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Abstract. The variety SBA of skew Boolean algebras, introduced by Leech in [19], is
a natural example of a binary discriminator variety. Central to the study of binary dis-
criminator varieties is the variety iBCS of implicative BCS-algebras, first considered by
the authors in [2]. In [2], it is shown that iBCS is generated (as a variety) by a certain
three-element algebra B2, initially investigated by Blok and Raftery in [8]. In the first
part of this paper, we show that the quasivariety Q(B2) generated by B2 is the class of
all 〈\, 0〉-subreducts of SBA. Using insights from the theory of skew Boolean algebras,
we investigate Q(B2) in the second part of this paper, obtaining a fairly complete el-
ementary theory. In particular, we characterise Q(B2) as a subclass of iBCS; provide
a finite axiomatisation of Q(B2); describe the Q(B2)-subdirectly irreducible algebras;
and characterise the lattice of subquasivarieties of Q(B2). Collectively, the results may
be understood as a generalisation to the ‘non-commutative’ situation of several well
known theorems of classical algebraic logic connecting implicative BCK-algebras with
(generalised) Boolean algebras.

1. Introduction

In their 1995 paper [8] on the quasivariety of BCK-algebras and its subvarieties, Blok and
Raftery introduced the quasivariety Q(B2) generated by a certain three-element algebra B2.
The properties of this quasivariety are exploited in the proofs of several deep results [13, 8,
24, 5] in the theory of BCK-algebras and in the theory of the varietal closure H(BCK) of
BCK.

An implicative BCS-algebra is a non-commutative analogue of an implicative BCK-algebra.
In [2] the authors considered the variety iBCS of all implicative BCS-algebras and showed
that iBCS is generated (as a variety) by the algebra B2. In addition to their significance
to the theory of BCK-algebras, implicative BCS-algebras play a central role in the theory
of binary discriminator varieties, as evinced by the results of [2, 3, 4]. Binary discriminator
varieties were introduced by Chajda, Halaš and Rosenberg [9] in 1999 in an attempt to
generalise pointed ternary discriminator varieties to the 0-arithmetical case. In a binary
discriminator variety, the term definable subreducts of the form 〈\, 0〉, where \ is the binary
discriminator term, are implicative BCS-algebras. In [2] the variety of implicative BCS-
algebras is shown to be the “pure” binary discriminator variety; that is, the variety generated
by all algebras of the form 〈A; \, 0〉, where \ is the binary discriminator function on A and
0 is its associated constant.
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In [9] Chajda et al observe that any pointed ternary discriminator variety is a binary
discriminator variety. One well known pointed ternary discriminator variety is the class
GBA of all generalised Boolean algebras 〈A;∧,∨, \, 0〉. In his pioneering paper [16], Kalman
showed in effect that an algebra 〈A; \, 0〉 of type 〈2, 0〉 is an implicative BCK-algebra if and
only if it is isomorphic to a 〈\, 0〉-subreduct of a generalised Boolean algebra. In the first
part of this paper, we generalise Kalman’s result to the variety of skew Boolean algebras.
Skew Boolean algebras, introduced by Leech in [19] and also by Cornish in [10], are a
non-commutative analogue of generalised Boolean algebras. The class of all skew Boolean
algebras is a binary discriminator variety. We show that Q(B2) is the class of all 〈\, 0〉-
subreducts of the variety SBA of skew Boolean algebras, and thereby infer that Q(B2) is
not a variety. For completeness, we also show that the variety V(B2) generated by B2

(viz., iBCS) is the class of all 〈\, 0〉-reducts of the variety PCSL of pseudo-complemented
semilattices. The variety of pseudo-complemented semilattices is also a binary discriminator
variety.

The varieties SBA, PCSL and iBCS have all been studied extensively in the literature (see
respectively [10, 19]; [12, 15]; and [2, 3]) and their respective structures are well understood.
However, Blok and Raftery’s study of Q(B2) in [8] was necessarily brief. In the second part
of this paper, we exploit insights from the theory of skew Boolean algebras to present a
fairly complete elementary theory for Q(B2). In particular, we characterise Q(B2) as a
subclass of iBCS; present a finite axiomatisation of Q(B2); describe the Q(B2)-subdirectly
irreducible members of Q(B2); and characterise the lattice of subquasivarieties of Q(B2).

2. The Algebras B2 and B1

Let A := 〈A; 0〉 with 0 ∈ A be a pointed set. The binary discriminator on A is the function
\ : A2 → A defined for all a, b ∈ A by:

a\b :=

{
a if b = 0
0 otherwise.

The binary discriminator arises naturally in universal algebraic logic as a generalisation of
the (pointed) ternary fixedpoint discriminator of Blok and Pigozzi [7]. For details, see either
Bignall and Spinks [2, 4] or Chajda et al [9].

Let B2 denote the algebra
〈{0, 1, 2}; \, 0〉

of type 〈2, 0〉 for which the operation \ is the
binary discriminator on B2 := {0, 1, 2}. The algebra B2 generates the variety iBCS of
implicative BCS-algebras, introduced by the authors in [2] in connection with the study
of the binary discriminator varieties of Chajda et al [9]. In [2] it is shown that iBCS is
axiomatised by the following identities:

x\x ≈ 0(2.1)

(x\y)\z ≈ (x\z)\y(2.2)

(x\z)\(y\z) ≈ (x\y)\z(2.3)

x\(y\x) ≈ x.(2.4)

The following easy consequences of (2.1)–(2.4), which will be needed in the sequel, are also
established in [2]:

x\0 ≈ x(2.5)

0\x ≈ 0(2.6) (
x\(x\y)

)\y ≈ 0(2.7)

x\(y\(z\x)
) ≈ x\y.(2.8)
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The algebra B2 possesses an important derived operation ∧, where:

a ∧ b := a\(a\b)
for all a, b ∈ B2. The operation ∧ is the dual binary discriminator on A in the sense of
Chajda et al [9]. In [2] it is shown that, for any implicative BCS-algebra A, the term
definable reduct 〈A;∧, 0〉 is a left handed locally Boolean band ; that is, a left normal band
with zero such that, for every a ∈ A, the principal subalgebra (a](a](a] := {a∧b : b ∈ A} generated
by a is a Boolean lattice with respect to the natural band partial ordering. The variety of
implicative BCS-algebras thus satisfies the following useful identities, first established by
the authors in [2]:

0 ∧ x ≈ 0(2.9)

(x\y) ∧ z ≈ (x ∧ z)\(y ∧ z).(2.10)

The algebra B2 has just two non-trivial subalgebras, both of which are isomorphic to B1 :=〈{0, 1}; \, 0〉
. It is well known [1, 16] that B1 generates the class iBCK of all implicative BCK-

algebras as a variety; and that, relative to iBCS, iBCK is axiomatised by the commutative
identity:

x\(x\y) ≈ y\(y\x).(2.11)

Implicative BCK-algebras are an important subclass of the quasivariety BCK of all BCK-
algebras [11, 14]. They have been studied extensively in the literature (see for instance [1,
14, 16, 23]) and their properties are well understood. In particular, it is known that B1 is, to
within isomorphism, the only subdirectly irreducible implicative BCK-algebra; and further,
that every bounded implicative BCK-algebra is order isomorphic to a Boolean lattice. For
details, see respectively Kalman [16, Lemma 1] and Iséki and Tanaka [14, Theorem 12].

Let B := 〈B; \, 0〉 be a non-trivial bounded implicative BCK-algebra and let B̂ denote
the implicative BCS-algebra obtained from B upon replacing the unit element of B with
a two-element maximal clique {m1, m2}. In [2], the authors proved that, to within iso-
morphism, a non-trivial implicative BCS-algebra A is subdirectly irreducible if and only
if A is isomorphic to B1 or A is isomorphic to B̂ for some non-trivial bounded implicative
BCK-algebra B.

Example 2.1. The five-element subdirectly irreducible implicative BCS-algebra is the al-
gebra with base set {0, 1, 2, m1, m2} and whose operation \ is determined by the following
table:

\ 0 1 2 m1 m2

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0

m1 m1 2 1 0 0
m2 m2 2 1 0 0

3. Implicative BCS-Algebra Subreducts

Let L be a language of algebras. Following Blok and Pigozzi [6, p. 8], we call any algebra
of the form A := 〈A; fA〉f∈L an L-algebra. Let L′ be a sublanguage of L. The L′-reduct
of A is the algebra A′ := 〈A; fA〉f∈L′ ; any subalgebra of A′ is called an L′-subreduct of A.
The following theorem is usually attributed to Mal’cev.
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Theorem 3.1. (cf. [22, Chapter 5]) Let L be a language of algebras and let A be an L-
algebra. Let L′ be a sublanguage of L and let B be the L′-reduct of A. Then the quasivariety
Q(B) generated by B is the class of all L′-subreducts of Q(A).

A skew Boolean algebra is an algebra A := 〈A;∧,∨, \, 0〉 of type 〈2, 2, 2, 0〉 such that: (i)
the reduct 〈A;∧,∨, 0〉 is a symmetric skew lattice with zero in the sense of Leech [18]; (ii)
the reduct 〈A; \, 0〉 is an implicative BCS-algebra; and (iii) A |= x ∧ y ∧ x ≈ x\(x\y).
By Leech [19, Theorem 1.8] the class SBA of all skew Boolean algebras is a variety. Skew
Boolean algebras were introduced by Leech [19] in connection with the study of normal
bands of idempotents in rings. The class LSBA of all left handed skew Boolean algebras is
the subvariety of SBA axiomatised relative to SBA by the identity x ∧ y ∧ x ≈ x ∧ y. Left
handed skew Boolean algebras were introduced independently by Cornish in [10]. The class
GBA of all generalised Boolean algebras is the subvariety of all commutative skew Boolean
algebras; it is easy to see that GBA is the smallest non-trivial subvariety of SBA. For a
further discussion and references, see the survey paper [20].

Example 3.2. The three-element left handed skew Boolean algebra, in symbols 3L, is the
algebra with base set {0, 1, 2} and whose operations ∧, ∨ and \ are determined by the
following tables:

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 2 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 1 2

\ 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

By Cornish [10, Theorem 4.10], 3L and its two-element generalised Boolean subalgebra
2 :=

〈{0, 1};∧,∨, \, 0〉
are, to within isomorphism, the only subdirectly irreducible left

handed skew Boolean algebras.

By the preceding example, LSBA is generated (as a variety) by 3L. Since the reduct〈{0, 1, 2}; \, 0〉
of 3L is the implicative BCS-algebra B2, the variety of left handed skew

Boolean algebras is a binary discriminator variety with binary discriminator term x\y.

Theorem 3.3. Q(B2) is the class of all 〈\, 0〉-subreducts of LSBA.

Proof. Since the implicative BCS-algebra reduct of 3L is just B2, the quasivariety Q(B2)
generated by B2 is the class of 〈\, 0〉-subreducts of Q(3L) by Theorem 3.1. Since 3L is
finite, Q(3L) = ISP(3L). But ISP(3L) = LSBA since 2 is (to within isomorphism) the only
non-trivial subalgebra of 3L. Hence Q(B2) is the class of all 〈\, 0〉-subreducts of LSBA.

Because of Leech [19, Theorem 1.13], an obvious modification of the remarks immediately
preceding Theorem 3.3 shows that SBA is also a binary discriminator variety with binary
discriminator term x\y.

Theorem 3.4. Q(B2) is the class of all 〈\, 0〉-subreducts of SBA.

Proof. Any skew Boolean algebra A := 〈A;∧,∨, \, 0〉 has a term definable left handed skew
Boolean algebra reduct AL := 〈A;∧L,∨L, \, 0〉, where for all a, b ∈ A, a ∧L b := a ∧ b ∧ a
and a ∨L b := b ∨ a ∨ b. Since the operation \ is the same on these two algebras, AL has
the same 〈\, 0〉-subreducts as A. It follows that Q(B2) is the class of all 〈\, 0〉-subreducts
of SBA.

The proof of the following proposition may be understood as a simplification of an argument
due to Blok and Raftery [8].
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Proposition 3.5. [8, Proposition 6] Q(B2) is not a variety.

Proof. Let B := 3L × 2 and let A be the implicative BCS-algebra reduct of B. By Theo-
rem 3.3, A ∈ Q(B2). Let Θ := ωA∪{

(〈1, 0〉, 〈2, 0〉), (〈2, 0〉, 〈1, 0〉)}. Then it is easily checked
that Θ is a congruence on A such that A/Θ is isomorphic to the five-element subdirectly
irreducible implicative BCS-algebra of Example 2.1. But no subdirectly irreducible member
of iBCS with more than three elements can be a member of Q(B2). Hence Q(B2) is not
closed under homomorphic images, and so is not a variety.

A pseudo-complemented semilattice is an algebra 〈A;∧, ∗, 0〉 of type 〈2, 1, 0〉 such that: (i)
the reduct 〈A;∧, 0〉 is a meet semilattice with zero; and (ii) for all a ∈ A, the greatest element
of A disjoint from a exists and is a∗. It is well known that the class PCSL of all pseudo-
complemented semilattices is a variety. By Jones [15, Theorem 11.1] PCSL is generated
(as a variety) by the three-element bounded chain 3 (considered as a pseudo-complemented
semilattice). Since, for any bounded chain A (considered as a pseudo-complemented semi-
lattice) and a ∈ A, a∗ = 0 if a 	= 0, while 0∗ is the maximal element of the chain, PCSL is a
binary discriminator variety with binary discriminator term x\y := x ∧ y∗. From this obser-
vation it follows immediately that any pseudo-complemented semilattice A has a canonical
term definable implicative BCS-algebra reduct 〈A; \, 0〉. In the statement of the following
theorem and in the sequel, we always denote this reduct by AI.

Theorem 3.6. iBCS is the class of all 〈\, 0〉-reducts of PCSL. Hence an algebra 〈A; \, 0〉
of type 〈2, 0〉 is an implicative BCS-algebra if and only if it is isomorphic to AI for some
pseudo-complemented semilattice A.

Proof. It is sufficient to show that for any implicative BCS-algebra B′ there is a pseudo-
complemented semilattice B such that B′ is isomorphic to BI.

Let A be any subdirectly irreducible implicative BCS-algebra. By the remarks concluding
Section 2, A is order isomorphic to a Boolean lattice with its unit element replaced by a
two-element maximal clique. Let m1 and m2 be the two elements making up this maximal
clique of A. In view of the description of the subdirectly irreducible pseudo-complemented
semilattices given in Jones [15, Theorem 7.2], we can construct a subdirectly irreducible
pseudo-complemented semilattice A∗ from A by extending the partial order on A0 to include
the pair 〈m1, m2〉. The pseudo-complemented semilattice operations in this case are given
by taking a∧ b to be the meet of a and b under this extended partial order and by defining
0∗ = m2, m∗

1 = m∗
2 = 0, while a∗ is defined to be a′, the complement of a in the underlying

Boolean lattice, when a is not 0, m1 or m2. It is easy to see that A is the 〈\, 0〉-reduct
of A∗.

Now let B be any implicative BCS-algebra. Without loss of generality, we can assume that B
is the subdirect product

∏{Bγ : γ ∈ Γ} of a family {Bγ} of subdirectly irreducible im-
plicative BCS-algebras. Thus each element a ∈ B is a function mapping Γ onto the disjoint
union of the sets Bγ such that each projection map

∏
γ from B to Bγ is an epimorphism.

For each Bγ , construct the subdirectly irreducible pseudo-complemented semilattice B∗
γ as

above. Define the operations ∧ and ∗ on the set B pointwise by (a ∧ b)(γ) := a(γ) ∧ b(γ)
for each γ ∈ Γ and a∗(γ) := a(γ)∗. Then 〈B;∧, ∗, 0〉 is a pseudo-complemented semilattice
and it is clear that B is its 〈\, 0〉-reduct.

A pseudo-complemented distributive lattice is an algebra 〈A;∧,∨, ∗, 0〉 of type 〈2, 2, 1, 0〉 such
that: (i) the reduct 〈A;∧,∨, 0〉 is a distributive lattice with zero; and (ii) for all a ∈ A, the
greatest element of A disjoint from a exists and is a∗. It is well known that the class PCDL of
all pseudo-complemented distributive lattices is a variety. Because of the description of the
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subdirectly irreducible members of PCDL given by Lakser in [17], an obvious modification
of the proof of Theorem 3.6 shows that iBCS is also the class of all 〈\, 0〉-reducts of PCDL
when x\y is the term x ∧ y∗. However, the results of this section notwithstanding, PCDL
is not a binary discriminator variety, since it is not generated by any class of ideal simple
algebras in the sense of Chajda et al [9]. For a discussion of this point, see [2].

4. The Quasivariety Q(B2)

Let K be a quasivariety and let A ∈ K. Recall from universal algebraic logic that a congru-
ence θ on A is called a K-congruence on A if A/θ ∈ K. It is folklore that, when ordered
by inclusion, the set ConK A of all K-congruences on A gives rise to an algebraic lattice
ConKA. In the following lemma and in the sequel, by a Q(B2)-algebra we mean a member
of the quasivariety Q(B2).

Lemma 4.1. Let A be an implicative BCS-algebra and let a ∈ A be fixed. The following
assertions hold:

1. The maps c 
→ c∧a and c 
→ c\a are epimorphisms from A onto A∧a := {b∧a : b ∈ A}
and ann(a) := {b ∈ A : a ∧ b = 0} respectively.

2. The relations Φa and Ψa, defined respectively for all b, c ∈ A by:

b ≡ c (mod Φa) if and only if b ∧ a = c ∧ a

b ≡ c (mod Ψa) if and only if b\a = c\a
are congruences on A. Moreover, when A ∈ Q(B2), both Φa and Ψa are Q(B2)-
congruences on A.

3. The sets A ∧ a and ann(a) are (the base sets of) retracts of A. Thus the map ϕa :
A → (A ∧ a) × ann(a) defined for all c ∈ A by:

ϕa(c) := 〈c ∧ a, c\a〉
is an epimorphism.

Proof. (1) Identities (2.3) and (2.10) ensure that the two maps are endomorphisms. The
map c 
→ c ∧ a is obviously a surjection, so it remains to show c 
→ c\a is surjective. Let
c ∈ ann(a). Then a ∧ c = 0, whence c = c\0 (by (2.5)) = c\(a ∧ c) = c\(a\(a\c)) = c\a
(by (2.8)).

(2) It follows from (1) that the relations Φa and Ψa are congruences on A. Also, A∧ a and
ann(a) are both subalgebras of A, because of the identities (2.6) and (2.9) and the proof
of (1). Hence, when A ∈ Q(B2), A/Φa and A/Ψa are both Q(B2)-algebras, and so Φa

and Ψa are both Q(B2)-congruences.

(3) This follows immediately from the proofs of (1) and (2).

The assertions of Lemma 4.1 also hold for skew Boolean algebras. Actually, rather more
is true, since a skew Boolean algebra A always decomposes as a direct product of A ∧ a
with ann(a), which means that the map ϕa must be one-to-one in this case. In view of
Theorem 3.4, it follows that the map ϕa of Lemma 4.1 will be a bijection whenever A is a
member of Q(B2). The condition that every map of the form ϕa be one-to-one is captured
by the quasi-identity:

x ∧ z ≈ y ∧ z & x\z ≈ y\z ⊃ x ≈ y.(4.1)

The above considerations suggest that (4.1) is a likely candidate for axiomatising Q(B2)
relative to iBCS.
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Lemma 4.2. Suppose A is a subdirectly irreducible member of iBCS with more than three
elements. Then A possesses a subalgebra isomorphic to the five-element subdirectly irre-
ducible implicative BCS-algebra of Example 2.1.

Proof. Denote by m1 and m2 the two elements in the maximal clique of A. Since A has more
than three elements, there exists c ∈ A such that c 	= 0 and c is not equal to either m1 or m2.
Let c′ be the complement of c in the principal subalgebra (m1](m1](m1] generated by m1. Then one
easily checks that c′ = m1\c = m2\c and that m1 ∧ c = m2∧c = c. A straightforward series
of checks now confirms that B := {0, c, c′, m1, m2} is closed under the operation \ and that
〈B; \, 0〉 is isomorphic to the five-element subdirectly irreducible implicative BCS-algebra
of Example 2.1.

Theorem 4.3. The following are equivalent for A ∈ iBCS.
1. A ∈ Q(B2).
2. A |= (4.1).
3. For any a ∈ A the map ϕa of Lemma 4.1(3) is an isomorphism.
4. For any a ∈ A the relations Φa and Ψa of Lemma 4.1(2) are complementary factor

congruences.
5. A is the 〈\, 0〉-subreduct of a skew Boolean algebra.

Proof. (1) ⇔ (2) It is easily checked that B2 |= (4.1) and hence that Q(B2) |= (4.1).
Conversely, suppose A |= (4.1). Without loss of generality, we may assume that A is the
subdirect product of a family {Aγ : γ ∈ Γ} of subdirectly irreducible implicative BCS-
algebras. Suppose that one of the Aγ has more than three elements. Then by Lemma 4.2,
this Aγ has a subalgebra B that is isomorphic to the five-element subdirectly irreducible
implicative BCS-algebra of Example 2.1. We denote the elements of B by 0, c, c′, m1, m2,
as in this lemma. Since m1 ∧ c = m2 ∧ c and m1\c = m2\c, but m1 	= m2, it follows
that Aγ does not satisfy (4.1). But this means that A can not satisfy (4.1) either. This
contradiction implies that each Aγ has at most three elements. But then each Aγ must be
isomorphic to either B1 or B2 and so A ∈ Q(B2).

(2) ⇒ (3) Suppose A |= (4.1). Now if b, c ∈ A are such that ϕa(b) = ϕa(c) then we have
a ∧ b = a ∧ c and a\b = a\c; whence b = c. Thus ϕa is one-to-one and therefore is an
isomorphism.

(3) ⇒ (4) Suppose that the map ϕa is an isomorphism for any a ∈ A. Let b, c ∈ A be
such that b ≡ c (mod Φa) and b ≡ c (mod Ψa). Then b ∧ a = c ∧ a and b\a = c\a, which
implies that b = c by Lemma 4.1(3), since ϕa is a bijection. Thus Φa ∩ Ψa = ω. Also,
b = ϕ−1

a

(〈b ∧ a, b\a〉)Φaϕ−1
a

(〈b ∧ a, c\a〉)Ψaϕ−1
a

(〈c ∧ a, c\a〉) = c, for any b, c ∈ A. Thus
Φa ◦ Ψa = ι. Hence Φa and Ψa are complementary factor congruences.

(4) ⇒ (2) Suppose that Φa and Ψa are complementary factor congruences for any a ∈ A.
Let a, b, c ∈ A be such that b∧ a = c∧ a and b\a = c\a. Then we have b ≡ c (mod Φa) and
b ≡ c (mod Ψa), which implies that b = c since Φa ∩ Ψa = ω. Hence A |= (4.1).

(1) ⇔ (5) This is immediate from Theorem 3.4.

Corollary 4.4. A quasi-equational base for Q(B2) is given by the implicative BCS-algebra
identities (2.1) to (2.4) of Section 2 together with the quasi-identity (4.1) above.

A skew Boolean algebra 〈A;∧,∨, \, 0〉 is said to be flat (also smooth or primitive in the
skew Boolean algebra literature) if its implicative BCS difference operation \ is the binary
discriminator on A. In other words, a skew Boolean algebra is flat if and only if it is a
binary discriminator algebra in the sense of Chajda et al [9]. Example 3.2 shows that such
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algebras play an important role in the theory of (left handed) skew Boolean algebras. This
observation suggests attention be devoted to the study of flat implicative BCS-algebras,
namely those implicative BCS-algebras 〈A; \, 0〉 for which (by analogy with the theory of
skew Boolean algebras) the fundamental operation \ is the binary discriminator on A. It
is easy to see that every flat implicative BCS-algebra is the 〈\, 0〉-reduct of a flat skew
Boolean algebra and hence is a member of Q(B2). The following useful technical lemma,
which clarifies the relationship between flat implicative BCS-algebras and flat skew Boolean
algebras, shows that even more is true.

Lemma 4.5.
1. Let A be a flat left handed skew Boolean algebra. Then the 〈\, 0〉-reduct of A is flat.

Moreover, Con 〈A; \, 0〉 = ConA.
2. Let A := 〈A; \, 0〉 be a flat implicative BCS-algebra. For all a, b ∈ A, let:

a ∧ b := a\(a\b) =

{
a if b 	= 0
0 otherwise

a ∨ b :=

{
b if b 	= 0
a otherwise.

Then the induced structure A′ := 〈A;∧,∨, \, 0〉 is a flat left handed skew Boolean
algebra. Moreover, A is the 〈\, 0〉-reduct of A′ and ConA = ConA′.

3. Any flat implicative BCS-algebra is a Q(B2)-algebra.
4. Every congruence on a flat Q(B2)-algebra is a Q(B2)-congruence.

Proof. (1) The first assertion is clear, while the second may be deduced by use of (2).

(2) Let A be a flat implicative BCS-algebra. Easy but tedious case-splitting arguments show
that the induced structure A′ := 〈A;∧,∨, \, 0〉 satisfies all the identities defining left handed
skew Boolean algebras (see [10, Section 2] or [19, Theorem 1.8]) and hence is a left handed
skew Boolean algebra. Clearly A is the 〈\, 0〉-reduct of A′ and ConA′ ⊆ ConA. Now by [10,
Lemma 4.8] any partitition of the non-zero elements of A, together with the singleton {0},
is the set of congruence classes of some congruence on A′. To see ConA ⊆ ConA′ it
therefore suffices to show ΘA(0, b) = ι for any 0 	= b ∈ A. So let a, b ∈ A with 0 	= b. Then
a = a\0 ΘA(0, b) a\b = 0. Hence ΘA(0, b) = ι as required.

(3) This is immediate from (2) and Theorem 3.3.

(4) This follows from (2) and (3), since any non-trivial homomorphic image of a flat skew
Boolean algebra is itself flat.

Corollary 4.6. (cf. [8, Proposition 3])
1. The class of congruence lattices of all (flat) Q(B2)-algebras does not satisfy any par-

ticular lattice identity.
2. The class of Q(B2)-congruence lattices of all (flat) Q(B2)-algebras does not satisfy

any particular lattice identity.
3. The class of congruence lattices of all implicative BCS-algebras does not satisfy any

particular lattice identity.

Proof. The corollary is immediate in view of [10, Corollary 4.9].

Let K be a quasivariety. An algebra A ∈ K is said to be K-subdirectly irreducible if A has
a smallest non-identity K-congruence. We denote the class of all K-subdirectly irreducible
members of K by KRSI. By a result due to Mal’cev [21], every member A of K is isomorphic
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to a subdirect product of K-subdirectly irreducible members of K (that are homomorphic
images of A). Thus, K = IPs(KRSI).

In [10] Cornish characterised the subdirectly irreducible left handed skew Boolean alge-
bras by exploiting the complementary factor congruences of Lemma 4.1(2) in conjunction
with his description [10, Lemma 4.8] of the congruence structure of flat skew Boolean al-
gebras. Because the congruences on any flat implicative BCS-algebra A coincide with the
congruences on any flat left handed skew Boolean algebra that has A as its 〈\, 0〉-reduct,
Cornish’s result yields the following characterisation of the Q(B2)-subdirectly irreducible
Q(B2)-algebras.

Theorem 4.7. (cf. [10, Theorem 4.10]) To within isomorphism, the only Q(B2)-subdirectly
irreducible members of Q(B2) are the three-element and two-element flat implicative BCS-
algebras B2 and B1 of Section 2.

Proof. Suppose A is a Q(B2)-subdirectly irreducible Q(B2)-algebra. Let Φa and Ψa be the
Q(B2)-congruences of Lemma 4.1(2) and let b ∈ A be such that b 	= 0. As b\b = 0 (by (2.1))
= 0\b (by (2.6)), 0 ≡ b (mod Ψb). Hence Ψb 	= ω. Because Φb, Ψb are complementary
factor congruences, Φb = ω. Now for any a ∈ A, (a ∧ b) ∧ b = a ∧ b, so a ∧ b ≡ a (mod Φb).
Consequently, a∧b = a. But then a\b = (a∧b)\b =

(
a\(a\b))\b = 0 (by (2.7)). When b = 0,

a\b = a by (2.5). Hence A is flat. Now by Lemma 4.5, A will be subdirectly irreducible, and
hence Q(B2)-subdirectly irreducible, if and only if its skew Boolean algebra extension A′ of
Lemma 4.5(2) is subdirectly irreducible. Since, to within isomorphism, the only subdirectly
irreducible left handed skew Boolean algebras are (by Example 3.2) 3L and 2, it follows
that, to within isomorphism, the only Q(B2)-subdirectly irreducible members of Q(B2) are
the 〈\, 0〉-reducts of 3L and 2, viz., the flat implicative BCS-algebras B2 and B1.

¿From the description of the subdirectly irreducible left handed skew Boolean algebras
given in Example 3.2, it is clear (see [10, Corollary 4.11]) that the lattice of subvarieties
of LSBA is a three-element chain. It is well known (see for instance [25, p. 6]) that the
algebra B1 generates the class of implicative BCK-algebras as a quasivariety, and hence
that every subquasivariety of iBCK is a variety. These remarks, in conjunction with Theo-
rem 4.7 above and Blok and Raftery [8, Corollary 10], yield the following characterisation
of the lattice of subquasivarieties of Q(B2)-algebras. In the statement of the corollary, for
any 〈\,0〉-terms u1(�x), . . . , un(�x) in the variables �x, we denote by x\∏n

i=1 ui(�x) the term(· · · (x\u1(�x))\ · · · )\un(�x), n ∈ ω.

Corollary 4.8. The lattice of subquasivarieties of Q(B2)-algebras is a three-element chain;
the only non-trivial proper subquasivariety of Q(B2) is the variety of implicative BCK-
algebras. A subquasivariety K of Q(B2) is proper if and only if it satisfies an identity of the
form:

x\
n∏

i=1

ui(x, y) ≈ y\
m∏

j=1

vj(x, y)(4.2)

where n, m ∈ ω and u1, . . . , un, v1, . . . , vm are 〈\,0〉-terms such that BCK satisfies:

ui(x, x) ≈ 0 ≈ vj(x, x) (i = 1, . . . , n; j = 1, . . . , m).

Proof. The first assertion of the corollary is clear. If K is a proper subquasivariety of
Q(B2), then K ⊆ iBCK and hence satisfies (2.11), which is an identity of the form of (4.2).
Conversely, suppose K satisfies an identity of the form of (4.2). By Blok and Raftery [8,
Corollary 10], H(K) ⊆ BCK, so K is not Q(B2). Hence K is proper.
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The results of this section may be understood as generalisations to Q(B2) and skew Boolean
algebras of some well known theorems relating iBCK to GBA. For details of these latter,
see in particular Kalman [16]. The theory of Q(B2)-algebras [resp. skew Boolean algebras]
may itself be seen as an amalgamation of the theory of implicative BCK-algebras [resp.
generalised Boolean algebras] with that of left normal bands [resp. normal bands]. For a
discussion and references, see in particular Leech [19, Section 1.19].
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