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Abstract. We obtain a counterexample about the hypothesis of a linear operator on a
locally convex space to a Hilbert space mapping bounded convergent nets to convergent
nets, implying that the operator is continuous. Accordingly, a linear operator defined
on a locally convex space and, taking values in a Hilbert space, might map summable
families to summable families without being continuous. We may take the weak dual of
a Hilbert space for the domain space.

1. Introduction

We had conjectured about a linear operator between (separated) locally convex spaces
mapping bounded convergent nets to convergent nets or, summable families to summable
families, these would be sufficient conditions for the operator to be continuous. In the course
of the research work, we found the counterexample Id : (W 1,p(Ω), σ(W 1,p(Ω))′) → Lp(Ω)
(1 ≺ p ≺ ∞), Ω a bounded open subset of RN of class C1 in the sense of [Bré] (IX.2.,
Definición pp. 157). In paragraph 2, we obtain Theorem 1 and a counterexample in
Theorem 4. We state the well known Theorem 2 and Theorem 3 and, we conclude that
Id : (W 1,p(Ω), σ) → Lp(Ω) maps bounded convergent nets to convergent nets. However,
this operator is not continuous, as follows from Theorem 3. In Theorem 4 we obtain the
counterexample concerning the convergence of bounded nets and of summable families, for
the case where the domain space is the weak dual of a Hilbert space and, the range is a
Hilbert space.

2. Obtaining a counterexample

In what follows, if E is a (real or complex) vector space, p a seminorm on E, we let Up

= {x ∈ E : p(x) � 1} stand for the closed unit semiball of E. f being a linear functional
on E, we denote by | f | the seminorm on E defined through | f | (x) =|≺ f, x �| (x ∈ E),
≺ ., . � for the duality. If (E, ‖.‖) is a normed space, we let BE stand for the closed unit
ball of E. We consider the dual E′ of E and, we denote by (E, σ(E, E′)) the space E,
endowed with the weak topology σ(E, E′).

Theorem 1. Let (E, ‖.‖) be a normed space with a separable dual E′, F a normed space
and, let T : E → F be a linear operator. If Txn → 0 in F for each sequence (xn) in E
such that, ‖xn‖ � 1 for all n and, xn → 0 in (E, σ(E, E′)), it follows that T : BE → F is
continuous where, BE is the closed unit ball of E endowed with the weak topology.
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Proof. Let A = {fm : m ∈ N} be a strongly dense subset of E′, and suppose that T :
(BE , σ(E, E′)) → (F, ‖.‖) is not continuous where, we denote the norms in E, F by the
same symbol ‖.‖. Then there exists some ε � 0 such that, for each m ∈ N there exists
some xm, ‖xm‖ ≤ 1, xm ∈ 2−m

⋂{U|fn| : 1 ≤ n ≤ m} with ‖Txm‖ ≥ ε. We find: if m ≥ p,
it follows that xm ∈ 2−mU|fp| whence |≺ fp, xm �|≤ 2−m and ≺ fp, xm �→ 0 as m → ∞.
Since the closure of the linear span of A is all of E′, it follows ([Tay, Lay],Theorem 10.4 in
Ch. III) that xm → 0 in (BE , σ(E, E′)). Nevertheles the sequence Txm does not converge
to 0 in F and the theorem is proved.

Theorem 2. Let E, F be normed spaces, T a compact operator on E to F . Then Txn

converges to zero for each sequence xn → 0 in (E, σ(E, E′)).

Proof. This is essentially Theorem 1 in [Lus; Sobo], Chapter IV.

Theorem 3. If (E, ‖.‖), (F, ‖.‖) are normed spaces, T : (E, σ(E, E′)) → (F, ‖.‖) is a
continuous linear operator, then T has finite rank.

Proof. This follows from I. 30, Livre III (pp. 432) in [Garni; De Wi; Schme], since that T
is completely bounded in the sense of I.21 (pp. 425) due of E being a normed space and,
clearly E′ is separating in the sense of pp. 151 that is, if ≺ f, x � = 0 for all f ∈ E′ it
follows that x = 0.

Supposing now that: (P ) each linear operator T on a locally convex space L to a normed
space N , carrying bounded convergent nets in L to convergent nets in N is continuous, (See
[Kan, Aki] for this concept) we conclude an absurd by taking T = Id : (W 1,p(Ω), σ) → Lp

where, Ω is a bounded open subset of RN of class C1, σ stands for the weak topology of
the Sobolev space W 1,p(Ω), 1 ≺ p ≺ ∞ and Idx = x is the identity operator. In fact, Id
is compact ([Bré], remark (4) to Teorema IX.16 (Rellich-Kondrachov)) and, W 1,p(Ω) has
a separable dual due of being reflexive, separable ([Bré], Corolario III.24 and Proposición
IX.1). According to theorem 2, Id maps weakly convergent sequences to zero in the closed
unit ball B of W 1,p(Ω) to convergent sequences to zero in Lp(Ω) so that, by theorem 1, Id
is continuous from B to Lp(Ω), B endowed with the weak topology σ of W 1,p(Ω). This
implies that Id maps weakly convergent nets to 0 in B to convergent nets to 0 in Lp(Ω);
thus if (xi) is a bounded net in W 1,p(Ω) weakly convergent to 0 it follows that, for some
constant C � 0 it holds that (xi/C) is a weakly convergent net to 0 in B thence Txi/C
converges to 0 in Lp(Ω) that is, Txi converges to zero in Lp(Ω). If (P ) were true, it follows
from theorem 3 that W 1,p(Ω) would be finite dimensional, which is an absurd. We obtain:

Theorem 4. The conditions that a linear operator T from a separated locally convex space
to a Hilbert space to map bounded convergent nets to convergent nets and summable families
to summable families, are not sufficient for continuity of T . We may take for the domain
the weak dual of a Hilbert space.

Proof. This follows from above, taking p = 2, if we prove that, the sum s of a summable
family (See [Choq]) is the limit of a bounded net that we may take for the summable family.
We have: the family (ai) (i ∈ I) in the locally convex space E is summable with sum s
if and only if the net (

∑
A ai) where,

∑
A ai stands for the (finite) sum of the ai ∈ A,

A ∈ F(I) = {A ⊂ I: φ �= A,A ⊂ I, A finite} converges to s in the sense that, for each
neighborhood s + U of s in E, U a neighborhood of 0, there exists some finite set IU ⊂ I
such that,

∑
A ai − s ∈ U for each A ∈ F(I), A ⊃ IU . We prove that the set of the

sums SA =
∑

A ai is bounded in E. Let U be a convex neighborhood of 0. According to
[Bourba], TG III.38 (2., Le critère de Cauchy), if (ai) is summable, then there exists a finite
set D(U) ⊂ I such that, for every finite set C ⊂ I \ D(U) it holds that SC ∈ U . Therefore,
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if B ∈ F(I), it follows that SB = SB∩D(U) + SB \ D(U) ⊂ (λ + 1)U where, λ � 0 is such
that SD(U) ⊂ λU and the theorem follows.
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