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RANDOM PERTURBATIONS OF VOLTERRA DYNAMICAL SYSTEMS
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Abstract. Nonlinear Volterra integral equations can arise in systems whenever there
is feedback and filtering. Usually these are analyzed by deriving equivalent differential
models and then using standard dynamical systems methods. However, the presence
of noise in these models usually puts them beyond differential equations, and one
must consider the Volterra integral equations directly. The purpose of this paper is
to apply a random perturbation method to a canonical network from mathematical
neuroscience that has parametric noise, and to demonstrate how the results can be
used to estimate the loss of information due to cycle slipping, which corresponds to
noise-induced spurious firing in the network.

1 Introduction Noise in systems can be modeled in several different ways: For example,
Langevin’s equation describes a linear physical system to which white noise is added, and
the linear theory for it has been extended to nonlinear stochastic differential equations with
additive white noise [1]. This approach is referred to as being based on additive noise.
Another approach was derived from work of Bogoliubov [2, 3] on averaging in nonlinear
oscillatory systems. In this approach, parameters in the system are allowed to be random
processes, and methods based on averaging and ergodic theory provide useful predictions
from the model. This approach is referred to as being based on parametric noise. A third
approach is to derive models, such as Markov chains, for the system’s state variables as
being random variables, and then to use methods of probability theory for analysis, e.g. see
[4].

In this paper, we study a model in mathematical neuroscience that is derived elsewhere
[6]. There is a solid deterministic basis for this model and additive noise does not adequately
describe the separate variation of parameters encountered. Therefore, we consider the
problem with parametric noise. In particular, we investigate here how noise can induce
spurious firing in a neural network, possibly resulting in the corruption of information
processing by the system. We do this using recently derived perturbation methods for
Volterra equations perturbed by parametric noise [5].

2 A Model Neural Network The phase-locked loop arises in mathematical neuro-
science as a canonical model of excitable neural tissue of Type I [6]. Consider a network
of M such electronic circuits that are connected through bandpass filters as described in
Figure 1.

A mathematical model for a phase-locked loop is posed in terms of voltages put out by
the VCO having a fixed wave form, say cos θ, and a variable phase θ(t). The circuits are
designed so modeling is in terms of the phase variable.
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Figure 1: A phase-locked loop circuit as being an element in a network. BPF denotes a
band-pass filter, PD denotes a phase detector, LF denotes a loop filter, and VCO denotes
a voltage controlled oscillator.

Filters are described as being linear time-invariant systems of the form

vout(t) =
∫ t

0

h(t− t′) vin(t′) dt′

where vin is an input signal, h(t) is the filter’s impulse response function (its Laplace
transform, H(s), is the filter’s transfer function), and vout is the filter’s output. For example,
a bandpass filter has a transfer function whose support (which is in the frequency domain)
describes the pass bands; namely, those frequencies that do and do not get through the
filter. Using these ideas and the methodology of canonical models for neural networks [6],
we can derive the following network model:

τj θ̈j(t) + θ̇j(t) = ωj

(1)

+ cos θj(t)
∫ t

0

hBPF (t− t′)
M∑
i=1

Cj,i cos (θi(t′) + ψj,i) dt′

for j = 1, . . . ,M , where θ̇ = dθ/dt and where

1. τj is the time constant of the (low-pass) loop filter in jth node.

2. cos θj(t) is the voltage put out by the jth VCO; θj is its phase.

3. ωj is the center frequency of the jth VCO.

4. Cj,i is the strength of connection from the ith node to the jth node and ψj,i is the
orientation of the connection.

5. hBPF is the impulse response function for the bandpass filter.

We refer to the model as being a Volterra Dynamical System (VDS, a dynamical system
involving Volterra integro-differential equations). At this point, the model can be analyzed
using standard methods of dynamical systems provided the bandpass filter is described by
an equivalent ordinary differential equation, which is typical in engineering applications [7].
However, when the system includes parametric noise, we must proceed in a different way.
(Because of space restrictions here, we describe the method by using an abstract model and
later discuss how to specialize the results to the network model (1).)
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3 Random Perturbations of a Volterra Dynamical System Consider the system

ẋ(t) = ω(y(t/ε)) +
∫ t

0

k(t− t′, y(t′/ε), x(t′)) dt′(2)

where x, ω, and k are vector-valued functions, and k is continuously differentiable in the t
and x arguments. y is a vector of random processes that satisfies certain natural conditions
to be listed below, and ε is a small parameter that describes the ratio of the time scale on
which the system responds (slow) to that on which noise acts (fast). y takes values in a
measurable space Y ⊂ RN .

We suppose that y satisfies the following conditions (explanations of these terms may
be found in [5]):

1. It is a stationary or a Markov random process.

2. It is an ergodic process (in the sense of Birkhoff) having ergodic measure, say ρ, in Y .

3. It satisfies a strong mixing condition.

4. ω and k are measurable on Y with respect to ρ.

When these conditions are satisfied, we can obtain a useful approximation to the solution
x(t):

x(t) = x̄(t) +
√
ε x̃(t) + r(t, ε)(3)

where x̄ solves the averaged equation

˙̄x(t) = ω̄ +
∫ t

0

k̄(t− t′, x̄(t′)) dt′(4)

and
ω̄ =

∫
Y

ω(y)ρ(dy), k̄(t, x) =
∫

Y

k(t, y, x)ρ(dy).

The random process x̃ is a diffusion process that satisfies a (linear) equation

˙̃x(t) = z(t) +
∫ t

0

L(t− t′) x̃(t′) dt′(5)

where z is a Gaussian process having Ez = 0 and its second moments are given by an
explicit formula (e.g., see [5], p. 18) involving the linearization of k̄ about x̄(t), ρ, and the
function

R(y,B) =
∫ ∞

0

(P (t′, y, B) − ρ(B)) dt′

for any y ∈ Y and any measurable set B ⊂ Y . Here P (t, y, B) is the probability that the
process y(t) starting at point y lies in the set B at time t. The function L can be found
in terms k̄ and x̄ [5]. The equation for x̃ shows it to be a Gaussian process, which can be
determined directly from z using the resolvent kernel for L.

The remainder, or error term, r(t, ε), is of order o(
√
ε), meaning that r(t, ε)/

√
ε con-

verges to zero as ε→ 0 in a stochastic sense (e.g., weak convergence in C).
The following sample calculation can help one to better understand the approximation:

Consider the differential equation

ẋ(t) = ω(y(t/ε))
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where ω and y are as above. The solution of this problem is

x(t) = x(0) +
∫ t

0

ω(y(t′/ε)) dt′

= x(0) + t ω̄ +
∫ t

0

(ω(y(t′/ε)) − ω̄) dt′,

and the law of large numbers shows the last integral is small in a probabilistic sense as
ε→ 0. In fact,

∫ t

0

(ω(y(t′/ε)) − ω̄) dt′ =
√
ε
√
ε

∫ t/ε

0

(ω(y(t′)) − ω̄) dt′

and by a central limit theorem we have

√
ε

∫ t/ε

0

(ω(y(t′)) − ω̄) dt′ →W (t)

as ε→ 0 where W is a diffusion process. As a result,

x(t) = t ω̄ +
√
ε W (t) + r(t, ε)

where r can be estimated to be of order o(
√
ε) in a probabilistic sense. Note that the first

term in this expression satisfies ˙̄x = ω̄.

4 Discussion and Conclusions The perturbation method for Volterra Dynamical Sys-
tems with parametric noise can be used to analyze aspects of the network in system (1).
The result of the analysis is an approximation of the form

θj(t) = θ̄j(t) +
√
ε θ̃j(t) + rj(t, ε)(6)

for the voltage phase at each node j = 1, . . . ,M . This can be used to evaluate the impact
of parametric noise on the neural network. First of all, the system can be averaged. This
system for θ̄ = {θ̄j} may or may not be analytically tractable, but at least there are good
numerical methods available for simulating its solution [8]. Second, the next order term
solves a linear Volterra dynamical system that is forced by a Gaussian process, whose
statistics depend on the nature of the parametric noise in the model. Explicit formulas for
these are given in [5]. This equation can be analyzed using the resolvent kernel methods
for linear Volterra equations to determine properties of the random processes θ̃ = {θ̃j}.

Finally, cycle slipping in the network can be estimated in terms of the variance of
these Gaussian random processes. The mean time between slips in a phase-locked loop is
proportional to the signal-to-noise ratio [9] and the noise band width [10], and these can
be estimated using either the formulas derived above or using spectral methods applied to
computer simulations of θ̃ = {θ̃j}. In particular, the variance of the first order correction
to the phases indicates the likelihood of cycle slipping. The simulation shown in Figure 2 is
for the phase of a single node PLL. This is comparable to a pendulum with a sub-threshold
torque applied to the support point. When noise is added to this torque, it can cause the
pendulum to clock around - in this case, several times before being captured again by the
equilibrium.

The results described here show that

1. The system obtained by using average values of the data provides an approximation
to the expected value of the solution, and the formulas for ω̄ and k̄ show how to
correctly average the data.
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Figure 2: Simulation of a single node with parametric forcing with θ̈ + θ̇ = ω(y1(t/ε)) +
A(y2(t/ε)) cos θ, where y1, y2 are two-state Markov processes. Lower Left: θ̄ vs. ˙̄θ. Lower
Right: θ̄(t) and ˙̄θ vs. t. The center frequency fluctuates between two values, say ω1 and
ω2. In this simulation (ω1 +ω2)/(2Ā) < 1 and ω2/Ā > 1. The variance of θ̃ is proportional
to the band width, ω2 − ω1. Upper Left: θ vs. θ̇ for the perturbed system. Noise moves
the trajectory from one potential well to another, and in the course of this it generates a
spurious burst of voltage spikes, shown at the Upper Right. The larger the variance of θ̃,
the larger the number of cycle slips.

2. The errors however, can be large, although with low probability. In the context of the
phase-locked loop network described above, large deviations of θ̃ correspond to cycle
slipping in the network, which would be observed as spurious firing of a node. We
have outlined how the mean time between slips can be estimated.

3. The variance of θ̃ in the approximation provides an estimate of the rate of cycle
slipping. While the formula is not presented here in detail, it is an expression that
involves only the linearization of the averaged system about the average solution, the
ergodic measure ρ of the parametric noise, and the rate of convergence of the random
process, which is described by the function R(y,B). All of these components can be
calculated explicitly. These formulas show how the statistics of the parametric noise
are folded into the approximation to the solution.

4. The cycle slipping rate depends on large deviations of the phases from their means,
and the methods of large deviation theory can be used to give further information.
We do not pursue this here, but this is discussed in [5].

5. Computer simulations of this model can be performed using for each component of
y a finite state, continuous time Markov process and using estimates of the other
data (connection strengths, etc.), coming from biophysical experiments. The impact
of this noise on a node’s information processing capability is determined (in part)
by its signal-to-noise ratio which can be estimated using standard spectral methods
[9]. These spurious spikes can propagate through a network unless suitably filtered
out, which can be done by the bandpass filter at each node if the passbands at each
node suppress the higher frequency spurious bursts generated by noise. Synapses in
biophysical neurons are known to have passbands that can do this [11].
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One of the strong features of phase-locked loops is their stability in the presence of noise.
A detailed discussion of cycle slipping for a single PLL and references to further literature
are presented in [5], Chapter 10.
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