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Abstract. We show that the compactness of G-free k-colorability is equivalent to the
Boolean prime ideal theorem for any graph G with more than two vertices and any
k ≥ 2.

1 Introduction In 1951, de Bruijn and Erdös [4] proved that a graph is k-colorable
if every finite subgraph is k-colorable. We shall refer to this statement as Pk. In 1961,
Mycielski [14] asked about the strength of Pk as a set theory axiom, pointing out that it
follows from BPI, the prime ideal theorem for Boolean algebras. Ten years later, in 1971,
Läuchli [13] showed that Pk is in fact one of the equivalent forms of BPI, even for fixed k,
k ≥ 3. (P2 is much weaker.) BPI is weaker than the Axiom of Choice or AC([10]), but like
AC has a large number of equivalent formulations and can often be substituted for AC in
mathematical proofs (see [11]).

Many other graph coloring notions for both vertices and edges have been introduced in
the last 30 years, leading Borowiecki and Mihók [3] to formulate their notion of generalized
colorings. In a recent paper [8], we have shown that several of these colorings lead to
compactness theorems which are also equivalent to BPI. In this paper, we continue this
work by showing the very general notion of G-free k-colorability, introduced by Achlioptas
[1] has a compactness theorem which is equivalent to BPI for any graph G with more
than two vertices and any k ≥ 2. (A graph is G-free k-colorable if its vertex set can be
partitioned into k classes, each of which induces a a graph which does not contain G.) Thus
we see that the result of Läuchli is far from unique; in fact it seems that almost any vertex
coloring compactness theorem is equivalent to BPI. The inspiration for this work is the
paper of Achlioptas [1], in which it is proved that G-free k-colorability is NP-Complete for
any graph G with more than two vertices and any k ≥ 2. We have noticed this connection
between NP-Completeness and BPI before ([6], [7], ([8]), and it remains a fruitful source of
new results.

2 Background A hypergraph, H =< V, E >, is a set, V , called the vertices, together
with a collection E, of finite subsets of V , called edges. If each edge is an ordered set, we
shall refer to the hypergraph as an ordered hypergraph. If each edge has exactly k elements,
the hypergraph will be called k-uniform. Thus a (simple) graph is a 2-uniform hypergraph.
If v is a vertex of a hypergraph, N(v) shall denote the set of neighbors of v, that is the set
of all other vertices which belong to an edge containing v. A k-coloring of a hypergraph is
an assignment of the k “colors”, {1,...,k}, to its vertices so that no edge is monochromatic;
that is, each edge has vertices of differing colors.

Let G, H be graphs; then H is G-free if it contains no induced subgraph isomorphic
to G. A k-coloring of a graph H is, in this paper, just a partition of its vertex set V
into k sets, V1, ..., Vk. The coloring is said to be G-free if each color class, Vi, induces a
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subgraph H [Vi] which is G-free. Equivalently, a k-coloring is G-free if no induced copy of
G is monochromatic under the coloring. Note that if G is K2, the complete graph on 2
vertices, the usual vertex k-coloring notion is obtained.

Let Ḡ denote the complement of graph G; that is, the graph with the same set of vertices
as G and whose edges are those edges absent from G. It is an easily established fact that
a graph H is G-free if and only if H̄ is Ḡ-free. Moreover a G-free k-coloring of H is also a
Ḡ-free k-coloring of H̄ (and vice versa). Since one of G, Ḡ must be connected, these facts
will allow us to assume that G is connected in proofs involving G-free properties of graphs.

The following definition of “Gk-distinguishers” is due to D. Achlioptas [1](where “Gk-
distinguishers” are called “Gk-gadgets”).

Definition 2.1 A Gk-distinguisher is a G-free k-colorable graph H with two designated
vertices s, t, such that in every G-free k-coloring of H,

(1) s and t receive different colors
(2) Each vertex in N(s) receives a different color than that of s
(3) Each vertex in N(t) receives a different color than that of t.

It is a theorem of [1] that Gk-distinguishers exist for all G with more than two vertices. This
theorem depends heavily on results in [2] on the existence of uniquely G-free k-colorable
graphs with n vertices, n > 2.

A G2-distinguisher will be called a G-distinguisher. Assume G is a connected graph. A
sequence of G-distinguishers can be “chained” together by identifying the “s” vertex of one
with the “t” vertex of its predecessor. (A more precise definition of this process of chaining
distinguishers can be found in [1]). We shall only chain together two distinguishers and
we call the result a G-identifier, since in any G-free 2-coloring, the initial “s” vertex and
final “t” vertex must receive identical colors. The fact that G is connected is needed to
insure that a G-identifier is G-free 2-colorable. For example, if G consisted of two disjoint
triangles, this need not be the case, since one triangle could be colored “red” and the other
“blue” in each distinguisher and then the identifier would have two disjoint red triangles!
Since G-distinguishers exist for all G with more than two vertices, G-identifiers exist for all
connected G with more than two vertices.

3 G-free colorings and BPI .

Definition 3.1 For any graph G and any k > 1, Let Γ(G, k) denote the statement: If every
finite induced subgraph of a graph, H, is G-free k-colorable, then H is G-free k-colorable.

Remark 3.2 It is easily seen, by complementation, that Γ(G, k) ↔ Γ(Ḡ, k), and hence
when we assume that Γ(G, k), we can also assume that G is a connected graph.

Theorem 3.3 Γ(G, k) ↔ BPI if G has at least 3 vertices and k > 1 or G has 2 vertices
and k > 2.

Proof. This will follow from the lemmas we present below.

That BPI implies Γ(G, k) follows immediately from results in [8](see Theorem 3.4 of [8]).

Lemma 3.4 Γ(G, k) → Pk, if G has at least 2 vertices and k > 1.

Proof. We note that we may also assume that G is a connected graph, as explained
above. Furthermore, if G is connected and has exactly 2 vertices, then Γ(G, k) is just
Pk. Thus we need only consider the case where G is connected and has more than two
vertices. Now assume Γ(G, k). Let H be an infinite graph such that every finite subgraph is
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k-colorable. (“k-colorablity” here means, of course, that adjacent vertices receive different
colors.) We will show that H is k-colorable. Replace each edge of H by a separate copy of a
Gk-distinguisher with the vertices of the edge being identified with the designated vertices
of the distinguisher. Call this new graph H ′. We note that each vertex of H ′ is either a
vertex of H or a vetex of a unique distinguisher which has been added to H . For each new
vertex v which has been added to H , let Dv be the entire distinguisher, containing v, which
has been added. Now consider any finite subgraph K ′ of H ′. Let K ′′ be the graph obtained
by adding to K ′ all elements of every Dv with v ∈ K ′ − H . We claim that K ′′ can be
G-free k-colored. This is the case because the vertices of K ′′ derived from H induce a finite
subgraph, K, of H , which is, by assumption, k-colorable. Extend this coloring to a G-free
k-coloring of the added distinguishers, whose designated vertices can now receive different
colors. We note that coloring the distinguishers cannot create a monochromatic copy of
G because of conditions 2 and 3 in the definition of distinguisher and the fact that G is
connected. Of course, this coloring induces a G-free k-coloring of K ′ and by Γ(G, k), H ′ can
be G-free k-colored. Finally, this coloring induces a k-coloring of H , since the designated
vertices of each distinguisher must receive differing colors.

Remark 3.5 It now follows from Läuchli’s result [13] that Theorem 3.3 holds for k > 2.

Instead of proving BPI from Γ(G, 2) directly, we prove that Γ(G, 2) implies a coloring
compactness theorem for k-uniform ordered hypergraphs, where k is the order of G, k > 2;
then we show that these hypergraph compactness theorems imply BPI.

Definition 3.6 Let ∆(k) denote the statement: if every finite subhypergraph of a k-uniform
ordered hypergraph is 2-colorable, then the ordered hypergraph is 2-colorable.

Lemma 3.7 If G has k vertices, then Γ(G, 2) → ∆(k), k > 2.

Proof. We can assume that G is a connected graph by Remark 3.2.
Let H be a k-uniform ordered hypergraph and suppose that every finite subhypergraph

of H is 2-colorable. Let G be a graph with k vertices, k > 2. We can assume the vertices
of G are ordered.

We construct, for each ordered edge, Eν , of the hypergraph, Gν , a new copy of G. The
edge, Eν , of the hypergraph and the vertex set of Gν are of the same cardinality, k, and
since both are ordered, we can assume, without using the Axiom of Choice, that there is
a family of one-to-one mappings, φν , mapping Eν onto the vertices in Gν ; let ēνi denote
φν(eνi), eνi ∈ Eν .

We now construct a graph H as follows.
(1) For each ordered edge of the hypergraph, Eν , we include in H , Gν . All of the vertices

of Gν thus added to H will be said to depend on the edge, Eν .
(2) If elements eνi in Eν and eµj in Eµ are equal, we join the corresponding vertices ēνi

in Gν and ēµj in Gµ by a G-identifier with these two vertices as endpoints. The vertices of
the identifier thus added to H will be said to depend on both Eν and Eµ. This completes
the construction of graph H .

Let H ′ be a finite subgraph of H . Since the vertices of H ′ are finite in number and each
depends on only one or two edges, they depend on a finite set of edges, E ′ of hypergraph, H.
Let H ′′ be the full finite subgraph of H generated from E ′ by (1) and (2). E ′ is 2-colorable,
by assumption. Select one such coloring and using this coloring, color each vertex ēνi in H ′′

that belongs to some Gν , the color received by eνi in Eν . No copy of G thus colored can
be monochromatic, since no edge in E ′ is monochromatic under the hypergraph 2-coloring
of E ′.
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Finally the coloring can be extended to a G-free 2-coloring of the vertices in the G-
identifiers, since the endpoints of each have already received the same color. Since G is
connected, conditions (2) and (3) in the definition of G distinguisher guarantee that no new
monochromatic copies of G can be created by the G-free coloring of the identifiers. Thus
H ′′ is G-free 2-colorable, and hence, so is its subgraph, H ′.

Therefore, by Γ(G, 2), H is G-free 2-colorable. Color each eνi in edge Eν of the hy-
pergraph, the color received by ēνi; since ēνi and ēµj are connected by a G-identifier if
eνi = eµj , this is really a coloring of the hypergraph vertices, not just a coloring of the edge
elements. Also no edge can be monochromatic, since it has the same colors as its copy of
G under the G-free 2 coloring of H . Hence H is a 2-colorable hypergraph as required.

Lemma 3.8 For all k > 3, ∆(k) → ∆(3).

Proof. This follows immediately from the fact, which we show next, that ∆(k+1) → ∆(k),
k ≥ 3. Assume ∆(k +1) and suppose H is a k-uniform ordered hypergraph such that every
finite subhypergraph is 2-colorable.We must show that H is 2-colorable. We construct a
(k+1)-uniform ordered hypergraph, H′ as follows.

1) The vertices of H′ are the vertices of H together with new vertices: xi, 1 ≤ i ≤ k + 1.
2) The edges of H′ are,

a) {e1, ..., ek, xi}, 1 ≤ i ≤ k + 1, for each edge e = {e1, ..., ek} in H.
b) {x1, ..., xk+1}.

Every finite subhypergraph, K′ of H′, is 2-colorable since the restriction K of K′ to H
is 2-colorable, by assumption, and then the vertex x1 can be colored ‘1’, while x2, ..., xk+1

can be colored ‘0’.
Then, H′ is 2-colorable, by ∆(k + 1). The colors assigned to the vertices, other than

the xi, constitute a 2-coloring of H, since if xi receives the color ‘1’ and xj receives the
color ‘0’ (the edge, {x1, ..., xk+1} cannot be monochromatic), any edge e of H must have
a vertex which receives the color ‘0’ (e ∪ {xi} is an edge of H′) and e must have a vertex
which receives the color ‘1’ ((e ∪ {xj} is an edge of H′).

The compactness theorem for propositional logic states that a set of propositional for-
mulas is satisfiable if every finite subset is satisfiable. This theorem, which is equivalent to
BPI, is often referred to as SAT. Let 3SAT denote the restricted version of SAT where each
propositional formula is a disjunction of exactly 3 literals (a literal is a statement letter or
a negated statement letter). In fact 3SAT is also one of the equivalent forms of BPI (see
[6]).

Lemma 3.9 ∆(3) → 3SAT .

Proof. Suppose then that a set of propositional formulas, each of which is a disjunction
of 3 literals, is given and that each finite subset is satisfiable. Let H be the 3-uniform
hypergraph whose vertex set consists of the union of the following four sets.

(1) all literals in any of the propositional formulas
(2) a set of copies of these literals, that is, for each literal, li, we have a new element, ui.
(3) new elements: v1, v2, v3.
(4) a new element, f .

The edges of H consist of all of the following ordered sets:
(1) {v1, v2, v3}
(2) For each occurring propositional letter p: {p,¬p, vi}, i = 1, 2, 3.
(3) All four the following, for each clause, l1 ∨ l2 ∨ l3:

(a) {l1, f, u1}
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(b) {l2, f, u2}
(c) {l3, f, u3}
(d) {u1, u2, u3}

It is easy to see that l1 ∨ l2 ∨ l3 is satisfiable if and only if these associated hyperedges
are 2-colorable, with colors, ‘1’, ‘0’, with f getting the color ‘0’. Since finite subsets of
these formulas are assumed satisfiable, it follows that every finite subhypergraph will be
2-colorable. Hence, by ∆(3), the entire hypergaph is 2-colorable. We can assume f gets
the color ‘0’. Assign truth values to the literals based on this coloring; that is, assign a
literal the value true if and only if it is colored ‘1’. Since f and some ui must be colored ‘0’,
the corresponding li must be colored ‘1’, that is, at least one literal in every clause is true,
and, because of (1) and (2), a literal and its negation will receive opposite truth values.
Therefore the entire set of propositional formulas is satisfiable, as required.

Remark 3.10 Since 3SAT is known to imply BPI, as mentioned above, we have completed
the proof of Theorem 3.3.

Open Problem. Let G1, ..., Gk be finite graphs. A graph H is (G1, ..., Gk)-free k-
colorable if its vertex set V can be partitioned into sets (V1, ..., Vk) such that H [Vi] is
Gi-free, 1 ≤ i ≤ k. Let Γ(G1, ..., Gk) stand for the statement: a graph is (G1, ..., Gk)-free
k-colorable if every finite subgraph is (G1, ..., Gk)-free k-colorable. If each Gi has more than
two vertices and k > 1 is Γ(G1, ..., Gk) ↔ BPI ?

4 G-free colorings Let G be a set of graphs, and let H be a graph. H is G-free if no
induced subgraph of H is a member of G. H is G-free n-colorable if the vertices of H can
be partitioned into n sets, such that the graph induced by each of these sets is G-free.

It might be expected that G-free n-colorability would be at least as complex as ordinary
G-free n-colorability. In particular, we might expect that for finite graphs, it would be
NP-complete and for infinite graphs, the compactness would be equivalent to BPI. However
this is not always the case, as we shall show.

Let G∗ be the set of the three graphs:
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We shall show that the question of whether or not a finite graph is G∗-free 2-colorable
is polynomial (of low degree), and for infinite graphs, the compactness statement is weaker
than BPI, requiring only C2, the axiom of choice for pairs.

We first note that the only G∗-free graphs are the discrete graphs and the graph consist-
ing of two vertices connected by an edge. Thus a graph of order greater than 4 is G∗-free
2-colorable if and only if it is 2-colorable or it contains two adjacent vertices, and every edge
contains at least one of these vertices. Clearly, in the latter case, we need only color the two
vertices one color and the remaining vertices the other color to obtain a G∗-free 2-coloring.
It is easy to show that a graph which contains an odd cycle of length greater than three
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cannot be G∗-free 2-colored. Also, if we have two adjacent vertices each connected to every
vertex of some discrete graph, the result can be G∗-free 2-colored by coloring the adjacent
vertices one color and the remaining vertices, the other color.

Let H be a finite graph. If the order of H were less than five, its vertices could be
divided into two sets of size less than three and so could obviously be G∗-free 2-colored. We
assume, then, that the order of H is at least five. We first attempt a ordinary 2-coloring
of H , using a standard polynomial-time algorithm. If we succeed, we also have a G∗-free
2-coloring of H . If not, it is because H has an odd cycle. If this cycle is of length five or
more, H cannot be G∗-free 2-colored, as mentioned above. For a cycle of degree three, it
is easy to check (in polynomial-time) whether or not there are two vertices in this triangle
such that every edge in the graph contains at least one of them.

Finally, to prove compactness in the infinite case, we use a similar argument. Assume
H is any infinite graph such that each of its finite subgraphs is G∗-free 2-colorable. We
consider three cases.

Case 1. H contains an odd cycle of length five or greater. This is not possible because
the finite graph consisting of this cycle is not G∗-free 2-colorable.

Case 2. H contains no odd cycles. Then H is 2-colorable and therefore G∗-free 2-
colorable. (If H has infinitely many components, C2 is needed to obtain a coloring for the
entire graph.)

Case 3. H contains a cycle C of length three but no odd cycles of greater length.
Suppose the vertices of C are v1, v2, v3. Now assume that H is not G∗-free 2-colorable.
Then H must contain an edge e12 which contains neither v1 nor v2, an edge e13 that
contains neither v1 nor v3, and an edge e23 that contains neither v2 nor v3. Let F be the
finite subgraph of H which consists of the union of C and the edges eij . However, F would
be a finite subgraph of H which is not G∗-free 2-colorable, contrary to the assumption that
every finite subgraph of H is G∗-free 2-colorable. Hence, again, H is G∗-free 2-colorable.

Open Problems.
1. Characterize those sets G for which G-free 2-colorablility is NP-Complete.
2. Characterize those sets G for which the compactness of G-free 2-colorablility is equiv-

alent to BPI.
3. The same problems for G-free k-colorablility, k > 2.
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