
Scientiae Mathematicae Japonicae Online, Vol. 8, (2003), 433{462 433

ON NEURONAL FIRING MODELING VIA SPECIALLY CONFINED

DIFFUSION PROCESSES

V. Giorno, A.G. Nobile and L.M. Ricciardi

Received March 26, 2003

Abstract. First passage time problems for di�usion processes have been extensively

investigated to model neuronal �ring activity or extinction times in population dy-

namics (see, for instance, [10]). In this paper we study the asymptotic behavior of

�rst passage times densities for a class of specially con�ned temporally homogeneous

di�usion processes in the presence of an entrance or a re
ecting boundary. The em-

phasis is on problems of a rather mathematical nature, concerning the behavior of the

�rst passage time density and of its moments when the neuronal �ring threshold is

in the neighborhood of the re
ecting boundary, and when it moves inde�nitely away

from it. Our asymptotic results are obtained without need to determine beforehand

the transition probability density in the presence of entrance or re
ecting boundaries;

they depend, instead, only on drift, in�nitesimal variance, threshold and on the en-

trance or the re
ecting boundary of the process. Some evaluations of moments of �rst

passage time, in particular, mean and variance, are performed by solving numerically,

or analytically whenever possible, Siegert's recursion equations [12], and by comparing

the results with those obtained through our approximate formulas. In the case where

the transition probability density is known, the goodness of the obtained approxima-

tions can be veri�ed. Such results appear to be useful for neuronal modeling in the

presence of reversal potential especially to pinpoint the role of the involved parameters

in various models, some of which are the object of a somewhat detailed analysis.

1 Introduction

The purpose of this paper is to provide the necessary mathematical framework to approach

the single neuron's �ring description by means of models based on the theory of stochastic

di�usion processes. Although this is undoubtedly a very much trotted ground (see, for

instance, [11] and references therein), our present approach di�ers substantially in that it

makes use of our notion of BF-processes, that will be introduced in the sequel after provided

the necessary mathematical background and proving several basic analytic results. The last

part of this paper will �nally be speci�cally centred on the discussion of neuronal models

and on the outline of several computational results.

Let fX(t); t � 0g be a time{homogeneous di�usion process de�ned over the interval

I � [r; r2), where r is a regular or entrance boundary and r2 is a natural boundary. Further,

let A1(x) and A2(x) be the drift and in�nitesimal variance of X(t), respectively, and let

S 2 (r; r2). For all x 2 (r; r2), let

h(x) := exp
n
�2

Z x A1(�)

A2(�)
d�
o

(scale function)

(1)

s(x) :=
2

A2(x)h(x)
(speed density):
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Furthermore, for all t > 0 and x; x0 2 I, let

f(x; tjx0) = @

@x
PfX(t) < xjX(0) = x0g

denote the transition probability density function (pdf) with a re
ecting condition (regular

boundary) or with a zero-
ux condition (entrance boundary) set at r.

Hereafter, we shall focus our attention on the properties of the �rst passage time (FPT)

random variable

T = inf
t�0
ft : X(t) > Sg; X(0) = x0 < S:

Let

g(S; tjx0) = @

@t
PfT < tg

be the pdf of T . An analytic approach to the evaluation of g(S; tjx0) is based on its Laplace

transform (LT) with respect to t:

g�(Sjx0) :=
Z +1

0

e��tg(S; tjx0) dt:(2)

Then, g(S; tjy) can be obtained as the inverse LT. It is worth to point out that even though

the inverse transform cannot be calculated, it can nevertheless provide useful information.

Indeed, for all n = 1; 2; : : : , the moments of T

tn(Sjx0) := E(Tn) =

Z +1

0

tn g(S; tjx0) dt(3)

customarily obtained via g�(Sjx0) as follows:

tn(Sjx0) = (�1)n dng�(Sjx0)
d�n

���
�=0

�

When the end point r of the di�usion interval is a re
ecting or entrance boundary, alterna-

tive approaches to calculate the FPT moments are provided by the following propositions.

Proposition 1.1 Let r � x0 < S, where r is a re
ecting or an entrance boundary. Then,

for the FPT probability one has:

P (Sjx0) :=
Z +1

0

g(S; tjx0) dt = 1:

Furthermore, all moments tn(Sjx0) are �nite and can be iteratively calculated as

tn(Sjx0) = n

Z
S

x0

h(z) dz

Z
z

r

s(u) tn�1(Sju) du (n = 1; 2; : : : )(4)

where t0(Sjx0) = 1.

Proof: It goes along the lines indicated in [12].
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Proposition 1.2 Under the assumptions of Proposition 1.1, one has

t1(Sjx0) = �1(Sjr) � �1(x0jr)
(5)

tn(Sjx0) = n!

(
n�1X
j=1

(�1)n�j�1
j!

tj(Sjx0) �n�j(Sjr)

+(�1)n�1
h
�n(Sjr) � �n(x0jr)

i)
(n = 2; 3; : : : )

where for all x 2 I we have set

�1(xjr) =
Z

x

r

h(z) dz

Z
z

r

s(u) du

(6)

�n(xjr) =
Z x

r

h(z) dz

Z z

r

s(u) �n�1(ujr) du (n = 2; 3; : : : ):

Proof: By making use of (4) and (6) it is immediately seen that relations (5) hold for

n = 1; 2. We now proceed by induction and prove that if (5) holds for an arbitrarily �xed

n, it also holds for n+ 1. Indeed, from (4) and (6) it follows

tn+1(Sjx0) = (n+ 1)!

(
n�1X
j=1

(�1)n�j�1
(j + 1)!

�n�j(Sjr) tj+1(Sjx0)

+(�1)n�1�n(Sjr) t1(Sjx0) + (�1)n
h
�n+1(Sjr) � �n+1(x0jr)

i)
;

whose right-hand side is seen to yield tn+1(Sjx0) as de�ned by (5).

Remark 1.1 Under the assumptions of Proposition 1.1, one has

�n(xjr) � [t1(xjr)]n (n = 1; 2; : : : )(7)

Proof: By virtue of (5) and (6), it is immediately seen that relations (7) hold for n = 1; 2.

We now proceed by induction and prove that if (7) holds for an arbitrarily �xed n, it also

holds for n+ 1. Indeed, from (5) and (6) it follows:

�n+1(xjr) =
Z x

r

h(z) dz

Z z

r

s(u) �n(ujr) du �
Z x

r

h(z) dz

Z z

r

s(u) [t1(ujr)]n du

� [t1(xjr)]n
Z x

r

h(z) dz

Z z

r

s(u) du = [t1(xjr)]n+1:(8)

In Section 2 we analyze the behavior of the of the FPT pdf and of its moments when

the threshold S is in the neighborhood of the re
ecting or entrance boundary r. Instead, in

Section 3 we analyze the behavior of the FPT pdf and of its moments when the threshold

S is moving inde�nitely away from it. Our asymptotic results are obtained without need to

determine beforehand the transition pdf in the presence of entrance or re
ecting boundaries;

they depend, instead, only on drift, in�nitesimal variance, threshold and on the entrance

or the re
ecting boundary of the process. In Section 4 certain closed-form solutions for the

FPT moments and densities are obtained. Finally, in Section 5 new asymptotic results for

Wiener, Ornstein Uhlenbeck and Feller models are presented.
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2 The neuronal threshold is in the neighborhood of the boundary

In Section 2.1 we analyze the general behavior of the of the FPT pdf and of its moments

when the threshold S is in the neighborhood of the re
ecting or entrance boundary r,

whereas in Section 2.2 we consider some special cases.

2.1 General Considerations

Lemma 2.1 If

lim
x#r

p
A2(x) h(x)

Z
x

r

s(u) du = 0;(9)

lim
x#r

h
A1(x) � A02(x)

4

i
h(x)

Z
x

r

s(u) du = �;(10)

where A02(x) =
dA2(x)

dx
and where �1 < � < 1 is a real number, then

lim
S#r

�n(Sjr)
[t1(Sjr)]n =

1

n!

n�1Y
i=0

�
1 + 2 i (1 � �)

� (n = 1; 2; : : : ):(11)

Proof: We proceed by induction. Since �1(Sjr) = t1(Sjr), (11) is trivial for n = 1. Setting

n = 2 in the left-hand side of (11) and making use of (4) and (6), we obtain

lim
S#r

�2(Sjr)
[t1(Sjr)]2 = lim

S#r

Z
S

r

h(z) dz

Z
z

r

s(u) �1(ujr) du�Z S

r

h(z) dz

Z z

r

s(u) du

�2

=
1

2
lim
S#r

"
1 +

A2(S)h
2(S)

�R S
r
s(u) du

�2
2 t1(Sjr)

#�1
;(12)

where l'Hospital's rule has been used repeatedly. Since (9) holds, by applying again of

l'Hospital's rule, one has

lim
S#r

A2(S)h
2(S)

hR S
r
du s(u)

i2
t1(Sjr) = 4 lim

S#r

�
1�

�
A1(S)� A02(S)

4

�
h(S)

Z S

r

s(u) du

�
= 4 (1 � �);(13)

where the last equality follows from (10). From (13) we note that �1 < � < 1. Making

use of (13) in (12), one obtains

lim
S#r

�2(Sjr)
[t1(Sjr)]2 =

1

2 [1 + 2 (1 � �)]
;

showing that (11) is satis�ed for n = 2. Let us now assume that (11) holds for n and prove
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that it also holds for n+ 1. Indeed, we have

lim
S#r

�n+1(Sjr)
[t1(Sjr)]n+1 = lim

S#r

Z
S

r

h(z) dz

Z
z

r

s(u) �n(ujr) du�Z
S

r

h(z) dz

Z
z

r

s(u) du

�n+1

=
1

n+ 1
lim
S#r

(
�n(Sjr)
[t1(Sjr)]n

"
1 +

n

2

A2(S)h
2(S)

�R
S

r
s(u) du

�2
t1(Sjr)

#�1)
:(14)

where again (4), (6), (9) and l'Hospital's rule have been used. Due to (10), and making use

of the assumption that (11) holds for n, from (14) one has:

lim
S#r

�n+1(Sjr)
[t1(Sjr)]n+1 =

1

(n+ 1)!

nY
i=0

�
1 + 2 i (1 � �)

� :
Hence, if (11) holds for an arbitrarily �xed n, it also holds for n + 1. This completes the

proof.

Theorem 2.1 Under the assumptions of Lemma 2.1 there results:

lim
S#r

tn(Sjr)
[t1(Sjr)]n = un (n = 0; 1; : : : );(15)

where

u0 = 1; un =

nX
k=1

�
n

k

�
(�1)k�1

k�1Y
i=0

[1 + 2 i (1 � �)]

un�k (n = 1; 2; : : : ):(16)

Proof: For n = 0; 1, Equation (15) holds with u0 = u1 = 1. For n = 2; 3; : : : , from (5)

with x0 = r we have:

tn(Sjr)
[t1(Sjr)]n = n!

8<:
n�1X
j=1

(�1)n�j�1
j!

tj(Sjr)
[t1(Sjr)]j

�n�j(Sjr)
[t1(Sjr)]n�j + (�1)n�1 �n(Sjr)

[t1(Sjr)]n

9=; :

(17)

Recalling (11), in the limit as S # r, from (17) it follows:

un = n!

n�1X
j=1

(�1)n�j�1 uj

j! (n � j)!

n�j�1Y
i=0

�
1 + 2 i (1 � �)

� + (�1)n�1
n�1Y
i=0

�
1 + 2 i (1 � �)

�
=

n�1X
j=0

�
n

j

�
(�1)n�j�1

n�j�1Y
i=0

[1 + 2 i (1 � �)]

uj (n = 2; 3; : : : ):(18)

Setting k = n� j, the right-hand side of (18) is �nally seen to identify with the right-hand

side of (16) for n = 2; 3; : : : This completes the proof.
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Corollary 2.1 Under the assumptions of Lemma 2.1, as S approaches the boundary r, the

following asymptotic expressions hold:

tn(Sjr) ' [t1(Sjr)]n un (n = 0; 1; : : : );(19)

where un are de�ned in (16).

Proof: It follows immediately from (15).

Corollary 2.2 Let un (n = 0; 1; : : : ) be de�ned as in (16). Then, u0 = 1 and

un = (�1)n n! det

0BBBBB@
c1 1 0 0 : : : 0

c2 c1 1 0 : : : 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

cn�1 cn�2 cn�3 cn�4 : : : 1

cn cn�1 cn�2 cn�3 : : : c1

1CCCCCA (n = 1; 2; : : : )(20)

where

ck =
(�1)k

k!

k�1Y
i=0

[1 + 2 i (1 � �)]

(k = 1; 2; : : : ):(21)

Furthermore, the generating function of un=n! is given by

U(z) := 1 +

+1X
n=1

un

n!
zn =

�
1F2

�
1; 1;

1

2 (1 � �)
;� z

2 (1� �)

���1
;(22)

where

1F2(a; b; c;x) = 1 +

+1X
k=1

(a)k

(b)k (c)k

xk

k!
;(23)

denotes the generalized hypergeometric series.

Proof: Making use of (16), we obtain:

U(z) = 1 +

+1X
n=1

zn

n!

nX
k=1

�
n

k

�
(�1)k�1

k�1Y
i=0

[1 + 2 i (1 � �)]

un�k

= 1 +

+1X
k=1

(�1)k�1
k�1Y
i=0

[1 + 2 i (1 � �)]

+1X
n=k

zn

n!

�
n

k

�
un�k

= 1� U(z)

+1X
k=1

(�1)k

k!

k�1Y
i=0

[1 + 2 i (1 � �)]

zk;
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that implies

U(z) =

(
1 +

+1X
k=1

(�1)k

k!

k�1Y
i=0

[1 + 2 i (1 � �)]

zk

)�1
:(24)

Hence,

U(z) =
h
1 +

+1X
n=1

cn z
n

i�1
;(25)

where cn's are de�ned in (21). Recalling that U(z) is the generating function of un=n!, (20)

immediately follows from (25), (cf., for instance, [8], pag. 14, n. 0.313). Furthermore, since

k�1Y
i=0

[1 + 2 i (1 � �)] = [2 (1� �)]k
�

1

2 (1� �)

�
k

;

from (24) one obtains:

U(z) =

(
1 +

+1X
k=1

1

k!

�
1

2 (1� �)

�
k

h
� z

2 (1 � �)

ik)�1
:(26)

Setting a = 1, b = 1, c = [2 (1 � �)]�1, x = � z=[2 (1 � �)] in (23), the right-hand side of

(26) is �nally seen to yield to the right-hand side of (22).

In particular, from (20) and (21) it follows:

u0 = u1 = 1; u2 =
1 + 4 (1� �)

1 + 2 (1� �)
; u3 =

1 + 12 (1� �) + 48 (1� �)2

[1 + 2 (1 � �)] [1 + 4 (1� �)]
;

(27)

u4 =
1 + 26 (1� �) + 288 (1� �)2 + 1536 (1 � �)3 + 2304 (1� �)4

[1 + 2 (1 � �)]2 [1 + 4 (1 � �)] [1 + 6 (1 � �)]
�

Lemma 2.2 Let fZ(t) t � 0g be a Feller di�usion process de�ned in [0;+1) and charac-

terized by drift and in�nitesimal variance

C1(z) =
1

2 (1 � �)
; C2(z) = 2 z (�1 < � < 1)(28)

and let bg�(bSj0) be the Laplace transform of the FPT pdf from the state 0 to the state bS
(bS > 0). Under the assumptions of Lemma 2.1, one has:

~g�(Sjr) := U
���t1(Sjr)� � bg�� t1(Sjr)

2 (1� �)

���0�;(29)

where t1(Sjr) denotes the FPT mean from r through S for the process X(t) .
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Proof: As is well known (cf., for instance, [9]) for the di�usion process (28) boundary 0 is

regular for � < 1=2 and entrance for 1=2 � � < 1, whereas boundary +1 is natural. From

Proposition 1.1 it follows that P (bSj0) = 1 for all bS inside of I = [0;+1) and the moments

tn(bSj0) (n = 1; 2; : : : ) are �nite. The Laplace transform bg�(bSj0) of the FPT pdf when a

re
ecting condition is set at the regular boundary x = 0 (� < 1=2) or when a zero-
ux

condition is set at the entrance boundary x = 0 (1=2 � � < 1) is (see, for instance, [5]):

bg�(bSj0) =
(
�
� 1

2 (1 � �)

��p
� bS�1� 1

2 (1��)

I 1
2 (1��)

�1
�
2
p
� bS �)�1; bS > 0;(30)

where

I�(z) =

+1X
k=0

1

k! �(�+ k + 1)

�z
2

��+2k
(31)

denotes the modi�ed Bessel function of �rst kind. Hence, setting

bS =
t1(Sjr)
2 (1� �)

;

in (30), one obtains:

bg�� t1(Sjr)
2 (1� �)

���0�

=

(
�
� 1

2 (1 � �)

�  s� t1(Sjr)
2 (1 � �)

!1� 1
2 (1��)

I 1
2 (1��)

�1

 r
2� t1(Sjr)

1� �

!)�1
:(32)

Recalling (22) and (26), we now note that

~g�(Sjr) := U
���t1(Sjr)�

=

�
1F2

�
1; 1;

1

2 (1� �)
;
�t1(Sjr)
2 (1 � �)

���1
=

(
1 +

+1X
k=1

1

k!

�
1

2 (1� �)

�
k

 s
�t1(Sjr)
2 (1 � �)

!2k)�1
:(33)

Since, from (31) one has:

1 +

+1X
k=1

1

k! (�)k
x2 k = �(�)x1�� I��1(2x);

the right-hand side of (33) is �nally seen to identify with the right-hand side of (32).

Theorem 2.2 Let g�(Sjr) be the Laplace transform of the FPT pdf from the state r to the

state S (S > r) for the process X(t). Under the assumptions of Lemma 2.1 one has:

lim
S#r

1� g�(Sjr)
1� ~g�(Sjr) = 1 ;(34)

where ~g�(Sjr) is given in (29).
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Proof: From (22) and (29) one has:

~g�(Sjr) = U
���t1(Sjr)� = 1 +

+1X
n=1

(��)n
n!

�
t1(Sjr)

�n
un;(35)

whereas from (2) and (3) one obtains:

g�(Sjr) = 1 +

+1X
n=1

(��)n
n!

tn(Sjr)(36)

Hence, by making use of (35) and (36), one is led to the following equality:

1� g�(Sjr)
1� ~g�(Sjr) =

+1X
n=1

(��)n
n!

tn(Sjr)
[t1(Sjr)]n [t1(Sjr)]n

+1X
n=1

(��)n
n!

�
t1(Sjr)

�n
un

�(37)

Taking the limit in (37) as S # r and recalling (15), we conclude that (34) holds.

Corollary 2.3 Under the assumptions of Lemma 2.1, as S approaches the boundary r the

following asymptotic expression holds:

g�(Sjr) '
(
�
� 1

2(1� �)

� s�t1(Sjr)
2(1� �)

!1� 1
2(1��)

I 1
2(1��)

�1

 r
2�t1(Sjr)
1� �

!)�1
(38)

Proof: Since (34) holds, the Laplace transform of g(S; tjr) admits the following asymptotic

representation

g�(Sjr) ' ~g�(Sjr)
when the threshold is in the neighborhood of the re
ecting or entrance boundary. Hence,

recalling (29) and (32), one immediately obtains (38).

2.2 Special cases

Proposition 2.1 Under the assumptions of Lemma 2.1, if � = 0 one has:

U(z) = sec
p
2z(39)

and

u0 = 1; un =
(�1)nE2n

(2n � 1)!!
(n = 1; 2; : : : );(40)

where E0; E2; : : : denote Euler numbers:

E0 = 1; E2n = �
n�1X
j=0

�
2n

2j

�
E2j (n = 1; 2 : : : ):
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Furthermore,

~g�(Sjr) = sech
p
2� t1(Sjr)

and

~g(S; tjr) =
r

2 t1(Sjr)
� t3

+1X
k=0

(�1)k(2 k + 1) exp
n
� (2 k + 1)2t1(Sjr)

2 t

o
:(41)

Proof: Setting � = 0 in (26) and making use of identities�1
2

�
k

=
(2k � 1)!!

2k
; (2 k)! = 2k k! (2k � 1)!! ;

one obtains:

U(z) =

(
1 +

+1X
k=1

1

k!

�
1

2

�
k

�
� z

2

�k)�1
=

(
1 +

+1X
k=1

(�z)k
k! (2k � 1)!!

)�1
=

(
+1X
k=0

(�1)k (2z)k
(2k)!

)�1
:

(42)

Recalling that (cf., for instance, [8], pag. 34, n. 1.411.3)

cosx =

+1X
k=0

(�1)k x2k
(2k)!

;

(42) takes the following form:

U(z) =
n
cos

p
2z
o�1

� sec
p
2z:

Furthermore, since (cf., for instance, [1], pag. 75, n. 4.3.69)

secx =

+1X
n=0

(�1)nE2n x
2n

(2n)!

�
jxj < �

2

�
;

where E2n denote Euler numbers, one also obtains:

U(z) =

+1X
n=0

(�1)nE2n (2z)
n

(2n)!

���p2z�� < �

2

�
:(43)

A comparison of (43) and the �rst of (22) shows that relations (40) hold. Furthermore,

from (29) and (39) it follows

~g�(Sjr) = U
���t1(Sjr)� = sec

p
�2�t1(Sjr) � sech

p
2� t1(Sjr):(44)

Since (see, for instance, [8], pag. 23 n. 1.232.2)

sechx = 2

+1X
k=0

(�1)k expf�(2 k + 1)xg (x > 0);

from (44) one has

~g�(Sjr) = 2

+1X
k=0

(�1)k exp
n
�(2 k + 1)

p
2� t1(Sjr)

o
:(45)
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Making use of the known formulaZ +1

0

e�� t
h p

�

2
p
�

1

t
p
t
e��=(4 t)

i
dt = e�

p
�� (Re � > 0);

(cf., for instance, [3], pag. 245, n. (1)), (41) follows from (45).

Note that, since

E0 = 1; E2 = �1; E4 = 5; E6 = �61; E8 = 1385;

from (40) in particular one has:

u0 = u1 = 1; u2 =
5

3
; u3 =

61

15
; u4 =

277

21
;

that identi�es with (27) for � = 0. Furthermore, making use of Proposition 2.1, if � = 0

from (19) and (34) one obtains as S # r the following asymptotic expressions:

tn(Sjr) ' (�1)nE2n

(2n� 1)!!
[t1(Sjr)]n (n = 0; 1; : : : );

g�(Sjr) ' sech
p
2� t1(Sjr);

g(S; tjr) '
r

2 t1(Sjr)
� t3

+1X
k=0

(�1)k(2 k + 1) exp
n
� (2 k + 1)2 t1(Sjr)

2 t

o
:

Proposition 2.2 Under the assumptions of Lemma 2.1, if � = 2=3 one has:

U(z) =
p
6z csc

p
6z(46)

and

u0 = 1; un =
(�1)n+1 3n(22n � 2)B2n

(2n � 1)!!
(n = 1; 2; : : : );(47)

where B0; B2; : : : denote Bernoulli numbers:

B0 = 1; Bn = � 1

n+ 1

n�1X
k=0

�
n+ 1

k

�
Bk (n = 1; 2; : : : )

Furthermore,

~g�(Sjr) =
p
6� t1(Sjr) csch

p
6� t1(Sjr)

and

~g(S; tjr) =
r

6 t1(Sjr)
� t5

+1X
k=0

h
3 (2 k + 1)2 t1(Sjr)� t

i
exp
n
�3 (2 k + 1)2 t1(Sjr)

2 t

o
:(48)

Proof: Setting � = 2=3 in (26) and making use of identities�3
2

�
k

=
(2k + 1)!!

2k
; (2 k + 1)! = 2k k! (2k + 1)!! ;
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one obtains:

U(z) =

(
1 +

+1X
k=1

1

k!

�
3

2

�
k

�
� 3 z

2

�k)�1
=

(
+1X
k=0

(�3z)k
k! (2k + 1)!!

)�1
=

(
+1X
k=0

(�1)k (6z)k
(2k + 1)!

)�1
:

(49)

Recalling that (cf., for instance, [8], pag. 34, n. 1.411.1)

sinx =

+1X
k=0

(�1)k x2k+1
(2k + 1)!

;

from (49) one has:

U(z) =

p
6z

sin
p
6z

=
p
6z csc

p
6z:

Furthermore, since (cf., for instance, [1], pag. 75, n. 4.3.68)

cscx =
1

x
� 2

x

+1X
n=1

(�1)n �22n�1 � 1
�
B2n x

2n

(2n)!

�jxj < �
�
;

where B2n denote Bernoulli numbers, one also obtains:

U(z) = 1 + 2

+1X
n=1

(�1)n+13n�22n�1 � 1
�
B2n (2z)

n

(2n)!

�
6z < �2

�
:(50)

A comparison of (50) and the �rst of (22) shows that relations (47) hold. Furthermore,

from (29) and (46) it follows

~g�(Sjr) = U
���t1(Sjr)� =p�6� t1(Sjr) cscp�6�t1(Sjr)

�
p
6� t1(Sjr) csch

p
6� t1(Sjr):(51)

Since (see, for instance, [8], pag. 23 n. 1.232.3)

cschx = 2

+1X
k=0

expf�(2 k + 1)xg (x > 0);

from (51) one has

~g�(Sjr) = 2
p
6� t1(Sjr)

+1X
k=0

exp
n
�(2 k + 1)

p
6� t1(Sjr)

o
:(52)

Making use ofZ +1

0

e�� t
h 1p

� t5

��
4
� t

2

�
e��=(4 t)

i
dt =

p
� e�

p
�� (Re � > 0);

(cf., for instance, [3], pag. 246, n. (5)), from (52) one obtains (48).
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Note that

B0 = 1; B2 =
1

6
; B4 = � 1

30
; B6 =

1

42
; B8 = � 1

30
;

while from (47) in particular one has:

u0 = u1 = 1; u2 =
7

5
; u3 =

93

35
; u4 =

1143

175
;

that identi�es with (27) for � = 2=3. Furthermore, making use of Proposition 2.2, if � = 2=3

from (19) and (34) one obtains as S # r the following asymptotic formulas:

tn(Sjr) ' (�1)n+1 3n(22n � 2)B2n

(2n� 1)!!
[t1(Sjr)]n (n = 0; 1; : : : );

g�(Sjr) '
p
6� t1(Sjr) csch

p
6� t1(Sjr);

g(S; tjr) '
r

6 t1(Sjr)
� t5

+1X
k=0

h
3 (2 k + 1)2 t1(Sjr) � t

i
exp
n
�3 (2 k + 1)2 t1(Sjr)

2 t

o
:

3 The threshold moves inde�nitely away from the boundary

In Sections 3.1 and 3.2 we analyze in two di�erent cases the general behavior of the FPT

pdf and of its moments when the threshold S moves inde�nitely away from the re
ecting

or entrance boundary r, whereas in Section 3.3 we consider some special cases.

3.1 Case (a): General Considerations

Lemma 3.1 If

lim
x"r2

p
A2(x) h(x)

Z x

r

s(u) du = +1;(53)

lim
x"r2

�
A1(x) � A02(x)

4

�
h(x)

Z x

r

s(u) du = 
;(54)

where �1 < 
 < 1 is a real number, then

lim
S"r2

�n(Sjr)
[t1(Sjr)]n =

1

n!

n�1Y
i=0

[1 + 2 i (1 � 
)]

(n = 1; 2; : : : ):(55)

Proof: Since �1(Sjr) = t1(Sjr), (55) is trivial for n = 1. Recalling that r2 is a natural

boundary, making use of (4) and (6), we obtain

lim
S"r2

�k(Sjr)
[t1(Sjr)]k = lim

S"r2

Z
S

r

h(z) dz

Z
z

r

s(u)�k�1(ujr) du�Z S

r

h(z) dz

Z z

r

s(u) du

�k

=
1

k
lim
S"r2

(
�k�1(Sjr)
[t1(Sjr)]k�1

"
1 +

k � 1

2

A2(S)h
2(S)

�R
S

r
s(u) du

�2
t1(Sjr)

#�1)
(56)

(k = 2; 3; : : : ):
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where l'Hospital's rule has been used repeatedly. We note that setting k = 2 in (56) one

has:

lim
S"r2

�2(Sjr)
[t1(Sjr)]2 =

1

2
lim
S"r2

"
1 +

1

2

A2(S)h
2(S)

�R
S

r
s(u) du

�2
t1(Sjr)

#�1
:(57)

We now proceed by induction. Since (53) holds, by applying l'Hospital's rule one obtains:

lim
S"r2

A2(S)h
2(S)

�R
S

r
s(u) du

�2
t1(Sjr) = 4 lim

S"r2

�
1�

�
A1(S) � A02(S)

4

�
h(S)

Z
S

r

s(u) du

�
= 4 (1 � 
);(58)

where the last equality follows from (54). Hence, making use of (58) in (57), one has

lim
S"r2

�2(Sjr)
[t1(Sjr)]2 =

1

2 [1 + 2 (1� 
)]
;

that shows that (55) is satis�ed for n = 2. Let us now assume that (55) holds for n and

prove that it also holds for n+ 1. Indeed, from (56) and (58) we have

lim
S"r2

�n+1(Sjr)
[t1(Sjr)]n+1 =

1

(n + 1) [1 + 2n (1� 
)]
lim
S"r2

�n(Sjr)
[t1(Sjr)]n =

1

(n+ 1)!

nY
i=0

[1 + 2 i (1 � 
)]

�

This completes the proof.

Theorem 3.1 Under the assumptions of Lemma 3.1 one has:

lim
S"r2

tn(Sjr)
[t1(Sjr)]n = vn (n = 0; 1; : : : );(59)

where

v0 = 1; vn =

nX
k=1

�
n

k

�
(�1)k�1

k�1Y
i=0

[1 + 2 i (1 � 
)]

vn�k (n = 1; 2; : : : ):(60)

Proof: Equation (59) holds with v0 = v1 = 1 for n = 0; 1. For n = 2; 3; : : : , taking the

limit as S " r2 in (17) and making use of (55), one obtains:

vn = n!

n�1X
j=1

(�1)n�j�1 vj

j! (n � j)!

n�j�1Y
i=0

�
1 + 2 i (1 � 
)

� + (�1)n�1
n�1Y
i=0

�
1 + 2 i (1 � 
)

�
=

n�1X
j=0

�
n

j

�
(�1)n�j�1

n�j�1Y
i=0

[1 + 2 i (1 � 
)]

vj (n = 2; 3; : : : ):(61)

Setting k = n� j, the right-hand side of (61) is �nally seen to identify with the right-hand

side of (60) for n = 2; 3; : : : This completes the proof.
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Corollary 3.1 Under the assumptions of Lemma 3.1, as S approaches the boundary r2,

the following asymptotic expressions hold:

tn(Sjr) ' [t1(Sjr)]n vn (n = 0; 1; : : : );

where vn are de�ned in (60).

Proof: It follows immediately from (59).

Corollary 3.2 Let vn (n = 0; 1; : : : ) be de�ned as in (60). Then, v0 = 1 and

vn = (�1)n n! det

0BBBBB@
d1 1 0 0 : : : 0

d2 d1 1 0 : : : 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

dn�1 dn�2 dn�3 dn�4 : : : 1

dn dn�1 dn�2 dn�3 : : : d1

1CCCCCA (n = 1; 2; : : : )(62)

where

dk =
(�1)k

k!

k�1Y
i=0

[1 + 2 i (1 � 
)]

(k = 1; 2; : : : ):

Furthermore, the generating function of vn=n! is given by

V (z) := 1 +

+1X
n=1

vn

n!
zn =

(
1 +

+1X
k=1

1

k!

�
1

2 (1� 
)

�
k

h
� z

2 (1 � 
)

ik)�1

=

�
1F2

�
1; 1;

1

2 (1 � 
)
;� z

2 (1 � 
)

���1
:(63)

where 1F2(a; b; c;x) denotes the generalized hypergeometric series.

Proof: It follows by arguments similar to those of Corollary 2.2.

In particular, from (62) one obtains:

v0 = v1 = 1; v2 =
1+ 4 (1 � 
)

1 + 2 (1 � 
)
; v3 =

1 + 12 (1� 
) + 48 (1� 
)2

[1 + 2 (1 � 
)] [1 + 4 (1 � 
)]
;

v4 =
1 + 26 (1� 
) + 288 (1� 
)2 + 1536 (1 � 
)3 + 2304 (1 � 
)4

[1 + 2 (1 � 
)]2 [1 + 4 (1 � 
)] [1 + 6 (1 � 
)]
�

Theorem 3.2 Under the assumptions of Lemma 3.1 one has:

lim
S"r2

1� g�(Sjr)
1� ~~g

�
(Sjr) = 1 ;(64)

where

~~g
�
(Sjr) := V

���t1(Sjr)�
=

(
�
� 1

2 (1 � 
)

�  s� t1(Sjr)
2 (1� 
)

!1� 1
2 (1�
)

I 1
2 (1�
)

�1

 s
2� t1(Sjr)

1� 


!)�1
:(65)
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Proof: Proceeding along the lines indicated in Lemma 2.2, the function V
���t1(Sjr)�

is seen to identify with the Laplace transform of the FPT pdf from state 0 to statebS = t1(Sjr)=[2(1 � 
)] for a time{homogeneous di�usion process de�ned in [0;+1) and

characterized by drift C1(x) = [2 (1 � 
)]�1 and in�nitesimal variance C2(x) = 2x, with

�1 < 
 < 1. Furthermore, from (63) and (65) one obtains:

~~g
�
(Sjr) = V

���t1(Sjr)� = 1 +

+1X
n=1

(��)n
n!

�
t1(Sjr)

�n
vn:(66)

Hence, making use of (36) and (66) it follows:

1� g�(Sjr)
1� ~~g

�
(Sjr) =

+1X
n=1

(��)n
n!

tn(Sjr)
[t1(Sjr)]n [t1(Sjr)]n

+1X
n=1

(��)n
n!

�
t1(Sjr)

�n
vn

�(67)

Taking the limit in (67) as S " r2 and recalling (59), we conclude that (64) holds.

Corollary 3.3 Under the assumptions of Lemma 3.1, as S approaches the boundary r2,

the following asymptotic expression holds:

g�(Sjr) '
(
�
� 1

2(1� 
)

� s�t1(Sjr)
2(1� 
)

!1� 1
2(1�
)

I 1
2(1�
)

�1

 s
2�t1(Sjr)
1� 


!)�1

Proof: It is a consequence of (64).

3.2 Case (b): General Considerations

Lemma 3.2 If

lim
x"r2

p
A2(x) h(x)

Z
x

r

s(u) du = +1(68)

lim
x"r2

�
A1(x) � A02(x)

4

�
h(x)

Z x

r

s(u) du = �1;(69)

then

lim
S"r2

�n(Sjr)
[t1(Sjr)]n =

�
1; n = 1

0; n = 2; 3; : : : :
(70)

Proof: Since �1(Sjr) = t1(Sjr), (70) is trivial for n = 1. Moreover, relations (56) and (57)

hold. By virtue of (68), and by applying l'Hospital's rule, one obtains:

lim
S"r2

A2(S)h
2(S)

�R
S

r
s(u) du

�2
t1(Sjr) = 4 lim

S"r2

�
1�

�
A1(S)� A02(S)

4

�
h(S)

Z
S

r

s(u) du

�
= +1;

(71)
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where the last equality follows from (69). Hence, making use of (71) in (57), one has

lim
S"r2

�2(Sjr)
[t1(Sjr)]2 = 0 ;

that shows that (70) is satis�ed for n = 2. Let us now assume that (70) holds for n and

prove that it also holds for n+ 1. Indeed, this follows from (56) and (71) since

lim
S"r2

�n+1(Sjr)
[t1(Sjr)]n+1 = 0:

This completes the proof.

Theorem 3.3 Under the assumptions of Lemma 3.2 one has:

lim
S"r2

tn(Sjr)
[t1(Sjr)]n = n! (n = 0; 1; : : : ):(72)

Proof: Equation (72) holds for n = 0; 1. We now set:

b0 = b1 = 1; bn := lim
S"r2

tn(Sjr)
[t1(Sjr)]n (n = 2; 3; : : : ):(73)

Taking the limit as S " r2 in (17) and making use of (70), one obtains:

bn =
n!

(n� 1)!
bn�1 (n = 1; 2; : : : );

that implies bn = n! for n = 0; 1; : : : Hence, (72)'s follow from (73).

Corollary 3.4 Under the assumptions of Lemma 3.2, as S approaches the boundary r2 one

has:

tn(Sjr) ' n! [t1(Sjr)]n (n = 0; 1; : : : ):

Proof: It follows from (72).

Theorem 3.4 Under the assumptions of Lemma 3.2 one has:

lim
S"r2

1� g�(Sjr)
1� [1 + � t1(Sjr)]�1 = 1 :(74)

Proof: Making use of (36), one obtains:

1� g�(Sjr)
1� [1 + � t1(Sjr)]�1 =

+1X
n=1

(��)n
n!

tn(Sjr)
[t1(Sjr)]n [t1(Sjr)]n

+1X
n=1

(��)n
n!

n!
�
t1(Sjr)

�n �(75)

Taking the limit in (75) as S " r2 and recalling (72), we conclude that (74) holds.
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Corollary 3.5 Under the assumptions of Lemma 3.2, as S approaches the boundary r2 the

following asymptotic expressions hold:

g�(Sjr) ' [1 + � t1(Sjr)]�1

g(S; tjr) ' 1

t1(Sjr) exp
n
� t

t1(Sjr)
o
�

Proof: They follow from (74).

3.3 Special cases

By arguments similar to those of Proposition 2.1, under the assumptions of Lemma 3.1, if


 = 0 one obtains the following asymptotic expressions as S " r2:

tn(Sjr) ' (�1)nE2n

(2n� 1)!!
[t1(Sjr)]n (n = 0; 1; : : : );

g�(Sjr) ' sech
p
2� t1(Sjr);

g(S; tjr) '
r

2 t1(Sjr)
� t3

+1X
k=0

(�1)k(2 k + 1) exp
n
� (2 k + 1)2 t1(Sjr)

2 t

o
;

where E0; E2; : : : denote Euler numbers. Furthermore, by arguments similar to those of

Proposition 2.2, under the assumptions of Lemma 3.1, if 
 = 2=3 one obtains the following

asymptotic expressions as S " r2:

tn(Sjr) ' (�1)n+1 3n(22n � 2)B2n

(2n� 1)!!
[t1(Sjr)]n (n = 0; 1; : : : );

g�(Sjr) '
p
6� t1(Sjr) csch

p
6� t1(Sjr);

g(S; tjr) '
r

6 t1(Sjr)
� t5

+1X
k=0

h
3 (2 k + 1)2 t1(Sjr) � t

i
exp
n
�3 (2 k + 1)2 t1(Sjr)

2 t

o
:

4 Some closed form results

In this Section we restrict our attention to a particular class of time-homogeneous di�usion

processes de�ned over the interval I � [r; r2), where r is a regular or an entrance boundary

and r2 is a natural boundary. For these processes we shall prove that the transition pdf,

the Laplace transform of the FPT pdf and its moments can be explicitly obtained in terms

of the mean �rst passage time. Some of the considerations to follow are heavily based on

arguments in [7].

De�nition 4.1 A di�usion process fX(t); t � 0g de�ned over the interval I � [r; r2) will

be said to be BF
1
if for all x inside I its in�nitesimal moments A1(x) and A2(x) satisfy

the following conditions:

lim
a#r

Z x

a

dzp
A2(z)

< +1; lim
b"r2

Z b

x

dzp
A2(z)

= +1;(76)

A1(x) =
A02(x)
4

+
�

2 (1� �)

p
A2(x)Z x

r

dzp
A2(z)

;(77)

where �1 < � < 1 is a real number.

1
This stands for Bessel-Feller, as made clear in the sequel.
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Remark 4.1 Let �1 < � < 1 be a real number. Conditions (76) and (77) are equivalent

to

lim
x#r

p
A2(x) h(x)

Z
x

r

s(u) du = 0; lim
x"r2

p
A2(x) h(x)

Z
x

r

s(u) du = +1;(78)

h
A1(x) � A02(x)

4

i
h(x)

Z
x

r

s(u) du = �;(79)

Proof: First of all, we shall prove that (78) and (79) hold if the assumptions (76) and (77)

are satis�ed. Indeed, from (77) one has:

2A1(x)

A2(x)
=

A02(x)
2A2(x)

+
�

1� �

1p
A2(x)

Z
x

r

dzp
A2(z)

that, recalling (1), implies

h(x) =
cp

A2(x)

�Z x

r

dzp
A2(z)

���=(1� �)

s(x) =
2

c
p
A2(x)

�Z x

r

dzp
A2(z)

��=(1� �)

:

where c > 0 is an arbitrary constant. Since �1 < � < 1 and (76) hold, one has:

h(x)

Z x

r

s(u) du =
2 (1 � �)p
A2(x)

Z x

r

dup
A2(u)

�(80)

Hence, making use of (76), (77) and (80), one is immediately led to (78) and (79).

We now prove that (78) and (79) imply (76) and (77). We note that from (1) it follows:

A1(x)h(x)

Z x

r

du s(u) = �A2(x)

2

d

dx

h
h(x)

Z x

r

s(u) du
i
+ 1:(81)

Making use of (81) in (79) one obtains:

d

dx

�p
A2(x) h(x)

Z
x

r

s(u) du

�
=

2 (1 � �)p
A2(x)

;

or, equivalently, since (78) holds:

h(x)

Z x

r

s(u) du =
2 (1� �)p
A2(x)

Z x

r

dzp
A2(z)

�(82)

Hence, making use of (78), (79) and (82), one immediately obtains (76) and (77).

Note that the �rst of (78) correspond to (9) of Lemma 2.1, whereas the second of (78)

correspond to (53) of Lemma 3.1. Furthermore, (79) implies that (10) of Lemma 2.1 holds

and also that (54) of Lemma 3.1 is satis�ed with 
 = �.

Under the assumptions (76) and (77), it is possible to show that a BF process can be

transformed into a Bessel process and also into a Feller process.
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Proposition 4.1 Let fX(t); t � 0g be BF and let

Y (t) =

Z
X(t)

r

dzp
A2(z)

�(83)

Then, fY (t); t � 0g is a Bessel process de�ned in [0;+1) and characterized by drift and

in�nitesimal variance

B1(y) =
�

2(1 � �) y
; B2(y) = 1:(84)

Proof: We �rst note that a BF process is de�ned by the Stratonovich stochastic equation

(see, for instance, [2]):

dx(t)

dt
=
h
A1(x) � A02(x)

4

i
+
p
A2(x) �(t) =

�

2 (1 � �)

p
A2(x)Z x

r

dzp
A2(z)

+
p
A2(x) �(t);

(85)

where �(t) is a zero-mean, delta-correlated stationary normal process having unit intensity

(white noise). From (83) and (85) one obtains

dy(t)

dt
=

1p
A2(x)

dx(t)

dt
=

�

2 (1 � �) y
+�(t);

which is the Stratonovich stochastic equation of the Bessel process de�ned by (84).

Proposition 4.2 Let fX(t); t � 0g be BF and let

Z(t) =
1

2

 Z X(t)

r

dzp
A2(z)

!2

:(86)

Then, fZ(t); (t � 0g is a Feller process de�ned in [0;+1) and characterized by drift and

in�nitesimal variance (28).

Proof: By making use of (85) and (86) one obtains

dz(t)

dt
=

1p
A2(x)

Z x

r

dzp
A2(z)

dx(t)

dt
=

�

2 (1� �)
+
p
2 z �(t);

which is the Stratonovich stochastic equation of the Feller process de�ned in (28).

As is well known (see, for instance, [9]) for both di�usion processes Y (t) and Z(t)

characterized by (84) and (28), respectively, boundary 0 is regular for � < 1=2 and entrance

for 1=2 � � < 1, whereas boundary +1 is natural. Hence, for the BF process X(t)

boundary r is regular for � < 1=2 and entrance for 1=2 � � < 1, whereas boundary r2 is

natural. From Proposition 1.1 it follows that for all S inside of I and for all x0 such that

r � x0 < S, P (Sjx0) = 1 and the moments tn(Sjx0) (n = 1; 2; : : : ) are �nite.



NEURONAL FIRING MODELING VIA SPECIALLY CONFINED DIFFUSIONS 453

Theorem 4.1 Let fX(t); t � 0g be BF. For all S in I and for all x0 such that r � x0 < S

one has

t1(Sjx0) = (1 � �)

" Z
S

r

dzp
A2(z)

!2

�
 Z

x0

r

dzp
A2(z)

!2#
:(87)

Proof: Substituting (80) in (4) with n = 1 one obtains:

t1(Sjx0) =
Z S

x0

dz h(z)

Z z

r

s(u) du = 2(1� �)

Z S

x0

1p
A2(z)

 Z z

r

d�p
A2(�)

!
dz

that immediately leads to (87).

Proposition 4.3 For a BF process, the transition pdf in the presence of a re
ecting (regular

boundary) or a zero-
ux condition (entrance boundary) at r, is given by

f(x; tjx0) = 1

t

s
t1(xjr)

(1 � �)A2(x)

�
t1(xjr)
t1(x0jr)

� 2��1
4(1��)

exp

�
� t1(xjr) + t1(x0jr)

2 (1 � �) t

�

�I 2��1
2(1��)

 p
t1(xjr)t1(x0jr)
(1� �) t

!
;(88)

where I�(z) denotes the modi�ed Bessel function of �rst kind. Furthermore, the LT of the

FPT pdf is given by

g�(Sjx0) =
�
t1(Sjr)
t1(x0jr)

� 2��1
4(1��)

I 2��1
2(1��)

 r
2� t1(x0jr)

1� �

!

I 2��1
2(1��)

 r
2� t1(Sjr)

1� �

! (r � x0 < S < r2):(89)

Proof: Let Z(t) be the Feller di�usion process de�ned in (28). Its transition pdf fF (bx; tjbx0)
in the presence of a re
ecting condition (� < 1=2) or of a zero-
ux condition (1=2 � � < 1)

at bx = 0 is given by (see, for instance, [5]):

fF (bx; tjbx0) = 1

t

� bxbx0
� 2��1

4(1��)

exp
n
� bx + bx0

t

o
I 2��1

2(1��)

 
2

pbx bx0
t

!
:(90)

Recalling (86) and (87) and making use of transformation

bx =
t1(xjr)
2 (1� �)

; bx0 = t1(x0jr)
2 (1 � �)

; f(x; tjx0) = 1

2 (1 � �)

dt1(xjr)
dx

fF (bx; tjbx0);
from (90) relation (88) follows. Recalling that (30) holds, the Laplace transform bg�(bSjbx0)
of the FPT pdf of Feller process when a re
ecting condition is set at the regular boundary

x = 0 (� < 1=2) or when a zero-
ux condition is set at the entrance boundary x = 0

(1=2 � � < 1), is given by:

bg�(bSjbx0) = bg�(bSj0)bg�(bx0j0) =
�bx0bS

�1
2
� 1

4 (1��) I 1
2 (1��)

�1
�
2
p
� bx0 �

I 1
2 (1��)

�1
�
2
p
� bS �(91)
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where 0 � bx0 < bS. Hence, making use of transformation

bS =
t1(Sjr)
2 (1 � �)

; bx0 = t1(x0jr)
2 (1� �)

; g(S; tjx0) = bg(bS; tjbx0);
from (91) relation (89) immediately follows.

Theorem 4.2 If x0 = r, the FPT{moments of a BF process are given by

tn(Sjr) = un
�
t1(Sjr)

�n
(n = 0; 1; : : : );(92)

where u0; u1; : : : are recursively de�ned in (16).

Proof: If x0 = r, from (22) and (29) one has:

g�(Sjr) = bg�(bSj0) � U
���t1(Sjr)� = 1 +

+1X
n=1

un

n!

���t1(Sjr)�n:(93)

Comparing the right-hand side of (93) with the right-hand side of (36), relations (92) follow.

Theorem 4.3 If r � x0 < S < r2, the FPT{moments of a BF process are given by

tn(Sjx0) =
(
un +

nX
k=1

(�1)k
�
n

k

�
un�k

k�1Y
i=0

[1 + 2 i (1 � �)]

�
�
t1(x0jr)
t1(Sjr)

�k) �
t1(Sjr)

�n
(n = 2; 3; : : : ):(94)

Proof: The case x0 = r has already been proved in (92). Let us now consider the case

r < x0 < S < r2. From (33) it follows

1

g�(x0jr) �
1

U
���t1(x0jr)� = 1 +

+1X
k=1

1

k!
� 1

2(1 � �)

�
k

h� t1(x0jr)
2 (1� �)

ik

= 1 +

+1X
k=1

[� t1(x0jr)]k

k!

k�1Y
i=0

[1 + 2 i (1 � �)]

:(95)

Hence, making use of (93) and (95), one obtains:

g�(Sjx0) = g�(Sjr)
g�(x0jr) = 1� � t1(Sjx0) +

+1X
n=2

[�� t1(Sjr)]n
n!

�
�
un +

nX
k=1

�
n

k

�
un�k

k�1Y
i=0

[1 + 2 i (1 � �)]

h
� t1(x0jr)

t1(Sjr)
ik�

;(96)
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whereas from (2) and (3) one has:

g�(Sjx0) = 1 +

+1X
n=1

(��)n
n!

tn(Sjx0):(97)

Comparing the right-hand side of (96) with the right-hand side of (97), relations (94) follow.

A few examples of BF processes are the following:

(i) (Wiener process)

A1 = 0 A2 = �2; I = [r;+1); (� > 0; r 2 R)

The boundary x = r is regular and (77) holds with � = 0.

(ii) (Lognormal process)

A1(x) =
�2 x

2
A2(x) = �2 x2; I = [r;+1); (� > 0; r > 0):

The boundary x = r is regular and (77) holds with � = 0.

(iii) (Feller process)

A1 = q A2(x) = 2 � x; I = [0;+1); (q > 0; � > 0):

The boundary x = 0 is regular if 0 < q < � and entrance if q � �, and (77) holds with

� = 1� �=(2q).

(iv) (Bessel process)

A1(x) =
a

x
A2 = �2; I = [0;+1); (a > ��2=2; � > 0):

The boundary x = 0 is regular if ��2=2 < a < �2=2 and entrance if a � �2=2, and

(77) holds with � = 2a=(2a + �2).

(v) (Polynomial process)

A1(x) = �x� A2(x) = �2x�+1; I = [0;+1) (� < 1; � > � �2=2; � > 0):

The boundary x = 0 is regular if � �2=2 < � < �2=2 and entrance if � � �2=2, and

(77) holds with

� =
2

�2

�
�� �+ 1

4
�2
��2�

�2
� �

��1
:

Finally, we note that the polynomial process (v) identi�es with process (i) if � =

0; � = �1; �2 = �2; r = 0, with process (iii) if � = q; � = 0; �2 = 2 � and with

process (iv) if � = a; � = �1; �2 = �2. On the contrary, it cannot include process

(ii) since this is de�ned for r > 0.
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5 Neuronal models

The purpose of this Section is to point out certain theoretical and computational results

obtained by us in order to provide a quantitative description of the input-output behavior

of single neurons subject to a di�usion-like dynamics. We shall assume that the neuron's

membrane potential is modeled by a one-dimensional di�usion process X(t) starting at a

point x0 2 (r; r2), where r is a regular or entrance boundary and r2 = +1 is a natural

boundary. The threshold potential, denoted by S > x0, will be assumed to be a deterministic

continuous function of time so that T , the FPT through S, is the theoretical counterpart

of the interspike interval. We recall that the importance of interspike intervals is due to the

generally accepted hypothesis that the information transferred within the nervous system is

usually encoded by the timing of occurrence of neuronal spikes. Hence, the determination

of the �ring pdf for a neuron modeled by a di�usion process X(t) is an FPT problem in

which the unknown is the FPT pdf through a preassigned threshold S.

5.1 Wiener model

The year 1964 marks the beginning of the history of neuronal models based on di�usion

processes. In a much celebrated article, Gerstein and Mandelbrot [4] at that time postulated

that for a number of experimentally monitored neurons subject to spontaneous activity the

�ring pdf could be modeled by the FPT pdf of a Wiener process. Indeed, these authors were

able to show that, by suitably choosing the parameters of the model, the experimentally

recorded interspike intervals histograms of many units could be �tted to an excellent degree

of approximation by means of the FPT pdf of a Wiener process, i.e. of the time homogeneous

di�usion process de�ned in I = (�1;+1) and characterized by the constant in�nitesimal

moments

A1(x) = � A2(x) = �2; (� 2 R; � > 0):(98)

S t1(Sjr) t2(Sjr) m2(Sjr) t3(Sjr) m3(Sjr)
-79.9 5.084386 E-3 4.319985 E-5 4.308496 E-5 5.377643 E-7 5.345077 E-7

-79.8 2.068367 E-2 7.168260 E-4 7.130238 E-4 3.642371 E-5 3.598500 E-5

-79.7 4.733697 E-2 3.764514 E-3 3.734648 E-3 4.392519 E-4 4.313601 E-4

-79.6 8.561103 E-2 1.234563 E-2 1.221541 E-2 2.613956 E-3 2.551689 E-3

-79.5 1.361017 E-1 3.128400 E-2 3.087277 E-2 1.056529 E-2 1.025248 E-2

-79.4 1.994352 E-1 6.734980 E-2 6.629069 E-2 3.343978 E-2 3.225850 E-2

-79.3 2.762702 E-1 1.295786 E-1 1.272087 E-1 8.941508 E-2 8.575129 E-2

-79.2 3.672988 E-1 2.296316 E-1 2.248473 E-1 2.113498 E-1 2.015102 E-1

-79.1 4.732487 E-1 3.822031 E-1 3.732740 E-1 4.547051 E-1 4.310295 E-1

-79.0 5.948851 E-1 6.054782 E-1 5.898138 E-1 9.083671 E-1 8.561263 E-1

Table 1: Wiener process with � = �0:5, �
2 = 2, restricted to I = [r;+1) with r = �80.

In columns two, three and �ve we have listed the FPT moments t1(Sjr), t2(Sjr) and t3(Sjr)

through the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1; instead, in columns four and six the

approximate values m2(Sjr) = 5 t21(Sjr)=3 and m3(Sjr) = 61 t31(Sjr)=15 are indicated.

As is well known, for such a process r1 = �1 and r2 = +1 are natural boundaries. We

now consider a Wiener process characterized by (98) and restricted to I = [r;+1), where

on the regular boundary x = r a re
ecting condition is imposed. For such process one has:

t1(Sjr) =

8><>:
(S � r)2

�2
; � = 0

S � r

�
+

�2

2�2

h
exp
n
� 2�(S � r)

�2

o
� 1
i
; � 6= 0:

(99)
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S t1(Sjr) t2(Sjr) m2(Sjr) t3(Sjr) m3(Sjr)
-79. 7.182818 E-1 9.049849 E-1 1.031858 E+0 1.689703 E+0 2.223494 E+0

-78. 4.389056 E+0 3.530574 E+1 3.852763 E+1 4.237908 E+2 5.072997 E+2

-77. 1.608554 E+1 4.904890 E+2 5.174890 E+2 2.239169 E+4 2.497227 E+4

-76. 4.959815 E+1 4.772757 E+3 4.919953 E+3 6.885009 E+5 7.320617 E+5

-75. 1.424132 E+2 3.991836 E+4 4.056302 E+4 1.678092 E+7 1.733012 E+7

-74. 3.964288 E+2 3.118250 E+5 3.143116 E+5 3.679008 E+8 3.738065 E+8

-73. 1.088633 E+3 2.361388 E+6 2.370244 E+6 7.683175 E+9 7.740980 E+9

-72. 2.971958 E+3 1.763516 E+7 1.766507 E+7 1.569663 E+11 1.574995 E+11

-71. 8.093084 E+3 1.308987 E+8 1.309960 E+8 3.175758 E+12 3.180485 E+12

-70. 2.201547 E+4 9.690530 E+8 9.693615 E+8 6.398208 E+13 6.402283 E+13

-69. 5.986214 E+4 7.165994 E+9 7.166952 E+9 1.286743 E+15 1.287087 E+15

-68. 1.627418 E+5 5.296685 E+10 5.296978 E+10 2.585833 E+16 2.586119 E+16

-67. 4.423994 E+5 3.914256 E+11 3.914344 E+11 5.194876 E+17 5.195111 E+17

-66. 1.202589 E+6 2.892416 E+12 2.892442 E+12 1.043507 E+19 1.043526 E+19

-65. 3.269001 E+6 2.137266 E+13 2.137274 E+13 2.096010 E+20 2.096025 E+20

-64. 8.886094 E+6 1.579251 E+14 1.579253 E+14 4.210005 E+21 4.210017 E+21

-63. 2.415493 E+7 1.166921 E+15 1.166922 E+15 8.456066 E+22 8.456076 E+22

-62. 6.565995 E+7 8.622456 E+15 8.622458 E+15 1.698450 E+24 1.698451 E+24

-61. 1.784823 E+8 6.371184 E+16 6.371185 E+16 3.411430 E+25 3.411431 E+25

-60. 4.851652 E+8 4.707705 E+17 4.707705 E+17 6.852043 E+26 6.852043 E+26

Table 2: Wiener process with � = �1, �2 = 2, restricted to I = [r;+1) with r = �80. In

columns two, three and �ve we have listed the FPT moments t1(Sjr), t2(Sjr) and t3(Sjr) through

the thresholds S = �80+ �, with � = 1; 2; : : : ; 20; instead, in columns four and six the approximate

values m2(Sjr) = 2 t21(Sjr) and m3(Sjr) = 6 t31(Sjr) are indicated.

As proved in Section 4, the restricted Wiener process is BF if � = 0. Since (77) holds with

� = 0, if � = 0 from (92) one obtains:

tn(Sjr) = (�1)nE2n

(2n� 1)!!

�
t1(Sjr)

�n
(n = 0; 1; : : : );

where E0; E2; : : : denote Euler numbers. If � 6= 0, since (9) and (10) hold with � = 0, from

Theorem 2.1 and from Proposition 2.1 one has:

lim
S#r

tn(Sjr)
[t1(Sjr)]n =

(�1)nE2n

(2n� 1)!!
(n = 0; 1; : : : ):(100)

In Table 1 for the Wiener process with � = �0:5 and �2 = 2, restricted to I = [r;+1)

with r = �80, we have listed the FPT moments t1(Sjr), t2(Sjr) and t3(Sjr) through

the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1. The mean FPT is evaluated via

(99), whereas t2(Sjr) and t3(Sjr) are numerically evaluated via (4) with x0 = r = �80.
Furthermore, in columns four and six we have listed the approximate values m2(Sjr) =

5 t21(Sjr)=3 and m3(Sjr) = 61 t31(Sjr)=15. Note that the goodness of the approximation of

t2(Sjr) by m2(Sjr) and t3(Sjr) by m3(Sjr) improves as � is decreased, i.e. as S moves to

the neighborhood of the re
ecting boundary. Furthermore, we note that conditions (68)

and (69) hold if � < 0. Hence, from Theorem 3.3 one has:

lim
S"+1

tn(Sjr)
[t1(Sjr)]n = n! (n = 0; 1; : : : ):(101)

Furthermore, if � < 0 the FPT pdf g(S; tjr) exhibits the following exponential behavior:

g(S; tjr) ' 1

t1(Sjr) exp

�
� t

t1(Sjr)
�

(S " +1):(102)
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S CV (Sjr) �(Sjr) S CV (Sjr) �(Sjr)
-79. 8.683828 E-1 1.981136 -69. 9.998663 E-1 2.

-78. 9.125509 E-1 1.992384 -68. 9.999447 E-1 2.

-77. 9.463878 E-1 1.997357 -67. 9.999774 E-1 2.

-76. 9.696203 E-1 1.999211 -66. 9.999909 E-1 2.

-75. 9.839790 E-1 1.999795 -65. 9.999963 E-1 2.

-74. 9.920573 E-1 1.999953 -64. 9.999985 E-1 2.

-73. 9.962566 E-1 1.999990 -63. 9.999994 E-1 2.

-72. 9.983053 E-1 1.999998 -62. 9.999998 E-1 2.

-71. 9.992565 E-1 2. -61. 9.999999 E-1 2.

-70. 9.996817 E-1 2. -60. 1. 2.

Table 3: CoeÆcient of variation CV (Sjr) and skewness �(Sjr) of the FPT are listed for the same

process and for the same thresholds of Table 2.

In Table 2 for the Wiener process with � = �1 and �2 = 2, restricted to I = [r;+1)

with r = �80, we have listed the FPT moments t1(Sjr), t2(Sjr) and t3(Sjr) through

the thresholds S = �80 + �, with � = 1; 2; : : : ; 20. Instead, in columns four and six we

have listed the approximate values m2(Sjr) = 2 t21(Sjr) and m3(Sjr) = 6 t31(Sjr). Note

that the goodness of the approximation of t2(Sjr) by m2(Sjr) and t3(Sjr) by m3(Sjr)
improves as � increases, i.e. when the �ring threshold S is moving inde�nitely away from

the re
ecting boundary. In Table 3 for the same process and for the same thresholds

of Table 2, the coeÆcient of variation CV (Sjr) � p
V ar(Sjr)=t1(Sjr) and the skewness

�(Sjr) � [t3(Sjr) + 2 t31(Sjr) � 3 t1(Sjr) t2(Sjr)]=[V ar(Sjr)]3=2 of the FPT are indicated.

Note that CV (Sjr) increases with S and approaches 1 for large thresholds; furthermore,

also �(Sjr) increases with S to approach 2 for large thresholds. All this is clearly suggestive

of the exponential approximation (102) to the �ring pdf for large thresholds.

The neuronal model based on the Wiener process does not include the well-known spon-

taneous exponential decay of the neuron's membrane potential that occurs between succes-

sive PSP's. Hereafter we shall thus discuss another di�usion model for neuronal activity

that includes this speci�c feature. This is customarily denoted as the Ornstein-Uhlenbeck

neuronal model because of its analogy with the well-known model used by these two authors

to describe the Brownian motion.

5.2 Ornstein Uhlenbeck model

The Ornstein Uhlenbeck neuronal model is de�ned as the di�usion process characterized by

the following drift and in�nitesimal variance:

A1(x) = � 1

#
(x � %) A2 = �2 (% 2 R; � > 0; # > 0):(103)

restricted to I = [r;+1), where r is a regular boundary (with a re
ecting condition) and

+1 is a natural boundary. Comparing (98) with (103), we see that now the drift is state-

dependent. However, in the limit as # ! +1 moments (103) tend to moments (98) with

� = 0, meaning that the Ornstein Uhlenbeck model yields the Wiener model for in�nitely

large #. In the absence of randomness (� = 0), the membrane potential X(t) exponentially

decays to the resting potential % with a time constant #.

The FPT problem for constant thresholds is in general not solvable in closed form. However,
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S t1(Sjr) t2(Sjr) m2(Sjr) t3(Sjr) m3(Sjr)
-79.9 9.933995 E-4 1.642992 E-6 1.644738 E-6 3.977012 E-9 3.986671 E-9

-79.8 3.947719 E-3 2.591928 E-5 2.597414 E-5 2.489882 E-7 2.501941 E-7

-79.7 8.825289 E-3 1.294004 E-4 1.298095 E-4 2.775179 E-6 2.795280 E-6

-79.6 1.558994 E-2 4.033832 E-4 4.050768 E-4 1.526194 E-5 1.540890 E-5

-79.5 2.420693 E-2 9.715477 E-4 9.766254 E-4 5.700033 E-5 5.768428 E-5

-79.4 3.464292 E-2 1.987805 E-3 2.000220 E-3 1.666835 E-4 1.690760 E-4

-79.3 4.686593 E-2 3.634324 E-3 3.660693 E-3 4.117376 E-4 4.186107 E-4

-79.2 6.084527 E-2 6.119718 E-3 6.170246 E-3 8.989553 E-4 9.160499 E-4

-79.1 7.655152 E-2 9.677392 E-3 9.766892 E-3 1.786229 E-3 1.824316 E-3

-79.0 9.395647 E-2 1.456403 E-2 1.471303 E-2 3.295210 E-3 3.373018 E-3

Table 4: Ornstein Uhlenbeck process with # = 10, % = �70 and �
2 = 10, restricted to I = [r;+1)

with r = �80. In columns two, three and �ve are listed the FPT moments t1(Sjr), t2(Sjr) and

t3(Sjr) through the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1; instead, in columns four and

six the approximate values m2(Sjr) = 5 t21(Sjr)=3 and m3(Sjr) = 61 t31(Sjr)=15 are listed.

by use of Siegert's formula (4), the mean FPT can be obtained as

t1(Sjr) = #

+1X
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Since (9) and (10) are satis�ed with � = 0, from Theorem 2.1 and from Proposition 2.1 one

sees that (100) holds. In Table 4 for the Ornstein Uhlenbeck process with # = 10, % = �70
and �2 = 10, restricted to I = [r;+1) with r = �80, we have listed the FPT moments

t1(Sjr), t2(Sjr) and t3(Sjr) through the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1.

The FPT moments t1(Sjr), t2(Sjr) and t3(Sjr) are numerically evaluated via (4) with

x0 = r = �80. Furthermore, in columns four and six we have listed the approximate values

m2(Sjr) = 5 t21(Sjr)=3 and m3(Sjr) = 61 t31(Sjr)=15. Note that again the goodness of the

approximation of t2(Sjr) by m2(Sjr) and t3(Sjr) by m3(Sjr) improves as � is decreased.

Furthermore, we note that conditions (68) and (69) hold. Hence, from Theorem 3.3 one

obtains (101). Furthermore, the FPT pdf g(S; tjr) exhibits the exponential behavior (102).
In Table 5 for the Ornstein Uhlenbeck process with # = 5, % = �70 and �2 = 400,

restricted to I = [r;+1) with r = �80, we have listed the FPT moments t1(Sjr), t2(Sjr)
and the coeÆcient of variation CV (Sjr) through the thresholds S = �80 + �, with � =

10; 20; : : : ; 210. From Table 5 we see that the goodness of the approximation of t2(Sjr) by
m2(Sjr) improves as � increases; furthermore CV (Sjr) increases with S and it approach 1

for large thresholds.

5.3 Feller model

The Feller neuronal model [6] is de�ned as the di�usion process X(t) characterized by the

following drift and in�nitesimal variance:

A1(x) = � 1

#
(x � %); A2(x) = 2 � (x � r) (%; r 2 R; % > r; # > 0; � > 0):(104)
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S t1(Sjr) t2(Sjr) m2(Sjr) CV (Sjr)
-70. 2.458883 E-1 1.005000 E-1 1.209221 E-1 8.137738 E-1

-60. 1.000222 E+0 1.667492 E+0 2.000889 E+0 8.165484 E-1

-50. 2.369550 E+0 9.435137 E+0 1.122954 E+1 8.248724 E-1

-40. 4.608184 E+0 3.617231 E+1 4.247072 E+1 8.386894 E-1

-30. 8.231322 E+0 1.175948 E+2 1.355093 E+2 8.576692 E-1

-20. 1.428070 E+1 3.622149 E+2 4.078767 E+2 8.809654 E-1

-10. 2.495717 E+1 1.135186 E+3 1.245721 E+3 9.069378 E-1

0. 4.520674 E+1 3.823049 E+3 4.087299 E+3 9.331113 E-1

10. 8.696040 E+1 1.44818 E+4 1.512422 E+4 9.565808 E-1

20. 1.812836 E+2 6.410183 E+4 6.572746 E+4 9.749534 E-1

30. 4.158379 E+2 3.414802 E+5 3.458423 E+5 9.873065 E-1

40. 1.059565 E+3 2.232766 E+6 2.245357 E+6 9.943763 E-1

50. 3.011874 E+3 1.810326 E+7 1.814277 E+7 9.978199 E-1

60. 9.558583 E+3 1.825973 E+8 1.827330 E+8 9.992570 E-1

70. 3.383678 E+4 2.289343 E+9 2.289855 E+9 9.997761 E-1

80. 1.334134 E+5 3.559614 E+10 3.559827 E+10 9.999401 E-1

90. 5.851153 E+5 6.847099 E+11 6.847197 E+11 9.999856 E-1

100. 2.851314 E+6 1.625993 E+13 1.625998 E+13 9.999969 E-1

110. 1.542584 E+7 4.759126 E+14 4.759129 E+14 9.999994 E-1

120. 9.259218 E+7 1.714662 E+16 1.714662 E+16 9.999998 E-1

130. 6.163155 E+8 7.596895 E+17 7.596895 E+17 1.

Table 5: Ornstein Uhlenbeck process with # = 5, % = �70 and �
2 = 400, restricted to I = [r;+1)

with r = �80. In columns two, three and �ve we have listed the FPT moments t1(Sjr), t2(Sjr) and

the coeÆcient of variation CV (Sjr) through the thresholds S = �80 + �, with � = 10; 20; : : : ; 210;

instead, in column four the approximate values m2(Sjr) = 2 t21(Sjr) are indicated.

The state space for the underlying stochastic process is [r;+1), implying the existence

of a `reversal hyperpolarization potential' in r. Boundary x = r is regular if % � r < � #

and entrance if % � r � � #; instead, boundary +1 is natural. Similarly to the Ornstein

Uhlenbeck model, for the Feller model (104) the FPT problem is in general still unsolved.

However, the mean of the �ring time can be calculated:

t1(Sjr) = #

%� r

�
S � r +

+1X
k=1

�
1

#

�k
(S � r)k+1

k + 1

� kY
i=1

�
%� r

#
+ � i

���1�
:

Relations (9) and (10) hold with � = 1 � #�=[2 (% � r)]. Moreover, from Theorem 2.1 we

obtain:

lim
S#r

tn(Sjr)
[t1(Sjr)]n = un (n = 0; 1; : : : );

where un are given in (20). In Table 6 for the Feller process with # = 5, % = �70, � = 1 and

r = �80, restricted to I = [�80;+1), we have listed the FPT moments t1(Sjr), t2(Sjr) and
t3(Sjr) through the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1. The FPT moments

t1(Sjr), t2(Sjr) and t3(Sjr) are numerically evaluated via (4) with x0 = r = �80. In columns

four and six we have listed the approximate values m2(Sjr) = [1 + 4 (1 � �)] t21(Sjr)=[1 +
2 (1� �)] and m3(Sjr) = [1+12 (1� �)+48 (1� �)2] t31(Sjr)=f[1+2 (1� �)] [1+4 (1� �)]g,
with � = 1 � #�=[2 (% � r)] = 3=4. Note that the goodness of the approximation of t2(Sjr)
by m2(Sjr) and t3(Sjr) by m3(Sjr) improves as � decreases. Furthermore, we note that

conditions (68) and (69) hold. Hence, from Theorem 3.3 one has (101) and the FPT pdf

g(S; tjr) exhibits the exponential behavior (102). In Table 7 for the Feller process with

# = 5, % = �70, � = 2 and r = �80, restricted to I = [�80;+1), we have listed
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S t1(Sjr) t2(Sjr) m2(Sjr) t3(Sjr) m3(Sjr)
-79.9 5.016722 E-2 3.358470 E-3 3.355667 E-3 2.952781 E-4 2.946029 E-4

-79.8 1.006711 E-1 1.353553 E-2 1.351290 E-2 2.391571 E-3 2.380629 E-3

-79.7 1.515151 E-1 3.068618 E-2 3.060912 E-2 8.172159 E-3 8.116052 E-3

-79.6 2.027027 E-1 5.496881 E-2 5.478449 E-2 1.961330 E-2 1.943368 E-2

-79.5 2.542372 E-1 8.654535 E-2 8.618205 E-2 3.878788 E-2 3.834369 E-2

-79.4 3.061222 E-1 1.255813 E-1 1.249477 E-1 6.786924 E-2 6.693623 E-2

-79.3 3.583613 E-1 1.722457 E-1 1.712304 E-1 1.091351 E-1 1.073841 E-1

-79.2 4.109581 E-1 2.267115 E-1 2.251821 E-1 1.649718 E-1 1.619457 E-1

-79.1 4.639162 E-1 2.891554 E-1 2.869577 E-1 2.378782 E-1 2.329675 E-1

-79.0 5.172393 E-1 3.597580 E-1 3.567154 E-1 3.304704 E-1 3.228877 E-1

Table 6: Feller process with # = 5, % = �70, � = 1 and r = �80, restricted to I = [�80;+1),

with x = �80 regular boundary. In columns two, three and �ve we have listed the FPT moments

t1(Sjr), t2(Sjr) and t3(Sjr) through the thresholds S = �80 + �, with � = 0:1; 0:2; : : : ; 1; instead,

in columns four and six the approximate values m2(Sjr) = [1+4 (1� �)] t21(Sjr)=[1+2 (1� �)] and

m3(Sjr) = [1 + 12 (1� �) + 48 (1 � �)2] t31(Sjr)=f[1 + 2 (1� �)] [1 + 4 (1� �)]g, with � = 3=4 have

been indicated.

S t1(Sjr) t2(Sjr) m2(Sjr) CV (Sjr)
-70. 6.589510 E+0 6.901781 E+1 8.684329 E+1 7.677756 E-1

-60. 1.841936 E+1 5.721140 E+2 6.785454 E+2 8.284294 E-1

-50. 4.129002 E+1 3.034578 E+3 3.409732 E+3 8.831485 E-1

-40. 8.833682 E+1 1.450941 E+4 1.560679 E+4 9.270233 E-1

-30. 1.899931 E+2 6.923538 E+4 7.219476 E+4 9.581319 E-1

-20. 4.181039 E+2 3.419298 E+5 3.496218 E+5 9.777516 E-1

-10. 9.449081 E+2 1.766021 E+6 1.785703 E+6 9.889170 E-1

0. 2.188616 E+3 9.529990 E+6 9.580082 E+6 9.947576 E-1

10. 5.175519 E+3 5.344454 E+7 5.357200 E+7 9.976179 E-1

20. 1.244675 E+4 3.095179 E+8 3.098430 E+8 9.989505 E-1

30. 3.034216 E+4 1.840462 E+9 1.841293 E+9 9.995484 E-1

40. 7.478235 E+4 1.118267 E+10 1.118480 E+10 9.998092 E-1

Table 7: Feller process with # = 5, % = �70, � = 2 and r = �80, restricted to I = [�80;+1).

Columns two, three and �ve list the FPT moments t1(Sjr), t2(Sjr) and the coeÆcient of variation

CV (Sjr) through the thresholds S = �80 + �, with � = 10; 20; : : : ; 120; instead, column four

indicates the approximate values m2(Sjr) = 2 t21(Sjr).

the FPT moments t1(Sjr), t2(Sjr) and the coeÆcient of variation CV (Sjr) through the

thresholds S = �80 + �, with � = 10; 20; : : : ; 120. Instead, in columns four we have listed

the approximate values m2(Sjr) = 2 t21(Sjr). Similarly to the Ornstein Uhlenbeck model,

from Table 7 we see that the goodness of the approximation of t2(Sjr) by m2(Sjr) improves

as � increases; furthermore CV (Sjr) increases with S and it approach 1 for large thresholds.
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