗(RB((jBh)(a), (jBh)∗(�t))) (by definition of (jBh)∗)
= CB

n (ξB∗(jB(h(a))), ξB∗((jBh)∗(�t))) (by Lemma 9)
= CB

n (h(a), h(ξA∗(�t))) (by comm. of triangle and the ind. hyp.)
= h(CA

n (a, ξA∗(�t))) (since h ∈ �V(A,B))
= h(ξA∗(a(�t))). (by definition of ξA∗)

Thus, it is possible to define the functor P : �V → SetT by

P (A) = A∗, for every A ∈ V ,

and, given h ∈ �V(A,B), P (h) ∈ SetT(A∗,B∗), by

P (h) = h.

6 The Equivalence In this section, a functor Q : SetT → �V in the opposite direction
is defined and it is shown that P and Q are inverses of each other. Therefore the two
categories SetT and �V are isomorphic categories.

Let A = 〈A, ξA〉 be a T-algebra. Define an L-algebra A# = 〈A,LA#〉 as follows:

• vA#

i = ξA(vi), for every i ∈ ω,

• CA#

n (a, a0, . . . , an−1) = ξA(RA(jA(a), 〈jA(a0), . . . , jA(an−1)〉)), for every n ∈ ω, a, a0,
. . . , an−1 ∈ A.

Lemma 11 Let A = 〈A, ξA〉 ∈ |SetT|. Then jAξA = (jAξA)∗jTmA(V ).

Proof:
Let t ∈ TmA(V ). Then

(jAξA)∗(jTmA(V )(t)) = (jAξA)∗(t()) (by definition of jTmA(V ))
= jAξA(t). (by definition of (jAξA)∗)

�

Lemma 12 Let A ∈ |SetT|. Then A# ∈ V .

Proof:
We need to verify that the identities of Definition 8 hold. For the first one,

CA#

0 (a) = ξA(RA(jA(a), 〈〉)) = ξAjA(a) = a.
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For the second, we have
CA#

n (a, b0, . . . , bn−2, vA#

n−1) =

= CA#

n (a,�b, ξA(vn−1)) (by definition of vA#

n−1)
= ξA(RA(jA(a), 〈jA(�b), jA(ξA(vn−1))〉)) (by defin. of CA#

n )
= ξA(RA(jA(ξA(jA(a))), 〈jA(ξA(jA(�b))), jA(ξA(vn−1))〉))

(by ξAjA = iA)
= ξA(RA(jA(ξA(a())), 〈jA(ξA(�b())), jA(ξA(vn−1))〉))

(by definition of jA)
= ξA(RA((jAξA)(a()), 〈(jAξA)∗(�b()()), (jAξA)∗(vn−1())〉))

(by Lemma 11)
= ξA((jAξA)∗(a()(�b()(), vn−1()))) (by defin. of (jAξA)∗)
= ξA(i∗TmA(V )(a()(�b()(), vn−1())))

(since ξA(jAξA)∗ = ξAi∗TmA(V ))
= ξA(RA(a(), 〈�b(), vn−1〉)) (by definition of i∗TmA(V ))
= ξA(RA(a(),�b())), (by definition of RA)
= . . . (reverse all the steps in the deduction above)
= CA#

n−1(a,�b).

The third and the fourth identities can be proved similarly. Lemma 11 is used in the proof
of both. In the proof of the fourth, Lemma 4 is also used. �

Next, let A = 〈A, ξA〉,B = 〈B, ξB〉 ∈ |SetT| and h ∈ SetT(A,B), i.e., the following
diagram commutes

A B�
h

TmA(V ) TmB(V )�(jBh)∗

�

ξA

�

ξB

We show that h ∈ �V(A#,B#). To this end, we need to verify the following two equations

• h(vA#

i ) = vB#

i , for every i ∈ ω, and

• h(CA#

n (a, a0, . . . , an−1)) = CB#

n (h(a), h(a0), . . . , h(an−1)), for every n ∈ ω, a, a0, . . . ,
an−1 ∈ A.

We have

h(vA#

i ) = h(ξA(vi)) (by definition of vA#

i )
= ξB((jBh)∗(vi)) (by commutativity of rectangle)
= ξB(vi) (by definition of (jBh)∗)
= vB#

i , (by definition of vB#

i )

and

h(CA#

n (a,�a)) = h(ξA(RA(jA(a), jA(�a)))) (by definition of CA#

n )
= ξB((jBh)∗(RA(jA(a), jA(�a)))) (by commut. of rectangle)
= ξB(RB((jBh)∗(jA(a)), (jBh)∗(jA(�a)))) (by Lemma 5)
= ξB(RB((jBh)(a), (jBh)(�a)))
= CB#

n (h(a), h(�a)). (by definition of CB#

n )
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Therefore, we can define a functor Q : SetT → �V , by

Q(A) = A#, for every A ∈ |SetT|,
and, given h ∈ SetT(A,B), Q(h) ∈ �V(A#,B#), by

Q(h) = h.

We finally proceed to show that QP = I�V and PQ = ISetT . To this end, let A = 〈A,LA〉 ∈
V . We have

vA∗#

i = ξA∗(vi) = vA
i

and, for every n ∈ ω, a, a0, . . . , an−1 ∈ A,

CA∗#

n (a,�a) = ξA∗(RA(jA(a), jA(�a))) (by definition of CA∗#

n )
= ξA∗(a(jA(�a))) (by definition of RA)
= CA

n (a, ξA∗(jA(�a))) (by definition of ξA∗)
= CA

n (a,�a). (by ξA∗jA = iA)

Finally, let A = 〈A, ξA〉 ∈ |SetT|. We have

ξA#∗(vi) = vA#

i = ξA(vi)

and, for every a ∈ A, t0, . . . , tn−1 ∈ TmA(V ), tn−1 �= vn−1,

ξA#∗(a(�t)) = CA#

n (a, ξA#∗(�t)) (by definition of ξA#∗)
= ξA(RA(jA(a), jA(ξA(�t))))

(by definition of CA#

n and the ind. hyp.)
= ξA(RA(jA(ξA(jA(a))), (jAξA)∗(�t())))

(by ξAjA = iA and Lemma 11)
= ξA((jAξA)∗(a()(�t()))) (by definition of RA)
= ξA(i∗TmA(V )(a()(�t()))) (since ξA(jAξA)∗ = ξAi∗TmA(V ))
= ξA(RA(a(),�t)) (by definition of i∗TmA(V ))
= ξA(a(�t)). (by definition of RA)

Thus, the following theorem holds

Theorem 13 �V ∼= SetT.

References

[1] Birkhoff, G., and Lipson, J.D., Heterogeneous Algebras, J. Combinatorial Theory, Vol. 8 (1970),
pp. 115-133

[2] Blok, W.J., and Pigozzi, D., Algebraizable Logics, Memoirs of the American Mathematical
Society, Vol. 77, No. 396 (1989)

[3] Blok, W.J., and Pigozzi, D., Algebraic Semantics for Universal Horn Logic Without Equal-
ity, in Universal Algebra and Quasigroup Theory, A. Romanowska and J.D.H. Smith, Eds.,
Heldermann Verlag, Berlin 1992

[4] Borceux, F., Handbook of Categorical Algebra, Vols. I,II,III, Encyclopedia of Mathematics and
its Applications, Cambridge University Press, 1994

[5] Cirulis, J., An Algebraization of First-Order Logic With Terms, in Algebraic Logic (Proc. Conf.
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Lane, S., and Röhrl, H., eds., Proceedings of the Conference on Categorical Algebra, La Jolla,
1965, Springer-Verlag, Berlin and New York 1966, pp. 84-94

[13] Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag, 1971

[14] Mal’cev, A.I., Model Correspondences, Izv. Akad. Nauk. S.S.S.R., Ser. Mat., Vol. 23 (1959),
pp. 313-316

[15] Mal’cev, A.I., The Metamathematics of Algebraic Systems, Collected Papers 1936-1967, Trans-
lated and edited by B.F. Wells III, North-Holland, Amsterdam 1971

[16] Manes, E.G., Algebraic Theories, Springer-Verlag, New York 1976

[17] Neumann, W.D., Representing Varieties of Algebras by Algebras, J. Austral. Math. Soc., Vol.
11 (1970), pp. 1-8

[18] Neumann, B.H., and Wiegold, E.C., A Semigroup Representation of Varieties of Algebras,
Colloq. Math., Vol. 14 (1966), pp. 111-114

[19] Pareigis, B., Categories and Functors, Academic Press, New York 1970

[20] Taylor, W., Characterizing Mal’cev Conditions, Algebra Universalis, Vol. 3 (1973), pp. 351-397

[21] Voutsadakis, G., Categorical Abstract Algebraic Logic, Doctoral Dissertation, Iowa State Uni-
versity, Ames, Iowa 1998

[22] Voutsadakis, G., Categorical Abstract Algebraic Logic: Equivalent Institutions, (To appear in
Studia Logica)

[23] Voutsadakis, G., Categorical Abstract Algebraic Logic: Algebraizable Institutions, Applied Cat-
egorical Structures, Vol. 10, No. 6 (2002), pp. 531-568

[24] Voutsadakis, G., Categorical Abstract Algebraic Logic: The Criterion for Deductive equiva-
lence, (To appear in Mathematical Logic Quarterly)

[25] Voutsadakis, G., Algebraizing the Equational Institution, (Submitted to the Logic Journal of
the IGPL)

School of Mathematics and Computer Science, Lake Superior State Uni-
versity, 650 W.Easterday Avenue, Sault Saine Marie, MI 49783, U.S.A.

E-mail: gvoutsad@Issu.edu


