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ON NEURONAL FIRING MODELING VIA SPECIALLY CONFINED
DIFFUSION PROCESSES
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ABSTRACT. First passage time problems for diffusion processes have been extensively
investigated to model neuronal firing activity or extinction times in population dy-
namics (see, for instance, [10]). In this paper we study the asymptotic behavior of
first passage times densities for a class of specially confined temporally homogeneous
diffusion processes in the presence of an entrance or a reflecting boundary. The em-
phasis is on problems of a rather mathematical nature, concerning the behavior of the
first passage time density and of its moments when the neuronal firing threshold is
in the neighborhood of the reflecting boundary, and when it moves indefinitely away
from it. Qur asymptotic results are obtained without need to determine beforehand
the transition probability density in the presence of entrance or reflecting boundaries;
they depend, instead, only on drift, infinitesimal variance, threshold and on the en-
trance or the reflecting boundary of the process. Some evaluations of moments of first
passage time, in particular, mean and variance, are performed by solving numerically,
or analytically whenever possible, Siegert’s recursion equations [12], and by comparing
the results with those obtained through our approximate formulas. In the case where
the transition probability density is known, the goodness of the obtained approxima-
tions can be verified. Such results appear to be useful for neuronal modeling in the
presence of reversal potential especially to pinpoint the role of the involved parameters
in various models, some of which are the object of a somewhat detailed analysis.

1 Introduction
The purpose of this paper is to provide the necessary mathematical framework to approach
the single neuron’s firing description by means of models based on the theory of stochastic
diffusion processes. Although this is undoubtedly a very much trotted ground (see, for
instance, [11] and references therein), our present approach differs substantially in that it
makes use of our notion of BF-processes, that will be introduced in the sequel after provided
the necessary mathematical background and proving several basic analytic results. The last
part of this paper will finally be specifically centred on the discussion of neuronal models
and on the outline of several computational results.

Let {X(¢), t > 0} be a time-homogeneous diffusion process defined over the interval
I =[r,rz), where r is a regular or entrance boundary and rs is a natural boundary. Further,
let Aj(x) and Aj(z) be the drift and infinitesimal variance of X(¢), respectively, and let
S € (r,ry). For all z € (r,r3), let

; T A
h(z) := eXp{—? 41 Eg df} (scale function)

(1)

2
s(z) (speed density).

T As(2) (x)
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Furthermore, for all t > 0 and 2,20 € I, let

9 pUx(t) < 2] X(0) = a0}

f(mvﬂmo) = o

denote the transition probability density function (pdf) with a reflecting condition (regular
boundary) or with a zero-flux condition (entrance boundary) set at r.

Hereafter, we shall focus our attention on the properties of the first passage time (FPT)
random variable

T:igg{t: X(t) > SY, X(0)==2 < S.

Let
g( St

13
:EO):EP{T<1£}

be the pdf of T. An analytic approach to the evaluation of g(S,t|zg) is based on its Laplace
transform (LT) with respect to #:

+oo
(2) gr(S]xo) = / e~ Mg(S, t|zo) dt.

Then, g(5,t|y) can be obtained as the inverse LT. It is worth to point out that even though
the inverse transform cannot be calculated, it can nevertheless provide useful information.
Indeed, for all n = 1,2,..., the moments of T

—+ o0
(3) ta(Sleo) = E(T") = / " g(S.t|zo) dt

customarily obtained via gx(S|zg) as follows:

n 4"92(S]20)

ta(Sleo) = (—1)" 22

A=0

When the end point r of the diffusion interval is a reflecting or entrance boundary, alterna-
tive approaches to calculate the FPT moments are provided by the following propositions.

Proposition 1.1 Let r < xqg < S, where r is a reflecting or an entrance boundary. Then,
for the FPT probability one has:

—+ o0
P(S|zg) := / g(S,t|xg) dt = 1.
Jo

Furthermore, all moments t,(S|xo) are finite and can be iteratively calculated as
S z
(4) tn(Slzo) =n h(z) dz / s(u)ty,—1(Su) du (n=12,...)

Jxg

where to(S|ag) = 1.

Proof: It goes along the lines indicated in [12].
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Proposition 1.2 Under the assumptions of Proposition 1.1, one has
t1(Slzo) = x1(Sr) = x1(zolr)
(5)

o (Szo) = {Z’ S (S120) Xnms(STP)

+(-1)" ! {Xn(SIT) Xn(fl?0|7“)]} (n=2,3,...)
where for all x € I we have set
xi(zlr) = / h(z) dZ/:S(u) du
(6)
Xn(z|r) = /:h(z) dz/:s(u) Xnoi(ulr) du (n=2,3,...).

Proof: By making use of (4) and (6) it is immediately seen that relations (5) hold for
n =1,2. We now proceed by induction and prove that if (5) holds for an arbitrarily fixed
n, it also holds for n + 1. Indeed, from (4) and (6) it follows

n—1 ’71‘n—j—1
tns1(S[z0) = (n + 1)! {Z A (1)t (Sleo)
=1 = ’

H(=1)" " xn(817) t1(Slo) + (= 1)" [xms1(SIr) = xosa(rolr)] } :

whose right-hand side is seen to yield #,,41(S|2o) as defined by (5).

Remark 1.1 Under the assumptions of Proposition 1.1, one has

(7) Xn(z|r) < [ti(z|r)]" (n=1,2,...)

Proof: By virtue of (5) and (6), it is immediately seen that relations (7) hold for n = 1, 2.
We now proceed by induction and prove that if (7) holds for an arbitrarily fixed n, it also
holds for n + 1. Indeed, from (5) and (6) it follows:

Xnt1(z|r) = /I h(z) dz /Z s(u) xn(ulr) du < /l h(z) alz/‘Z s(u) [t (u]r)]™ du
(8) < [ty (x|r)]” /L h(z) dz /Z s(u) du = [ty (z|r)]" T,

In Section 2 we analyze the behavior of the of the FPT pdf and of its moments when
the threshold S is in the neighborhood of the reflecting or entrance boundary r. Instead, in
Section 3 we analyze the behavior of the FPT pdf and of its moments when the threshold
S is moving indefinitely away from it. Our asymptotic results are obtained without need to
determine beforehand the transition pdf in the presence of entrance or reflecting boundaries;
they depend, instead, only on drift, infinitesimal variance, threshold and on the entrance
or the reflecting boundary of the process. In Section 4 certain closed-form solutions for the
FPT moments and densities are obtained. Finally, in Section 5 new asymptotic results for
Wiener, Ornstein Uhlenbeck and Feller models are presented.
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2 The neuronal threshold is in the neighborhood of the boundary

In Section 2.1 we analyze the general behavior of the of the FPT pdf and of its moments
when the threshold S is in the neighborhood of the reflecting or entrance boundary r,
whereas in Section 2.2 we consider some special cases.

2.1 General Considerations

Lemma 2.1 If

(9) hm \/Th(r)/ )du =0,
(10) limn {41@) A (T)] )/71 s(u) du = v,

zlr
where Al)(z) = dAs(x) and where —oo < v < 1 1s a real number, then
T
o (S]r 1
(11) fim X2 (n=1,2...).
B TS T
n! T [1+2i(1—v)]
1=0

Proof: We proceed by induction. Since x1(S|r) = ¢1(S|r), (11) is trivial for n = 1. Setting
n = 2 in the left-hand side of (11) and making use of (4) and (6), we obtain

x2(S|r ) i /Sh(z) dZ/Z s(u) x1(ulr) du

W EaCsine ~ V h(z dz/ s(u) du]z

A5(S)h2(S) (ff s(u) du)2 -
24, (S|r) ’

1
2 = -1
(12) ’)lslgl 14

Z

where "Hospital’s rule has been used repeatedly. Since (9) holds, by applying again of
I"Hospital’s rule, one has

, 9 S 2
lim A7) [fr dus(u)] = 41im{1 — (Al(ﬁSj) - AE(S)) h(S) ./rss(:u) du}

Sir t1(S]r) Sir
(13) —4(1-v),

where the last equality follows from (10). From (13) we note that —oco < v < 1. Making
use of (13) in (12), one obtains

lim xa(Slr) 1
TSI 22—

showing that (11) is satisfied for n = 2. Let us now assume that (11) holds for n and prove
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that it also holds for n + 1. Indeed, we have

o /’:Sh(Z) dz/:s(u) alul) du

Xnt1(Slr)

gfr’l W g?rl [/S h(g) i /z S(u) du} n+1

(14) 1 5 { Xa(S|r) [1+n Ay (S)R2(S) (ffS(u) du) 11}

N (S |2 t1(Slr)

= im
n+1 Sir

where again (4), (6), (9) and I'Hospital’s rule have been used. Due to (10), and making use

of the assumption that (11) holds for n, from (14) one has:

Ii Xn+1(5|r) _ 1 )
(n+ D +2i(0=v)]

str [ (ST~

Hence, if (11) holds for an arbitrarily fixed n, it also holds for n 4+ 1. This completes the
proof.
|

Theorem 2.1 Under the assumptions of Lemma 2.1 there results:

, (S )
(15) lglv?}m—un (n=0,1,...),

where

"/ 1\k—1
(16) up = 1, unzz<k> — (=) Unor  (n=1,2,...).
=1 [T +2i—w)

=0

Proof: For n = 0,1, Equation (15) holds with ugp = uy = 1. For n = 2,3,..., from (5)
with 29 = r we have:

ta(Sr) — ! TS (_1)n7j71 t;(SIr) ‘ /\/n*j(5|")‘ (— )n—l xn(S]r)
[t1(Sr)]" = j! [t1(S|r)]? [t (S]r)]m= [t1(Sr)]"
(17)
Recalling (11), in the limit as S | r, from (17) it follows:
n—1 1 n—j—1 u (71)71—1
Un = n! Zl (n,3,1 - + n—1
J= g (n— ) H [1—1—2z(1—u)] H[l—&—Zz(l—y)]
t=0 =0
n—1 n—qi—
(18) = (;l n_]._l(_l - uj  (n=23,...).
/=0 IT +2ic-w)

Setting k = n — j, the right-hand side of (18) is finally seen to identify with the right-hand
side of (16) for n = 2,3,... This completes the proof.
|
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Corollary 2.1 Under the assumptions of Lemma 2.1, as S approaches the boundary r, the
following asymptotic expressions hold:

(19) to(S|r) = [t1(S|)]" un (n=0,1,...),
where u, are defined in (16).

Proof: It follows immediately from (15).

Corollary 2.2 Let u, (n=0,1,...) be defined as in (16). Then, ug = 1 and

cq 1 0 0 ... 0
Co (&) 1 0 PN 0
(20) U, = (—1)" n! det (n=1,2,...)
Cpn—1 €Cn-2 ©Cp—-3 Cp—4 ... 1
Cn Cpn—1 ©Cp—-2 Cp-3 ... 1
where
. (=D* .
(21) k= —7 (k=1,2,...).
BT +2i (0=
=0

Furthermore, the generating function of uy/n! is given by

-1

+oo
T Un n o__ . 1 . “
(22) U(2) '_H;H‘ = [1F2(1,1,2(1_V), 2(1_,/))}
where

(23) Fy(ash,c;z) = 1+ +Zoc () 2*
a;b,c;x) = —_—
e < (b)y (c)i k!
denotes the generalized hypergeometric series.

Proof: Making use of (16), we obtain:

. X I /n (—1)k1
L(Z)::H'ZHZ [ Un—k
e [T +2i-w)
=0
too k—1 + n
_ (=1 L
=1 k—1 ot \k )k
S +2i@ - ="
=0
+oo k
-1
=1-U(z) — ) ¥,
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that implies

+co 3 -1
(24) U(z) = {1+Z — (-1 zk} :

T -1
(25) U(z) = [1 + Z Cn zn} ,

where ¢,,’s are defined in (21). Recalling that U(z) is the generating function of u, /n!, (20)
immediately follows from (25), (cf., for instance, [8], pag. 14, n. 0.313). Furthermore, since

from (24) one obtains:

+o0 1

(26) U(z)_{1+z : [—2(12_ Jk}.
E ). L

2(1-v)

Settinga=1,b=1,c=[2(1 — )], 2 = — 2z/[2(1 — v)] in (23), the right-hand side of
(26) is finally seen to yield to the right-hand side of (22).
|

In particular, from (20) and (21) it follows:

_1-|-4(1—1/) ’ _1-|—12(1—L/)-|—48(1—1/)2
T1t2(1-v) T hr20-ml+i1-v)’

U,o:ulzl, U9

1+26(1—v)+288(1—»)> +1536(1 —v)° +2304(1 —v)*
1T+2(1—-v)]P[14+4(1—-v)][1+6(1-v)

Uyg =
Lemma 2.2 Let {Z(t)t > 0} be a Feller diffusion process defined in [0,4+00) and charac-
terized by drift and infinitesimal variance

(28) Ci(z) = ﬁ, Cy(z) =2z (o0 < v <1)

and let §>\(§|O) be the Laplace transform of the FPT pdf from the state O to the state S
(5 > 0). Under the assumptions of Lemma 2.1, one has:
0),

where t1(S|r) denotes the FPT mean from r through S for the process X (t) .

(29) gr(Slr) == U[_/\f1(5|7“)] = %(%
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Proof: As is well known (cf., for instance, [9]) for the diffusion process (28) boundary 0 is
regular for v < 1/2 and entrance for 1/2 < v < 1, whereas boundary +oo is natural. From
Proposition 1.1 it follows that P(§\0) =1 for all § inside of I = [0, +00) and the moments
tn(§|0) (n =1,2,...) are finite. The Laplace transform Q\A(§|O) of the FPT pdf when a
reflecting condition is set at the regular boundary + = 0 (v < 1/2) or when a zero-flux
condition is set at the entrance boundary + =0 (1/2 < v < 1) is (see, for instance, [5]):

-1
PR~ 1 =\ ' — T = ~
(30) 9x(510) = {F(Q(lﬂ) ( /\S) e (2 AS)} 9S>0
where
+oco .
1 z a+2k

31 I.(2) = - (Z
(31) ) kzzokll"(a—&—k—&—l) (2)
denotes the modified Bessel function of first kind. Hence, setting

o _ t(SIr)

°=3 (1—v)’

in (30), one obtains:

w50 00)

. 1 At (S|r) SR oS\ |
(32) ‘{F(z(l—u)) (\/(1—>> ’—( 1—)} |

Recalling (22) and (26), we now note that

A (S|r) == U[=t1(S]r)]

—1

= {1Fz (1; 1, 9 (11_ ;/):’ 2/\7(‘11(§|Z))>:|

+oo - 2k —1
SRR & Y

2(1—-v)

Since, from (31) one has:

+oo
1 2k 1—«a ¢
1+Zml’ :T(a)x ]a_l(Zx),
k=1
the right-hand side of (33) is finally seen to identify with the right-hand side of (32).
|

Theorem 2.2 Let gx(S|r) be the Laplace transform of the FPT pdf from the state r to the
state S (S > r) for the process X(t). Under the assumptions of Lemma 2.1 one has:

(34) i -~ A1)

= = ]-7
sir 1 — ga(S|r)

where gx(S|r) is given in (29).
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Proof: From (22) and (29) one has:

+ o0 )\ "
(35) (S =U[-Mi(SIn)] =14 ( ”,) [t1(S)M)]" s
n=1 ’
whereas from (2) and (3) one obtains:
S ("
(36) s =143 Sl s
n=1 '

Hence, by making use of (35) and (36), one is led to the following equality:
“+oc
_A n tn S r .
| )
1—ga(Slr) iz nt [B(S]
L=aaslh) = e

n!

(37)

[tl(S\r)]n Unp

n=1

Taking the limit in (37) as S | r and recalling (15), we conclude that (34) holds.
|

Corollary 2.3 Under the assumptions of Lemmma 2.1, as S approaches the boundary r the
Jfollowing asymptotic expression holds:

1 (s T AGEANE
gA(Sr)E{F(z(l—yQ ( 2(1—y)> Iﬁ*( 1—v >}

Proof:  Since (34) holds, the Laplace transform of ¢(5,¢|r) admits the following asymptotic
representation

(38)

gr(S[r) = ga(S|r)

when the threshold is in the neighborhood of the reflecting or entrance boundary. Hence,
recalling (29) and (32), one immediately obtains (38).
|

2.2 Special cases

Proposition 2.1 Under the assumptions of Lemma 2.1, if v = 0 one has:

(39) U(z) = secv2z
and
(71)71 E2 n P
(40) up =1, Up = m (n 1,2,...)
where Eg, Fa,... denote Euler numbers:

n—1

By =1, EM:—Z(' ,’

Jj=0
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Furthermore,
gr(S|r) = sechn/2 Aty (S|r)
and
2t1(S|r) <X , (2k + 1)2t,(S|r

Proof: Setting v = 0 in (26) and making use of identities

(%)k:w (2k)! =28 KR! (2 — 1L,
one obtains:
SSIRIEC D (U S S L G £ ST VUIEE A
U(Z)—{H—Zil(—Q} —{1+Zm} _{ZW |
k

(42)
Recalling that (cf., for instance, [8], pag. 34, n. 1.411.3)

too k .2k
(=) =z
COST = E Tk)',
k=0

(42) takes the following form:
—1
Ulz) = {COS vV 22} = secV2z.

Furthermore, since (cf., for instance, [1], pag. 75, n. 4.3.69)

+oo n 2n
- (=1)" Eqp ( 77)
sect = g @) lz] < 5)

n=0
where FEy, denote Euler numbers, one also obtains:
+oco
(=1)" Eypn (22)" T
() — G
(43) Uiz =Y o (Iv22] < 2).

n=0

A comparison of (43) and the first of (22) shows that relations (40) hold. Furthermore,
from (29) and (39) it follows

(44) a(S|r) = U[=At1(S|r)] = sec /—=2At1(S|r) = sechy/2 A t1(S|r).

Since (see, for instance, [8], pag. 23 n. 1.232.2)

+oco
sechz =2 ) (~1)F exp{—(2k + 1)z} (z > 0),
k=0
from (44) one has
—+ o0
(45) (Sl =2 3 (=DF exp{ =2k + 1) v/2 A0 (5] }.

o~
Il
o
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Making use of the known formula

/;me_M [z\f/aﬂ

(cf., for instance, [3], pag. 245, n. (1)), (41) follows from (45).

‘ .

e=/ @D | g — g=Var (Re o > 0),

<,

Note that, since
Ey=1, E,=-1, E;=5 Es=-61, Eg=1385,

from (40) in particular one has:

) 5 61 277
Uy = U = Uy = — . Uy = — Uy = —
0 1 s 2 3 4 91

37 157

that identifies with (27) for v = 0. Furthermore, making use of Proposition 2.1, if v = 0
from (19) and (34) one obtains as S | r the following asymptotic expressions:

tn(5|r)2((2n)%§n[t1(5| " (n=0,1,...),

~ sechy/2 Aty ( S|

(S, 1) /2t1 SI DF2E+ 1)exp{ - (2k+12)tt1(5| )}

Proposition 2.2 Under the assumptions of Lemma 2.1, if v = 2/3 one has:

(46) U(z) = V62 csc
and
. (—1)"+137(22n — 9) B, , ‘
(47) ug = 1, Up = (@n— 1)1 (n=1,2,...),
where Bg, Bo, ... denote Bernoulli numbers:
n—1
1
By =1, ("+ ) (n=1,2,...)
k=0
Furthermore,
Ir(S|r) = /6 At1(S|r) cschay/6 Aty (S|r)
and
‘ 611 (S|r) < 3(2k+1)24(S
(48) % 3(2k +1)24,(S]r) — t} exp{f ( 2)t 1(51) }

Proof: Setting v = 2/3 in (26) and making use of identities

2k +
(g)ﬁ% 2k + 1)t =2k (2K + 1)1,
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one obtains:

+o0 - X D)k (62)F o
U(z){1+;k'(13)() } {Zk, e+ T } —{;}M} .
'"\3),

(49)
Recalling that (cf., for instance, [8], pag. 34, n. 1.411.1)

+0<? (71)k p2k+1
sinx =

. T
- (2k + 1)!
from (49) one has:
Uz) = =62z csc-
sinv/6z

Furthermore, since (cf., for instance, [1], pag. 75, n. 4.3.68)

2 IX(—1nn (221 _1)B,, 22
2y )2 (laf < ).

(2n)!

1
cscr = — —
x

—

n=

where By, denote Bernoulli numbers, one also obtains:

(50) U(z) =142

“+ oo 2 :
( 1)n+13n( 2n—1 )B‘zn( )n z 712

n=1

A comparison of (50) and the first of (22) shows that relations (47) hold. Furthermore,
from (29) and (46) it follows

a(S|r) = U[=At (S| } V=6t (S]r) esc /=6 M1 (S|r)

(51) = /6 At (S|r) cschy/6 Xty (S]|r)

Since (see, for instance, [8], pag. 23 n. 1.232.3)

+oco
cschr =2 Zexp{—(?k + 1)z} (z > 0),

k=0
from (51) one has
(52) gr(S]r) = 2/6 A1 (S]r) Zexp{ 2k +1) 6/\1‘1(S|r)}.

Making use of

/0+°°€M [ L = (%—%) eio‘/(“)} dt:\/Xefm (Re o > 0),

- ﬂ.to

(cf., for instance, [3], pag. 246, n. (5)), from (52) one obtains (48).
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Note that

1 1 1 1
Bo=1, Bo= ., Bi=——_, Bs= -, Byg——_,
R . T AT N Tk

while from (47) in particular one has:

! 7 93 1143

Uy = Uy = Uy = — . Uy = — Uy = R

0 1 ’ 2 5’ 3 357 4 175

445

that identifies with (27) for v = 2/3. Furthermore, making use of Proposition 2.2, if v = 2/3

from (19) and (34) one obtains as S | r the following asymptotic formulas:

_1\n+lan(o2n __
t(5lr) = — (sn(2 I 2) e [t (S (n=0,1,...),

ga(S|r) ~ /6 Xt (S|r) csch\/G/\tl (S|r)

o(S.1]r) /6t15\ Z 2k +1 t1(5|)—t}e*<p{ (2k+;):t1(5|r)

3 The threshold moves indefinitely away from the boundary

In Sections 3.1 and 3.2 we analyze in two different cases the general behavior of the FPT
pdf and of its moments when the threshold S moves indefinitely away from the reflecting

or entrance boundary r, whereas in Section 3.3 we consider some special cases.

3.1 Case (a): General Considerations

Lemma 3.1 If

(53) lim /Ay (z) h( x)/ ) du = +oo,

zTrs

(54) lim {Al(a:) - AQ—(””C)] h(z) / " () du =,

TTre 4

where —oo < v < 1 1s a real number, then

. . xal(Slr) 1 _
(55) élTrg S (n=1,2,...).
n! H[1+22‘,(177)]

Proof: Since x1(S|r) = t1(S]|r), (53) is trivial for n = 1. Recalling that ry is a natural

boundary, making use of (4) and (6), we obtain

Xk(SIr) /jh(;) dZ/ZS(u) Xi—1(u|r) du

lim = lim r
Stra [t1(SIr)]* St [/q z 3
h(z) dZ/ s(u) du}
1 s [ k1 A (£ s )’
(56) Tk gﬁl{ [tIIES|7=)}k—1 ll + 5 ST

(k=2.3,...).

N
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where 1'Hospital’s rule has been used repeatedly. We note that setting & = 2 in (56) one
has:

- oxe(Sr) 1
(57) Im oS~ 2 im

1 A2(S) R*(S) (frs s(u) du)z -
S )

We now proceed by induction. Since (53) holds, by applying I’'Hospital’s rule one obtains:

Ay (S)R2(S) (fs s(u) du)2

 Aa(5)E(S) ([ s(o | 45(5) g
élTrg NS =4 ilTIg{l — (Al(S) ) ) h(S)/T s(u) du
where the last equality follows from (54). Hence, making use of (58) in (57), one has

lim x2(S1r) _ 1
st [t (S]r)]? 2[14+2(1—7)]”

that shows that (55) is satisfied for n = 2. Let us now assume that (55) holds for n and
prove that it also holds for n + 1. Indeed, from (56) and (58) we have

Xn1(S]r) _ ! Xn(S]r ) 1

lim limm -
(n+1)! H[l +2i(1—7)]

Stea [t (S[)]"F T (n+ 1) [1+2n (1 = )] St [t(S]r)]"

This completes the proof.

Theorem 3.1 Under the assumptions of Lemma 5.1 one has:

. ta(S]r)
59 lm ——————— =, =0,1,...),
(59) b s S (n=0,1,...),
where
" (n 1)kt
(60) vo=1, v, = (Z) p= =) Vnek (n=12,...).
ST I 4200 )
i=0

Proof: Equation (59) holds with vg = vy = 1 for n = 0,1. For n = 2,3,..., taking the
limit as S 1 re in (17) and making use of (55), one obtains:

7fn_n' Z (n1])n1J 1 + n—1 (_1)n71
i (n— ) H [1+2i(1—7)] H[1-|—22(1— )]
(61) = (Z) — 1( D" v,  (n=23....)
= IT +2i-v)

Setting k = n — j, the right-hand side of (61) is finally seen to identify with the right-hand
side of (60) for n = 2,3,... This completes the proof.
|



NEURONAL FIRING MODELING VIA SPECIALLY CONFINED DIFFUSIONS 447

Corollary 3.1 Under the assumptions of Lemma 8.1, as S approaches the boundary ro,
the following asymptotic expressions hold:

to(S|r) = [t (S]r)]" vy (n=0,1,...),
where v, are defined in (60).

Proof: It follows immediately from (59).

|

Corollary 3.2 Let v, (n=0,1,...) be defined as in (60). Then, vo =1 and

dy 1 0 0 .. 0

do dy 1 0 .. 0
(62) v, =(=1)"n!det : Lo (n=1,2,...)

d”,1 dn72 dn73 dnf4 s 1

dn dnfl dn72 dnff’) ce dl

where .
(=1
dy = = (k=1,2,...).
BT +20 (10— 9)]

i=0

Furthermore, the generating function of v, /n! is given by
+oov Foc 1 . E -1
Viz)i=14+ Y —2"=21+ {_ - ]
e oy L }
2(0=7)/4
1 2 -
63 — F(l:l. = )
%) R ]
where 1 Fy(a; b, c;x) denotes the generalized hypergeometric series.
Proof: Tt follows by arguments similar to those of Corollary 2.2.
|

In particular, from (62) one obtains:

1+4(1—+) 14+12(1 ) +48(1 —7)?
=, vy = \
1+2(1—7) T2l +4( =)

1426(1—~)+288(1—~)*+1536 (1 —~)* +2304(1 —~)*
Vg4 = 3 : .
42— )P +4(1— )L +6(1—)]
Theorem 3.2 Under the assumptions of Lemma 8.1 one has:
L —gx(S]r)
Stra 1 —g,(S|r)

72(11—7) ) —1
< 2/\t1(5r)>}
I_. _
2(1—7) 1_7

U():‘lh:]., V9

(64) =1,

where

gA(Slr) =V [=Mti(S]r)]

‘ - 1 ML (S]r)
(©3) {F<2(1—v)) (\/2(1—7)>

1
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Proof: Proceeding along the lines indicated in Lemma 2.2, the function V[—/\t1(5|rﬂ
is seen to identify with the Laplace transform of the FPT pdf from state 0 to state
5 = t1(S|r)/[2(1 = ~)] for a time-homogeneous diffusion process defined in [0, +00) and
characterized by drift Cy(2) = [2(1 —~)]" " and infinitesimal variance Cy(x) = 2, with
—oo < v < 1. Furthermore, from (63) and (65) one obtains:

(66) GA(SIr) =V [-Mi(S|r)] =1+ Z [t (S]] "
Hence, making use of (36) and (66) it follows:
+oo
="t (S]r n
)

_ 1—ga(Slr) = b [h(S)]
o7 L—g\(SIr) &2y

[t1(5|r)} "

n=1

Taking the limit in (67) as S 1 ry and recalling (59), we conclude that (64) holds.
|

Corollary 3.3 Under the assumptions of Lemma 8.1, as S approaches the boundary rq,
the following asymptotic expression holds:

. | TR (S \ |
9A(Slr) = {F(Z(l —7)) ( 2(1 —7)> Lt < ﬁ)}

Proof: 1t is a consequence of (64).

3.2 Case (b): General Considerations

Lemma 3.2 If

(68) lim '\/.AQ h / ) du = +o0

zTre
(69) ilTrg |:A1 (z) — T] h(x)/r s(u) du = —oo,
then
. Xn(S|r) 1, n=1
(70) L EDE { 0, n=23,....

Proof:  Since x1(S|r) = t1(S|r), (70) is trivial for n = 1. Moreover, relations (56) and (57)
hold. By virtue of (68), and by applying I'Hospital’s rule, one obtains:

4,(S) h? Ss u) du i
L e (i)<gf;> %) —4%112{1 (45 - =) MS),/TSS(“) dU}—+°Cv
(71)
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where the last equality follows from (69). Hence, making use of (71) in (57), one has

lim 201

Stra [t (S|r)]?
that shows that (70) is satisfied for n = 2. Let us now assume that (70) holds for n and
prove that it also holds for n + 1. Indeed, this follows from (56) and (71) since

Xnt1(S|r)

lim —T "~ —.
S TSl =

This completes the proof.

|
Theorem 3.3 Under the assumptions of Lemma 8.2 one has:
. ta(S]r)
(72) mgaop = (=0Le)
Proof: Equation (72) holds for n = 0,1. We now set:
. ta(S]r)
73 bo = by =1, by = lim ————— =2,3,...).
(‘ ) 0 1 ) SlTIg [t1(5|r)]” (n ) )
Taking the limit as S 1 ry in (17) and making use of (70), one obtains:
n!
by = ————"bu— =1,2,...),
S ot (=12
that implies b, = n! for n =0,1,... Hence, (72)’s follow from (73).
|

Corollary 3.4 Under the assumptions of Lemma 8.2, as S approaches the boundary rqy one
has:

tn(S|r) ~ n! [t (S|r)]" (n=0,1,...).

Proof: Tt follows from (72).

Theorem 3.4 Under the assumptions of Lemma 5.2 one has:

1 —ga(S|r)

’74 1.
(74) e L—[1+ Aty (S]r)]!

=1.

Proof: Making use of (36), one obtains:

+ o0
(=) ta(S]r) e
75 1 —gx(Sr) i n! [t (S]r)]" [t1(S]r)]
(75) L LHAuSIIT — &= e

Taking the limit in (75) as S 1 ry and recalling (72), we conclude that (74) holds.
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Corollary 3.5 Under the assumptions of Lemma 8.2, as S approaches the boundary ry the
following asymptotic expressions hold:

gr(S|r) = [1+ At (S|r)]™!
g(S,t|r) ~ ! : exp{— ! }

Proof: They follow from (74).

3.3 Special cases
By arguments similar to those of Proposition 2.1, under the assumptions of Lemma 3.1, if
~ = 0 one obtains the following asymptotic expressions as S 1 ra:

) (_1)72 EZ" T _
gr(S|r) ~ sechy/2 A t1(S|r),
| 24,(S|r) < . (2k +1)*t(S]r)
oS ) =5 S 2k Dexp{ -0
where Eg, Fa,... denote Euler numbers. Furthermore, by arguments similar to those of

Proposition 2.2, under the assumptions of Lemma 3.1, if v+ = 2/3 one obtains the following
asymptotic expressions as S T rq:

(_1)n+1 3n(22n _ 2) B2 n
(2n— 1!
gr(S]r) ~ /6 X t1(S|r) eschy/6 \t,(S]r),

9(S,tr) = \/@ f{3(2k+ 1)2 t(S|r) —t] exp{_3(2k+;); t1(5|‘r’)}'
k=0

4  Some closed form results
In this Section we restrict our attention to a particular class of time-homogeneous diffusion

tn(S|r) ~

(SO (n=0,1,...),

processes defined over the interval I = [r,ry), where r is a regular or an entrance boundary
and 79 is a natural boundary. For these processes we shall prove that the transition pdf,
the Laplace transform of the FPT pdf and its moments can be explicitly obtained in terms
of the mean first passage time. Some of the considerations to follow are heavily based on
arguments in [7].

Definition 4.1 A diffusion process {X(t), t > 0} defined over the interval I = [r,ry) will
be said to be BF' if for all x inside I its infinitesimal moments Ay(z) and Az(x) satisfy
the following conditions:

(76) I /r 4 o [
q im — 00, im — = o0,
alr a \/‘42(2) btro T \/AQ(Z)
Al A
(77) Ay = 2 2(o)

4 2(1—wv) [* dz ’
vV A2(2)

where —oco < v < 1 s a real number.

'This stands for Bessel-Feller, as made clear in the sequel.
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Remark 4.1 Let —oco < v < 1 be a real number. Conditions (76) and (77) are equivalent
to

(78) lifLTrl v/ Az () h(z) /Is(u) du =0, l1m vV Az(z) h(x / ) du = 400,

(79) [Al(w) - Aéix)} h(z) /:s(u) du = v,

Proof: First of all, we shall prove that (78) and (79) hold if the assumptions (76) and (77)
are satisfied. Indeed, from (77) one has:
24i(x)  Aj(x) L 1
Ay(x) a 245(2) 1-—v o dz
Ay ()
r AQ(Z

~—

that, recalling (1), implies

. }—u/a )

Al i

e /)
ol Ukveel |

where ¢ > 0 is an arbitrary constant. Since —co < v < 1 and (76) hold, one has:
e 2(1—-v) [ du
(80) h(x) / s(u) du = :

Hence, making use of (76), (77) and (80), one is immediately led to (78) and (79).
We now prove that (78) and (79) imply (76) and (77). We note that from (1) it follows:

(81) Ay () h(z) /jdus(u):—AZQ(x) %[h(x) /’:ms(u) du| +1

Making use of (81) in (79) one obtains:
d v 21—
d:v{VAQ(x)h(:c) /r s(u) du} = (Az(::))’
or, equivalently, since (78) holds:
2(1—v) [* d=
VAx(x) Jr \/Aa(2)

Hence, making use of (78), (79) and (82), one immediately obtains (76) and (77).

(82) h(z) /“? s(u) du =

Note that the first of (78) correspond to (9) of Lemma 2.1, whereas the second of (78)
correspond to (53) of Lemma 3.1. Furthermore, (79) implies that (10) of Lemma 2.1 holds
and also that (54) of Lemma 3.1 is satisfied with v = v.

Under the assumptions (76) and (77), it is possible to show that a BF process can be
transformed into a Bessel process and also into a Feller process.
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Proposition 4.1 Let {X(¢), t > 0} be BF and let

X(6) :
(33) v - | i(2> -

Then, {Y (t), t > 0} is a Bessel process defined in [0,400) and characterized by drift and

infinstesimal variance

(84) B1(y) = m Bz(y) =1

Proof: We first note that a BF process is defined by the Stratonovich stochastic equation
(see, for instance, [2]):

dx(t)
dt

A ()
4

v As(x)
2(1—v) [* dz
/r As(2)

where A(t) is a zero-mean, delta-correlated stationary normal process having unit intensity
(white noise). From (83) and (85) one obtains

= |Ai(z) -

T V/Aa(w) A(t) =

+ v/ Ax(2) A(t),

(85)

dy(t) _ 1 dx(t) B v +A®),

dt \/m dt  2(1—-v)y

which is the Stratonovich stochastic equation of the Bessel process defined by (84).

Proposition 4.2 Let {X(¢), ¢+ > 0} be BF and let

1 X0 g ’
(86) Z(t) = 5 < ” \/m) )

Then, {Z(t), (t > 0} 1s a Feller process defined in [0,4+0oc) and characterized by drift and

infinitesimal variance (28).

Proof: By making use of (85) and (86) one obtains

dz(1) 1 C_de Rl v s,

At~ Ay () Sy Az At 2(1-v)

which is the Stratonovich stochastic equation of the Feller process defined in (28).

As is well known (see, for instance, [9]) for both diffusion processes Y(t) and Z(¢)
characterized by (84) and (28), respectively, boundary 0 is regular for v < 1/2 and entrance
for 1/2 < v < 1, whereas boundary +oc is natural. Hence, for the BF process X(t)
boundary r is regular for v < 1/2 and entrance for 1/2 < v < 1, whereas boundary ry is
natural. From Proposition 1.1 it follows that for all S inside of I and for all z¢ such that
r < wxp <SS, P(S|ro) =1 and the moments t,(S|z¢) (n =1,2,...) are finite.
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Theorem 4.1 Let {X(t), t > 0} be BF. For all S in I and for all xg such that r < a9 < S
one has

S dz 2 "o dz :
(87) t1(510)(1_u)l<(/r JTT(Z)) - (/r \/TT(Z)> ]

Proof: Substituting (80) in (4) with n = 1 one obtains:

S z S 1 rz dé—
1(S]xg) = dz h(z s(u) du = —v dz
nisleo) = [ dzne) [ swdn=20-0) [ wz)(r TQ@>

that immediately leads to (87).

Proposition 4.3 For a BF process, the transition pdf in the presence of a reflecting (regular
boundary) or a zero-fluz condition (entrance boundary) at r, is given by

f(z,tleo) = % fafzlr) [ tl(ﬂ))] = eXp{_ t1(z|r) + 1 (zolr) }

(1 —v)As(2) | t1(zo0lr 2(1—v)t
1 (2|r)ty (zo|r)
33) = ( (L-v)t )

where I,(z) denotes the modified Bessel function of first kind. Furthermore, the LT of the
FPT pdf is given by
2ty (zo|r)
oy 1 I 201 _
1‘1(5|T‘) ] i(i=,) 200-v) 1—v

t1(zolr) ; 23t (S]r)
22257:»1) 1—v

Proof:  Let Z(t) be the Feller diffusion process defined in (28). Its transition pdf fr(7,|70)
in the presence of a reflecting condition (v < 1/2) or of a zero-flux condition (1/2 < v < 1)
at £ = 0 is given by (see, for instance, [5]):

~ R = PPN —
(90) Fr(F,170) = - (i) e )exp{ix—l—xo}[%il (2\/:03;0)_

t \Zo

(89) gx(S|zo) = [ (r <z < S <rqg).

Recalling (86) and (87) and making use of transformation

ty(x|r) o ti(zo|r) 1 dty(z|r)

ey P Tanogy @i EspTy T

fr(Z,t|Zo),

from (90) relation (88) follows. Recalling that (30) holds, the Laplace transform E]\)\(§|5ﬂ\0)
of the FPT pdf of Feller process when a reflecting condition is set at the regular boundary
=0 (v <1/2) or when a zero-flux condition is set at the entrance boundary = = 0

(1/2 <wv < 1),is given by:

~ o aa (5|0 s\t I (2V/\ 3
(91) g)\(S|I0) = M = ( 0) ¢ ) ( )
gA(CCo|0)
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where 0 < 7o < S. Hence, making use of transformation

~ t1<5‘7°) N tl(x0|7«) P
= : — _\7YR 7 ¢ _ ‘\t ’
S=5—w) T aa—gy ISt =55 %),

from (91) relation (89) immediately follows.

Theorem 4.2 If xg = r, the FPT-moments of a BF process are given by
(92) to(S|r) = up [h(S\r)]n (n=0,1,...),
where ug,uy, ... are recursively defined in (16).
Proof: If xg = r, from (22) and (29) one has:
400

(93) gA(SIr) = Ga(SI0) = U[-Aa(SIn] =1+ Y % n F At (SI)]"

n=1

Comparing the right-hand side of (93) with the right-hand side of (36), relations (92) follow.
|

Theorem 4.3 Ifr < zy < 5 < ry, the FPT-moments of a BF process are given by

tn(S|2o) = {un + Z(,l)k (Z) _ Un—k
. [0t +2i (1= v)]

=0

L
(94) X [t;l((go';))] } H(SIN]" (n=2,3,...).

Proof: The case g = r has already been proved in (92). Let us now consider the case
r < a9 < S < rp. From (33) it follows

1 1 R 1 My (olr) 1+
galzolr) = U=t (wo|r)] _H; k! (2(11 )) [2(1 —v)]
i 4 k
—+ o0
(95) _ 1+Z k};\tl(mo|r)]k
SUe I 200 -0

Hence, making use of (93) and (95), one obtains:

—At1(S|r)]"

n!

oa(Sleo) = LB 1y (1) + Z

ga(xo|r) 2

e st

1=0
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whereas from (2) and (3) one has:

(97)

S‘LL())

Comparing the right-hand side of (96) with the right-hand side of (97), relations (94) follow.
|

A few examples of BF processes are the following:
(1)  (Wiener process)
A =0 Ay =02, I =1r,+o0), (c >0, reR)
The boundary @ = r is regular and (77) holds with v = 0.
(1) (Lognormal process)
2

M) =55 @) =0t T=[rt),  (0>0,r>0)

The boundary = = r is regular and (77) holds with v = 0.
(111) (Feller process)
Ai=gq  Asle)=26a,  I=[0,+c0),  (q>0,¢>0).

The boundary z = 0 is regular if 0 < ¢ < £ and entrance if ¢ > £, and (77) holds with
v=1- £(20)

(tv) (Bessel process)
Aix) =2 Ay=o’,  I=[04c0), (a>—02/2, 0> 0).
T

The boundary x = 0 is regular if —0%/2 < a < ¢%/2 and entrance if a > 0?/2, and
(77) holds with v = 2a/(2a + ¢*).

(v) (Polynomial process)
Ay(e) = pa®  Ay(x) =2t I=[0,4+00) (a<1,p>af?/2,3>0).

The boundary = = 0 is regular if a 3%/2 < u < 3%/2 and entrance if u > 3%/2, and
(77) holds with

s ) (o)
v=— —al .
g\ b
Finally, we note that the polynomial process (v) identifies with process (i) if p =
0,0 = —1,3% = o r = 0, with process (11) if p = ¢, @ = 0, 8% = 2¢ and with
process (w) if p = a, « = —1, 32 = o?. On the contrary, it cannot include process

(11) since this is defined for r > 0.
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5 Neuronal models

The purpose of this Section is to point out certain theoretical and computational results
obtained by us in order to provide a quantitative description of the input-output behavior
of single neurons subject to a diffusion-like dynamics. We shall assume that the neuron’s
membrane potential is modeled by a one-dimensional diffusion process X () starting at a
point zg € (r,r2), where r is a regular or entrance boundary and ry = 400 is a natural
boundary. The threshold potential, denoted by S > xg, will be assumed to be a deterministic
continuous function of time so that 7', the FPT through S, is the theoretical counterpart
of the interspike interval. We recall that the importance of interspike intervals is due to the
generally accepted hypothesis that the information transferred within the nervous system is
usually encoded by the timing of occurrence of neuronal spikes. Hence, the determination
of the firing pdf for a neuron modeled by a diffusion process X (¢) is an FPT problem in
which the unknown is the FPT pdf through a preassigned threshold S.

5.1 Wiener model

The year 1964 marks the beginning of the history of neuronal models based on diffusion
processes. In a much celebrated article, Gerstein and Mandelbrot [4] at that time postulated
that for a number of experimentally monitored neurons subject to spontaneous activity the
firing pdf could be modeled by the FPT pdf of a Wiener process. Indeed, these authors were
able to show that, by suitably choosing the parameters of the model, the experimentally
recorded interspike intervals histograms of many units could be fitted to an excellent degree
of approximation by means of the FPT pdf of a Wiener process, i.e. of the time homogeneous
diffusion process defined in I = (—o00, 400) and characterized by the constant infinitesimal
moments

(98) A(z)=p Ag(x) = 0?, (v € R,0 > 0).

S t1(S|r) 9 (S|r) msy (S|r) t3(S|r) mz (S]|r)
-79.9 5.084386 E-3  4.319985 E-5  4.308496 E-5  5.377643 E-7  5.345077 E-7
-79.8 2.068367 E-2 7.168260 E-4 7.130238 E-4 3.642371 E-5 3.598500 E-5
-79.7  4.733697 E-2  3.764514 E-3  3.734648 E-3  4.392519 E-4  4.313601 E-4
-79.6  8.561103 E-2 1.234563 E-2 1.221541 E-2  2.613956 E-3  2.551689 E-3
-79.5 1.361017 E-1  3.128400 E-2  3.087277 E-2 1.056529 E-2 1.025248 E-2
-79.4  1.994352 E-1  6.734980 E-2  6.629069 E-2  3.343978 E-2  3.225850 E-2
-79.3  2.762702 E-1 1.295786 E-1 1.272087 E-1  8.941508 E-2  8.575129 E-2
-79.2  3.672988 E-1  2.296316 E-1  2.248473 E-1  2.113498 E-1  2.015102 E-1
-79.1 4.732487 E-1  3.822031 E-1  3.732740 E-1  4.547051 E-1  4.310295 E-1
-79.0 5.948851 E-1  6.054782 E-1  5.898138 E-1  9.083671 E-1  8.561263 E-1

Table 1: Wiener process with p = —0.5, ¢ = 2, restricted to I = [r,+o0) with r = —80.
In columns two, three and five we have listed the FPT moments (5 r), tg(S|r) and tg(S r)
through the thresholds S = —80 + ¢, with ¢ = 0.1,0.2, ..., 1; instead, in columns four and six the
approximate values m»(S]r) = 5¢7(S|r)/3 and ms(S|r) = 61¢3(5|r)/15 are indicated.

As is well known, for such a process 11 = —oo and ro = +00 are natural boundaries. We
now consider a Wiener process characterized by (98) and restricted to I = [r,+00), where
on the regular boundary @ = r a reflecting condition is imposed. For such process one has:
(§—r)?

2 ?
) — o ,
(99) t(Slr) = S—r o 2u(S —r)

+ Z{exp{—iz}—l}, u# 0.

L 2u o

p=0
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S t1(S|r) t5(S|r) mo (S]r) t3(S|r) ms (S]|r)

-79. 7.182818 E-1 9.049849 E-1 1.031858 E40 1.689703 E+0 2.223494 E40

-78. 4.389056 E40 3.530574 E41 3.852763 E4+1 4.237908 E42 5.072997 E4-2

-T7. 1.608554 E+1 4.904890 E+42 5.174890 E42 2.239169 E+4 2.497227 E4+4

-76.  4.959815 E+1 4.772757 E+4+3 4.919953 E+3 6.885009 E+5 7.320617 E+5

-75. 1.424132 E+2 3.991836 E+4 4.056302 E+4 1.678092 E+7 1.733012 E+7

-74. 3.964288 E+2 3.118250 E+5 3.143116 E4+5 3.679008 E+8 3.738065 E+48

-73. 1.088633 E+3 2.361388 E+6 2.370244 E+46 7.683175 E+4+9 7.740980 E+9

-72. 2971958 E+3 1.763516 E+7 1.766507 E47  1.569663 E+11 1.574995 E+11

-71.  8.093084 E43 1.308987 E48 1.309960 E+8  3.175758 E+412  3.180485 E+12

-70. 2.201547 E+4 9.690530 E4-8 9.693615 E48 6.398208 E413 6.402283 E+13

-69. 5.986214 E+4 7.165994 E49 7.166952 E49 1.286743 E415 1.287087 E+4+15

-68. 1.627418 E+5 5.296685 E+10 5.296978 E+10 2.585833 E+16 2.586119 E+16

-67. 4.423994 E+5  3.914256 E4+11  3.914344 E+11  5.194876 E4+17 5.195111 E+417

-66. 1.202589 E4+6  2.892416 E+12  2.892442 E+12 1.043507 E+19 1.043526 E+19

-65. 3.269001 E+6 2.137266 E+13 2.137274 E+13  2.096010 E4+20 2.096025 E+20

-64.  8.886094 K46 1.579251 E+14  1.579253 E+4+14  4.210005 E+421  4.210017 E+21

-63. 2415493 E+7 1.166921 E+15 1.166922 E+15  8.456066 E+4+22  8.456076 E+22

-62. 6.565995 E+7 8.622456 E+15 8.622458 E+15 1.698450 E424 1.698451 E+424

-61. 1.784823 E+8 6.371184 E+16 6.371185 E+16 3.411430 E425 3.411431 E425

-60. 4.851652 E4+8 4.707705 E4+17 4.707705 E4+17 6.852043 E4-26 6.852043 E+26
Table 2: Wiener process with yu = —1, ¢? = 2, restricted to I = [r,+oc) with r = —80. In
columns two, three and five we have listed the FPT moments ¢,(5]|7), t2(S|r) and ¢5(S5|r) through
the thresholds § = —80+ ¢, with ¢ = 1,2, ... ,20; instead, in columns four and six the approximate

values mo(S|r) = 2t3(S|r) and ms(S|r) = 63 (S|r) are indicated.

As proved in Section 4, the restricted Wiener process is BF if ;1 = 0. Since (77) holds with
v =0, if g =0 from (92) one obtains:

(—1)"Ean
(2n — 1)!

where Eq, Es, ... denote Euler numbers. If u # 0, since (9) and (10) hold with v = 0, from
Theorem 2.1 and from Proposition 2.1 one has:

. tn(S|r) (=1)"Fap
100 1 =
(100) sir (S]]~ (2n— D
In Table 1 for the Wiener process with g = —0.5 and % = 2, restricted to I = [r, +00)
with r = —80, we have listed the FPT moments t;(S|r), t2(S|r) and t3(S|r) through
the thresholds S = —80 + ¢, with e = 0.1,0.2,... ;1. The mean FPT is evaluated via
(99), whereas t2(S|r) and #5(S|r) are numerically evaluated via (4) with 2 = r = —80.

tn(Slr) = [t (SIM]" (n=0,1,...),

(n=0,1,...).

Furthermore, in columns four and six we have listed the approximate values mz(S|r) =
5t3(S|r)/3 and m3(S|r) = 613(S|r)/15. Note that the goodness of the approximation of
t2(S|r) by ma(S|r) and #3(S|r) by ms(S|r) improves as € is decreased, i.e. as S moves to
the neighborhood of the reflecting boundary. Furthermore, we note that conditions (68)
and (69) hold if © < 0. Hence, from Theorem 3.3 one has:

ta(Slr) _
ST1+OCW—M (n=0,1,...).

(101)
Furthermore, if ;1 < 0 the FPT pdf ¢(S,t|r) exhibits the following exponential behavior:
(102)

1 t
g(S,tr) ~ m exp{— m} (S 1 400).
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S V(S >(S]r) S CV(S[r) >(S[r)
79, 8.683828 I-1  1.981136 269, 9.998663 B-1 2
-78. 9125509 E-1  1.992384 68, 9.999447 B-1 2
77, 9.463878 E-1  1.997357 -67.  9.999774 B-1 2
.76, 9.696203 E-1  1.999211 -66.  9.999909 B-1 2,
=75, 9.839790 E-1  1.999795 -65.  9.999963 B-1 2,
-74. 9.920573 E-1  1.999953 -64.  9.999985 B-1 2
73, 9.962566 E-1  1.999990 -63.  9.999994 B-1 2
72, 9.983053 -1 1.999998 62, 9.999998 B-1 2
71, 9.992565 -1 2. 61, 9.999999 B-1 2
-70. 9996817 B-1 2. -60. 1. 2

Table 3: Coefficient of variation C'V(S]r) and skewness 3(5]|r) of the FPT are listed for the same

process and for the same thresholds of Table 2.

In Table 2 for the Wiener process with p = —1 and o? = 2, restricted to I = [r,+00)
with r = —80, we have listed the FPT moments t;(S|r), t2(S|r) and t3(S|r) through
the thresholds § = —80 4 ¢, with e = 1,2,... ,20. Instead, in columns four and six we
have listed the approximate values mo(S|r) = 2¢3(S|r) and m3(S|r) = 6¢3(S|r). Note
that the goodness of the approximation of t2(S|r) by mz(S|r) and t3(S|r) by ms(S|r)
improves as € increases, i.e. when the firing threshold S is moving indefinitely away from
the reflecting boundary. In Table 3 for the same process and for the same thresholds
of Table 2, the coefficient of variation CV(S|r) = /Var(S|r)/t1(S|r) and the skewness
S(S|r) = [ta(S|r) + 2#3(S|r) — 3t1(S|r) t2(S|r)]/[Var(S|r)]*/? of the FPT are indicated.
Note that C'V(S|r) increases with S and approaches 1 for large thresholds; furthermore,
also 3(S|r) increases with S to approach 2 for large thresholds. All this is clearly suggestive
of the exponential approximation (102) to the firing pdf for large thresholds.

The neuronal model based on the Wiener process does not include the well-known spon-
taneous exponential decay of the neuron’s membrane potential that occurs between succes-
sive PSP’s. Hereafter we shall thus discuss another diffusion model for neuronal activity
that includes this specific feature. This is customarily denoted as the Ornstein-Uhlenbeck
neuronal model because of its analogy with the well-known model used by these two authors
to describe the Brownian motion.

5.2 Ornstein Uhlenbeck model
The Ornstein Uhlenbeck neuronal model is defined as the diffusion process characterized by
the following drift and infinitesimal variance:

(103) Aﬂ@:-%(%g) Ay=0”  (0€R,0>0,0>0)

restricted to I = [r,400), where r is a regular boundary (with a reflecting condition) and
+oo is a natural boundary. Comparing (98) with (103), we see that now the drift is state-
dependent. However, in the limit as ¥ — 400 moments (103) tend to moments (98) with
¢ = 0, meaning that the Ornstein Uhlenbeck model yields the Wiener model for infinitely
large ¥. In the absence of randomness (¢ = 0), the membrane potential X (¢) exponentially
decays to the resting potential o with a time constant .

The FPT problem for constant thresholds is in general not solvable in closed form. However,
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S t1(S|r) 15 (S|r) mo (S]r) t3(S|r) ms(S]r)
-79.9 9.933995 E-4 1.642992 E-6 1.644738 E-6 3.977012 E-9 3.986671 E-9
-79.8 3.947719 E-3 2.591928 E-5 2.597414 E-b 2.489882 E-7  2.501941 E-7
-79.7  8.825289 E-3 1.294004 E-4 1.298095 E-4  2.775179 E-6 2.795280 E-6
-79.6 1.558994 E-2 4.033832 E-4  4.050768 E-4 1.526194 E-5 1.540890 E-5
-79.5 2.420693 E-2 9.715477 E-4 9.766254 E-4  5.700033 E-5 5.768428 E-5
-79.4  3.464292 E-2 1.987805 E-3 2.000220 E-3 1.666835 E-4 1.690760 E-4
-79.3 4.686593 E-2 3.634324 E-3 3.660693 E-3 4.117376 E-4 4.186107 E-4
-79.2 6.084527 E-2 6.119718 E-3 6.170246 E-3 8.989553 E-4 9.160499 E-4
-79.1 7.655152 E-2 9.677392 E-3 9.766892 E-3 1.786229 E-3 1.824316 E-3
-79.0 9.395647 E-2 1.456403 E-2 1.471303 E-2 3.295210 E-3 3.373018 E-3

Table 4: Ornstein Uhlenbeck process with @ = 10, ¢ = —70 and ¢* = 10, restricted to I = [r, +-00)
with » = —80. In columns two, three and five are listed the FPT moments ¢ (S|r), ¢»(S]r) and
t3(S|r) through the thresholds S = —80 + ¢, with ¢ = 0.1,0.2,...,1; instead, in columns four and
six the approximate values m,(S|r) = 5¢1(S|r)/3 and ms(S|r) = 617 (S]r)/15 are listed.

by use of Siegert’s formula (4), the mean FPT can be obtained as

t1(Slr) =19 ;i: (bt 1)?21@ TN [(i\_/ﬁé’)QkH(tr;—ﬂg)%H]

. ’ (r — 0)? +o0 ok r—o 2k+1
20 exp{ }Z(2k+1)!! e

k=0

. :Z: (21<:+11)k! [(iﬁ)2k+1(;\_/§>2k+1]'

Since (9) and (10) are satisfied with v = 0, from Theorem 2.1 and from Proposition 2.1 one
sees that (100) holds. In Table 4 for the Ornstein Uhlenbeck process with ¢ = 10, p = —70
and ¢ = 10, restricted to I = [r,+oc) with » = —80, we have listed the FPT moments
t1(S|r), t2(S|r) and t3(S|r) through the thresholds S = —80 + ¢, with e = 0.1,0.2,... ,1.
The FPT moments ¢1(S|r), t2(S|r) and t3(S|r) are numerically evaluated via (4) with
29 = r = —80. Furthermore, in columns four and six we have listed the approximate values
ma(S|r) = 5t3(S|r)/3 and m3(S|r) = 61¢3(S|r)/15. Note that again the goodness of the
approximation of to(S|r) by ma(S|r) and t3(S|r) by ms(S|r) improves as ¢ is decreased.
Furthermore, we note that conditions (68) and (69) hold. Hence, from Theorem 3.3 one
obtains (101). Furthermore, the FPT pdf ¢(S,#|r) exhibits the exponential behavior (102).
In Table 5 for the Ornstein Uhlenbeck process with ¥ = 5, p = —70 and ¢? = 400,
restricted to I = [r,+o0) with » = —80, we have listed the FPT moments t;(S|r), t2(S|r)
and the coefficient of variation CV(S|r) through the thresholds S = —80 + ¢, with € =
10,20,...,210. From Table 5 we see that the goodness of the approximation of ¢;(S|r) by
mo(S|r) improves as € increases; furthermore CV (S|r) increases with S and it approach 1
for large thresholds.

5.3 Feller model
The Feller neuronal model [6] is defined as the diffusion process X (t) characterized by the
following drift and infinitesimal variance:

(104) Al(x):_é(x_g), Ap(z)=26(x—1)  (or €R,0> 10> 0,6 > 0).
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S t1(S|r) 15 (S|r) my (S|r) CV(S]r)
-70. 2.458883 E-1 1.005000 E-1 1.209221 E-1  8.137738 E-1
-60. 1.000222 E+0 1.667492 E+0 2.000889 E40  8.165484 E-1
-50. 2.369550 E4-0 9.435137 E4-0 1.122954 E+1  8.248724 E-1
-40. 4.608184 E+0 3.617231 E+1 4.247072 E+1  8.386894 E-1
-30. 8.231322 E4-0 1.175948 E+2 1.355093 E+2  8.576692 E-1
-20. 1.428070 E+1 3.622149 E+42 4.078767 E+2  8.809654 E-1
-10. 2.495717 E+1 1.135186 E+3 1.245721 E+3  9.069378 E-1

0. 4.520674 E+1 3.823049 E+3 4.087299 E+3  9.331113 E-1
10. 8.696040 E+1 1.44818 E+4 1.512422 E44  9.565808 E-1
20. 1.812836 E+2 6.410183 E4+4 6.5672746 E4+4  9.749534 E-1
30. 4.158379 E+2 3.414802 E+45 3.458423 E45  9.873065 E-1
40. 1.059565 E+3 2.232766 E46 2.245357 E4+6  9.943763 E-1
50. 3.011874 E43 1.810326 E+7 1.814277 E+7  9.978199 E-1
60. 9.558583 E+43 1.825973 E+8 1.827330 E+8  9.992570 E-1
70. 3.383678 E+44 2.289343 E+9 2.289855 E4+9  9.997761 E-1
80. 1.334134 E45  3.559614 E+10  3.559827 E+10  9.999401 E-1
90. 5.851153 E4+5  6.847099 E+11  6.847197 E4+11  9.999856 E-1
100.  2.851314 E+6 1.625993 E+13  1.625998 E+13  9.999969 E-1
110. 1.542584 E4+7  4.759126 E+14  4.759129 E+14  9.999994 E-1
120. 9.259218 E4+7 1.714662 E4+16  1.714662 E416  9.999998 E-1
130.  6.163155 E4+8  7.596895 E4+17  7.596895 E4+17 1.

Table 5: Ornstein Uhlenbeck process with @ = 5, o = —70 and ¢° = 400, restricted to I = [r, +-c0)
with » = —80. In columns two, three and five we have listed the FPT moments ¢, (5|r), t2(S|r) and
the coefficient of variation C'V(S|r) through the thresholds S = —80 + ¢, with ¢ = 10,20, ... ,210;

instead, in column four the approximate values ms(S|r) = 2¢7(S|r) are indicated.

The state space for the underlying stochastic process is [r,+o0), implying the existence
of a ‘reversal hyperpolarization potential’ in r. Boundary = = r is regular if p — r < €9
and entrance if o — r > £ ¥; instead, boundary 400 is natural. Similarly to the Ornstein
Uhlenbeck model, for the Feller model (104) the FPT problem is in general still unsolved.
However, the mean of the firing time can be calculated:

H(S|r) = Q% [5r+§(;)k(5k_£)f+l {ﬁ(é’;r +51¢)}_1}

=1

Relations (9) and (10) hold with » = 1 — 9£/[2 (0 — 7)].

obtaln:

Moreover, from Theorem 2.1 we

.t (S]r)

gfrl i (ST = Uy (n=0.1,...),

where u, are given in (20). In Table 6 for the Feller process with ¢ = 5, p = =70, £ = 1 and
r = —80, restricted to I = [-80, +00), we have listed the FPT moments t;(S|r), t2(S]r) and
t3(S|r) through the thresholds § = —80 + €, with e = 0.1,0.2,... ,1. The FPT moments
t1(S|r), t2(S|r) and t3(S|r) are numerically evaluated via (4) with 2y = r = —80. In columns
four and six we have listed the approximate values mo(S|r) = [1 4+ 4(1 — v)]#3(S|r)/[1 +
2(1—v)] and ms(S|r) = [1+12(1 —v) +48(1 —v)* |3 (S|r) /{[1+2 (1 —v)][1 +4 (1 — )]},
with v =1 = 9€/[2(p —r)] = 3/4. Note that the goodness of the approximation of ¢,(.S|r)
by m2(S|r) and t3(S|r) by ms(S|r) improves as e decreases. Furthermore, we note that
conditions (68) and (69) hold. Hence, from Theorem 3.3 one has (101) and the FPT pdf
g(S,t|r) exhibits the exponential behavior (102). In Table 7 for the Feller process with
¥ =5, 0= -70, { = 2 and r = —80, restricted to I = [-80,40c0), we have listed
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S t1(S|r) 15 (S|r) my (S]r) t3(S|r) ms(S|r)
-79.9 5.016722 E-2 3.358470 E-3 3.355667 E-3 2.952781 E-4  2.946029 E-4
-79.8 1.006711 E-1 1.353553 E-2 1.351290 E-2 2.391571 E-3 2.380629 E-3
-79.7 1.515151 E-1 3.068618 E-2 3.060912 E-2 8.172159 E-3 8.116052 E-3
-79.6 2.027027 E-1 5.496881 E-2 5.478449 E-2 1.961330 E-2 1.943368 E-2
-79.5 2.542372 E-1 8.654535 E-2 8.618205 E-2 3.878788 E-2 3.834369 E-2
-79.4  3.061222 E-1 1.255813 E-1 1.249477 E-1 6.786924 E-2 6.693623 E-2
-79.3 3.583613 E-1 1.722457 E-1 1.712304 E-1 1.091351 E-1 1.073841 E-1
-79.2 4.109581 E-1 2.267115 E-1 2.251821 E-1 1.649718 E-1 1.619457 E-1
-79.1 4.639162 E-1 2.891554 E-1 2.869577 E-1 2.378782 E-1 2.329675 E-1
-79.0 5.172393 E-1 3.597580 E-1 3.567154 E-1 3.304704 E-1 3.228877 E-1
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Table 6: Feller process with 9 =5, p = —70, £ = 1 and r = —80, restricted to I = [—80, +0),
with # = —80 regular boundary. In columns two, three and five we have listed the FPT moments
t1(S]r), t2(S|r) and t3(5]r) through the thresholds S = —80 + ¢, with ¢ = 0.1,0.2,... , 1; instead,
in columns four and six the approximate values ma(S]r) = [1+4 (1 — )7 (S]r)/[L+2 (1 — v)] and

ma(Slr) = [1+12(1 —v) + 48 (1 — v)*]#3(S

been indicated.

S t1(S|r) to(S|r) mo (S|r) CV(S|r)
-70. 6.589510 E+0 6.901781 E+1 8.684329 E+1 7.677756 E-1
-60. 1.841936 E+1 5.721140 E+2 6.785454 E+2 8.284294 E-1
-50. 4.129002 E+1 3.034578 E+3 3.409732 E+3 8.831485 E-1
-40. 8.833682 E+1 1.450941 E+4 1.560679 E+4 9.270233 E-1
-30. 1.899931 E+42 6.923538 E+4 7.219476 E+4 9.581319 E-1
-20. 4.181039 E+2 3.419298 E+5 3.496218 E+5 9.777516 E-1
-10. 9.449081 E+2 1.766021 E+6 1.785703 E+6 9.889170 E-1

0. 2.188616 E+3 9.529990 E+6 9.580082 E+6 9.947576 E-1

10. 5.175519 E+3 5.344454 E+7 5.357200 E4+7 9.976179 E-1
20. 1.244675 E+4 3.095179 E+8 3.098430 E+8 9.989505 E-1
30. 3.034216 E+4 1.840462 E+9 1.841293 E+9 9.995484 E-1
40. 7.478235 E+4 1.118267 E+10 1.118480 E+10 9.998092 E-1

r)/{[1+2(1—v)][1+4(1—r)]}, with v = 3/4 have

Table 7: Feller process with 9 =5, p = —70, £ = 2 and r = —80, restricted to I = [—80, +o0).
Columns two, three and five list the FPT moments ¢1(S|r), t2(S|r) and the coefficient of variation
CV (S|r) through the thresholds S = —80 + ¢, with ¢ = 10,20,...,120; instead, column four

indicates the approximate values ma(S|r) = 2% (S|r).

the FPT moments ¢1(S|r), t2(S|r) and the coefficient of variation C'V(S|r) through the
thresholds .S = —80 + ¢, with ¢ = 10,20,... ,120. Instead, in columns four we have listed
the approximate values mo(S|r) = 2¢%(S|r). Similarly to the Ornstein Uhlenbeck model,
from Table 7 we see that the goodness of the approximation of t2(S|r) by mo(S|r) improves
as € increases; furthermore C'V(S|r) increases with S and it approach 1 for large thresholds.
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